BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr Opin Chem Eng 2015;7:65-74. [PMID: 25745594 DOI: 10.1016/j.coche.2014.11.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Manspeaker MP, Thomas SN. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv Drug Deliv Rev 2020;160:19-35. [PMID: 33058931 DOI: 10.1016/j.addr.2020.10.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
2 Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy. Adv Sci (Weinh) 2022;9:e2200027. [PMID: 35343112 DOI: 10.1002/advs.202200027] [Reference Citation Analysis]
3 Glass JJ, Kent SJ, De Rose R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev Vaccines 2016;15:719-29. [PMID: 26783186 DOI: 10.1586/14760584.2016.1141054] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
4 Schudel A, Chapman AP, Yau MK, Higginson CJ, Francis DM, Manspeaker MP, Avecilla ARC, Rohner NA, Finn MG, Thomas SN. Programmable multistage drug delivery to lymph nodes. Nat Nanotechnol 2020;15:491-9. [PMID: 32523099 DOI: 10.1038/s41565-020-0679-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
5 Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev 2017;114:33-42. [PMID: 28455187 DOI: 10.1016/j.addr.2017.04.011] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 12.0] [Reference Citation Analysis]
6 Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021;179:113914. [PMID: 34363861 DOI: 10.1016/j.addr.2021.113914] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
7 Howard GP, Verma G, Ke X, Thayer WM, Hamerly T, Baxter VK, Lee JE, Dinglasan RR, Mao HQ. Critical Size Limit of Biodegradable Nanoparticles for Enhanced Lymph Node Trafficking and Paracortex Penetration. Nano Res 2019;12:837-44. [PMID: 33343832 DOI: 10.1007/s12274-019-2301-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
8 Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022;20:24. [PMID: 34991595 DOI: 10.1186/s12951-021-01232-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. Advanced Therapeutics 2021;4:2100056. [DOI: 10.1002/adtp.202100056] [Reference Citation Analysis]
10 Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. Small 2021;17:e2006000. [PMID: 33768693 DOI: 10.1002/smll.202006000] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kim T, Suh J, Kim J, Kim WJ. Lymph-Directed Self-Immolative Nitric Oxide Prodrug for Inhibition of Intractable Metastatic Cancer. Adv Sci (Weinh) 2022;9:2101935. [PMID: 35317221 DOI: 10.1002/advs.202101935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Leleux J, Atalis A, Roy K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Control Release 2015;219:610-21. [PMID: 26489733 DOI: 10.1016/j.jconrel.2015.09.063] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
13 O'Melia MJ, Rohner NA, Manspeaker MP, Francis DM, Kissick HT, Thomas SN. Quality of CD8+ T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. Sci Adv 2020;6:eabd7134. [PMID: 33310857 DOI: 10.1126/sciadv.abd7134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
14 Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021;176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
15 Shen Y, Shuhendler AJ, Ye D, Xu J, Chen H. Two-photon excitation nanoparticles for photodynamic therapy. Chem Soc Rev 2016;45:6725-41. [DOI: 10.1039/c6cs00442c] [Cited by in Crossref: 292] [Cited by in F6Publishing: 52] [Article Influence: 48.7] [Reference Citation Analysis]
16 Yukuyama MN, de Araujo GLB, de Souza A, Löbenberg R, Barbosa EJ, Henostroza MAB, Rocha NPD, de Oliveira IF, Folchini BR, Peroni CM, Masiero JF, Bou-Chacra NA. Cancer treatment in the lymphatic system: A prospective targeting employing nanostructured systems. Int J Pharm 2020;587:119697. [PMID: 32750440 DOI: 10.1016/j.ijpharm.2020.119697] [Reference Citation Analysis]
17 Chaturvedi S, Garg A, Verma A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. Journal of Drug Delivery Science and Technology 2020;59:101899. [DOI: 10.1016/j.jddst.2020.101899] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
18 Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021;13:122. [PMID: 33477972 DOI: 10.3390/pharmaceutics13010122] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
19 Tang H, Rui M, Mai J, Guo W, Xu Y. Reimaging biological barriers affecting distribution and extravasation of PEG/peptide- modified liposomes in xenograft SMMC7721 tumor. Acta Pharm Sin B 2020;10:546-56. [PMID: 32140398 DOI: 10.1016/j.apsb.2019.06.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Chen S, Qin M, Han Y, Zhao L, Fu Y, Shang Y, Liu Z, Huang H. Assessment of the efficacy of drug transdermal delivery by electro-phonophoresis in treating tuberculous lymphadenitis. Drug Deliv 2016;23:1588-93. [PMID: 26669820 DOI: 10.3109/10717544.2015.1124474] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
21 Kalyane D, Kumar N, Anup N, Rajpoot K, Maheshwari R, Sengupta P, Kalia K, Tekade RK. Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021;609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Reference Citation Analysis]
22 Xie X, Song T, Feng Y, Zhang H, Yang G, Wu C, You F, Liu Y, Yang H. Nanotechnology-based multifunctional vaccines for cancer immunotherapy. Chemical Engineering Journal 2022;437:135505. [DOI: 10.1016/j.cej.2022.135505] [Reference Citation Analysis]
23 Rohner NA, McClain J, Tuell SL, Warner A, Smith B, Yun Y, Mohan A, Sushnitha M, Thomas SN. Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J 2015;29:4512-22. [PMID: 26178165 DOI: 10.1096/fj.15-274761] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
24 Griffin JD, Song JY, Sestak JO, DeKosky BJ, Berkland CJ. Linking autoantigen properties to mechanisms of immunity. Adv Drug Deliv Rev 2020;165-166:105-16. [PMID: 32325104 DOI: 10.1016/j.addr.2020.04.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
25 Gracia, Cao E, Kochappan R, Jh Porter C, Pr Johnston A, Trevaskis NL. Association of a vaccine adjuvant with endogenous HDL increases lymph uptake and dendritic cell activation. Eur J Pharm Biopharm 2021:S0939-6411(21)00236-8. [PMID: 34571191 DOI: 10.1016/j.ejpb.2021.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ben-Akiva E, Meyer RA, Wilson DR, Green JJ. Surface engineering for lymphocyte programming. Adv Drug Deliv Rev 2017;114:102-15. [PMID: 28501510 DOI: 10.1016/j.addr.2017.05.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
27 Thomas SN, Rohner NA, Edwards EE. Implications of Lymphatic Transport to Lymph Nodes in Immunity and Immunotherapy. Annu Rev Biomed Eng 2016;18:207-33. [PMID: 26928210 DOI: 10.1146/annurev-bioeng-101515-014413] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
28 Wilson JT. A sweeter approach to vaccine design. Science 2019;363:584-5. [DOI: 10.1126/science.aav9000] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
29 Feeney OM, Gracia G, Brundel DHS, Trevaskis NL, Cao E, Kaminskas LM, Porter CJH. Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020;160:115-35. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
30 Gracia G, Cao E, Feeney OM, Johnston APR, Porter CJH, Trevaskis NL. High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration. Mol Pharmaceutics 2020;17:2938-51. [DOI: 10.1021/acs.molpharmaceut.0c00348] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Mullis AS, Broderick SR, Binnebose AM, Peroutka-Bigus N, Bellaire BH, Rajan K, Narasimhan B. Data Analytics Approach for Rational Design of Nanomedicines with Programmable Drug Release. Mol Pharm 2019;16:1917-28. [PMID: 30973741 DOI: 10.1021/acs.molpharmaceut.8b01272] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
32 Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2021;268:120597. [PMID: 33360074 DOI: 10.1016/j.biomaterials.2020.120597] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
33 Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015;14:781-803. [DOI: 10.1038/nrd4608] [Cited by in Crossref: 279] [Cited by in F6Publishing: 266] [Article Influence: 39.9] [Reference Citation Analysis]
34 Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021;78:5139-61. [PMID: 33963442 DOI: 10.1007/s00018-021-03842-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Theil D, Smith P, Huck C, Gilbart Y, Kakarieka A, Leppert D, Rauld C, Schmid C, Baumgartner R, Stuber N, Cordoba F, Dubost V, Darribat K, Jivkov M, Frieauff W, Kneuer R, Stoeckli M, Reinker S, Mansfield K, Carballido JM, Couttet P, Weckbecker G. Imaging Mass Cytometry and Single-Cell Genomics Reveal Differential Depletion and Repletion of B-Cell Populations Following Ofatumumab Treatment in Cynomolgus Monkeys. Front Immunol 2019;10:1340. [PMID: 31281311 DOI: 10.3389/fimmu.2019.01340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
36 Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater 2019;4:415-28. [PMID: 32523780 DOI: 10.1038/s41578-019-0110-7] [Cited by in Crossref: 93] [Cited by in F6Publishing: 90] [Article Influence: 31.0] [Reference Citation Analysis]
37 Ladenstein R, Morgunova E. Second career of a biosynthetic enzyme: Lumazine synthase as a virus-like nanoparticle in vaccine development. Biotechnol Rep (Amst) 2020;27:e00494. [PMID: 32714852 DOI: 10.1016/j.btre.2020.e00494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
38 Doan TN, Bernard FC, McKinney JM, Dixon JB, Willett NJ. Endothelin-1 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular injection into the rat knee. Acta Biomater 2019;93:270-81. [PMID: 30986528 DOI: 10.1016/j.actbio.2019.04.025] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
39 Li WH, Li YM. Chemical Strategies to Boost Cancer Vaccines. Chem Rev 2020;120:11420-78. [PMID: 32914967 DOI: 10.1021/acs.chemrev.9b00833] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
40 Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium. Am J Physiol Heart Circ Physiol 2016;310:H1501-11. [PMID: 26945084 DOI: 10.1152/ajpheart.00925.2014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Nakamura T, Harashima H. Dawn of lipid nanoparticles in lymph node targeting: Potential in cancer immunotherapy. Adv Drug Deliv Rev 2020;167:78-88. [PMID: 32512027 DOI: 10.1016/j.addr.2020.06.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
42 Ross AE, Pompano RR. Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging. Anal Chim Acta 2018;1000:205-13. [PMID: 29289312 DOI: 10.1016/j.aca.2017.11.048] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
43 Schudel A, Kassis T, Dixon JB, Thomas SN. S-Nitrosated Polypropylene Sulfide Nanoparticles for Thiol-Dependent Transnitrosation and Toxicity Against Adult Female Filarial Worms. Adv Healthc Mater 2015;4:1484-90, 1423. [PMID: 25939735 DOI: 10.1002/adhm.201400841] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
44 Rohner NA, Thomas SN. Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. J Control Release 2016;223:99-108. [PMID: 26721446 DOI: 10.1016/j.jconrel.2015.12.027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
45 Migotto MA, Mardon K, Orian J, Weckbecker G, Kneuer R, Bhalla R, Reutens DC. Efficient Distribution of a Novel Zirconium-89 Labeled Anti-cd20 Antibody Following Subcutaneous and Intravenous Administration in Control and Experimental Autoimmune Encephalomyelitis-Variant Mice. Front Immunol 2019;10:2437. [PMID: 31681317 DOI: 10.3389/fimmu.2019.02437] [Reference Citation Analysis]
46 Kim J, Manspeaker MP, Thomas SN. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomater 2019;88:1-14. [PMID: 30769136 DOI: 10.1016/j.actbio.2019.02.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
47 Elz AS, Trevaskis NL, Porter CJH, Bowen JM, Prestidge CA. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J Control Release 2021;341:676-701. [PMID: 34896450 DOI: 10.1016/j.jconrel.2021.12.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
48 Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021;11:886-902. [PMID: 33996405 DOI: 10.1016/j.apsb.2021.03.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
49 Yoshida T, Kojima H, Sako K, Kondo H. Drug delivery to the intestinal lymph by oral formulations. Pharm Dev Technol 2022;:1-61. [PMID: 35037843 DOI: 10.1080/10837450.2022.2030353] [Reference Citation Analysis]
50 Meijer EFJ, Blatter C, Chen IX, Bouta E, Jones D, Pereira ER, Jung K, Vakoc BJ, Baish JW, Padera TP. Lymph node effective vascular permeability and chemotherapy uptake. Microcirculation 2017;24. [PMID: 28510992 DOI: 10.1111/micc.12381] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
51 Cordeiro AS, Crecente-campo J, Bouzo BL, González SF, de la Fuente M, Alonso MJ. Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. Journal of Drug Targeting 2019;27:646-58. [DOI: 10.1080/1061186x.2018.1561886] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
52 Nguyen DC, Shae D, Pagendarm HM, Becker KW, Wehbe M, Kilchrist KV, Pastora LE, Palmer CR, Seber P, Christov PP, Duvall CL, Wilson JT. Amphiphilic Polyelectrolyte Graft Copolymers Enhance the Activity of Cyclic Dinucleotide STING Agonists. Adv Healthc Mater 2021;10:e2001056. [PMID: 33225632 DOI: 10.1002/adhm.202001056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Schudel A, Sestito LF, Thomas SN. Winner of the society for biomaterials young investigator award for the annual meeting of the society for biomaterials, April 11-14, 2018, Atlanta, GA: S-nitrosated poly(propylene sulfide) nanoparticles for enhanced nitric oxide delivery to lymphatic tissues. J Biomed Mater Res A 2018;106:1463-75. [PMID: 29352735 DOI: 10.1002/jbm.a.36348] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
54 Cordeiro AS, Farsakoglu Y, Crecente-Campo J, de la Fuente M, González SF, Alonso MJ. Carboxymethyl-β-glucan/chitosan nanoparticles: new thermostable and efficient carriers for antigen delivery. Drug Deliv Transl Res 2021;11:1689-702. [PMID: 33797035 DOI: 10.1007/s13346-021-00968-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Carson CS, Becker KW, Garland KM, Pagendarm HM, Stone PT, Arora K, Wang-Bishop L, Baljon JJ, Cruz LD, Joyce S, Wilson JT. A nanovaccine for enhancing cellular immunity via cytosolic Co-delivery of antigen and PolyIC RNA. J Control Release 2022:S0168-3659(22)00146-8. [PMID: 35301055 DOI: 10.1016/j.jconrel.2022.03.020] [Reference Citation Analysis]
56 Abdallah M, Müllertz OO, Styles IK, Mörsdorf A, Quinn JF, Whittaker MR, Trevaskis NL. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J Control Release 2020;327:117-28. [PMID: 32771478 DOI: 10.1016/j.jconrel.2020.07.046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
57 Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020;8:3772-88. [DOI: 10.1039/d0tb00262c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
58 Baljon JJ, Wilson JT. Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr Opin Immunol 2022;77:102215. [PMID: 35667222 DOI: 10.1016/j.coi.2022.102215] [Reference Citation Analysis]
59 Lee SN, Jin SM, Shin HS, Lim YT. Chemical Strategies to Enhance the Therapeutic Efficacy of Toll-like Receptor Agonist Based Cancer Immunotherapy. Acc Chem Res 2020;53:2081-93. [PMID: 32966047 DOI: 10.1021/acs.accounts.0c00337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
60 Feeney OM, Ardipradja K, Noi KF, Mehta D, De Rose R, Yuen D, Johnston APR, Kingston L, Ericsson C, Elmore CS, Hufton R, Owen DJ, Ashford MB, Porter CJH. Subcutaneous delivery of a dendrimer-BH3 mimetic improves lymphatic uptake and survival in lymphoma. J Control Release 2022;348:420-30. [PMID: 35636618 DOI: 10.1016/j.jconrel.2022.05.041] [Reference Citation Analysis]
61 Rohner NA, Thomas SN. Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size. ACS Biomater Sci Eng 2017;3:153-9. [PMID: 29888321 DOI: 10.1021/acsbiomaterials.6b00438] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
62 Kim J, Francis DM, Sestito LF, Archer PA, Manspeaker MP, O'Melia MJ, Thomas SN. Thermosensitive hydrogel releasing nitric oxide donor and anti-CTLA-4 micelles for anti-tumor immunotherapy. Nat Commun 2022;13:1479. [PMID: 35304456 DOI: 10.1038/s41467-022-29121-x] [Reference Citation Analysis]
63 Shae D, Baljon JJ, Wehbe M, Christov PP, Becker KW, Kumar A, Suryadevara N, Carson CS, Palmer CR, Knight FC, Joyce S, Wilson JT. Co-delivery of Peptide Neoantigens and Stimulator of Interferon Genes Agonists Enhances Response to Cancer Vaccines. ACS Nano 2020;14:9904-16. [PMID: 32701257 DOI: 10.1021/acsnano.0c02765] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 20.5] [Reference Citation Analysis]
64 Zhang M, Chen W, Hong Y, Chen H, Wang C. External temperature control of lymphatic drainage of thermo-sensitive nanomaterials. Biomater Sci 2019;7:750-9. [PMID: 30519699 DOI: 10.1039/c8bm01298a] [Reference Citation Analysis]
65 Hussain B, Kasinath V, Madsen JC, Bromberg J, Tullius SG, Abdi R. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS Nano 2021. [PMID: 34714050 DOI: 10.1021/acsnano.1c04707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]