BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Silva RA, Pereira TC, Souza AR, Ribeiro PR. 1H NMR-based metabolite profiling for biomarker identification. Clinica Chimica Acta 2020;502:269-79. [DOI: 10.1016/j.cca.2019.11.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Marie B, Gallet A. Fish metabolome from sub-urban lakes of the Paris area (France) and potential influence of noxious metabolites produced by cyanobacteria. Chemosphere 2022;:134035. [PMID: 35183584 DOI: 10.1016/j.chemosphere.2022.134035] [Reference Citation Analysis]
2 Crook AA, Powers R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020;25:E5128. [PMID: 33158172 DOI: 10.3390/molecules25215128] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
3 Guo N, Chen Y, Yang X, Yan H, Fan B, Quan J, Wang M, Yang H. Urinary metabolomic profiling reveals difference between two traditional Chinese medicine subtypes of coronary heart disease. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1179:122808. [PMID: 34218095 DOI: 10.1016/j.jchromb.2021.122808] [Reference Citation Analysis]
4 Yuan Y, Zhao J, Li T, Ji Z, Xin Y, Zhang S, Qin F, Zhao L. Integrative metabolic profile of myelodysplastic syndrome based on UHPLC-MS. Biomed Chromatogr 2021;35:e5136. [PMID: 33844331 DOI: 10.1002/bmc.5136] [Reference Citation Analysis]
5 Hernandez-Baixauli J, Quesada-Vázquez S, Mariné-Casadó R, Gil Cardoso K, Caimari A, Del Bas JM, Escoté X, Baselga-Escudero L. Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients 2020;12:E806. [PMID: 32197513 DOI: 10.3390/nu12030806] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
6 Calderari S, Daniel N, Mourier E, Richard C, Dahirel M, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Chavatte-Palmer P, Duranthon V. Metabolomic differences in blastocoel and uterine fluids collected in vivo by ultrasound biomicroscopy on rabbit embryos†. Biol Reprod 2021;104:794-805. [PMID: 33459770 DOI: 10.1093/biolre/ioab005] [Reference Citation Analysis]
7 Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020;432:3578-610. [PMID: 32376454 DOI: 10.1016/j.jmb.2020.04.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
8 Carvalho FV, Fonseca Santana L, Diogenes A da Silva V, Costa SL, Zambotti-Villelae L, Colepicolo P, Ferraz CG, Ribeiro PR. Combination of a multiplatform metabolite profiling approach and chemometrics as a powerful strategy to identify bioactive metabolites in Lepidium meyenii (Peruvian maca). Food Chem 2021;364:130453. [PMID: 34186480 DOI: 10.1016/j.foodchem.2021.130453] [Reference Citation Analysis]
9 Sierra A, Otero S, Rodríguez E, Faura A, Vera M, Riera M, Palau V, Durán X, Costa-garrido A, Sans L, Márquez E, Poposki V, Franch-nadal J, Mundet X, Oliveras A, Crespo M, Pascual J, Barrios C. The GenoDiabMar Registry: A Collaborative Research Platform of Type 2 Diabetes Patients. JCM 2022;11:1431. [DOI: 10.3390/jcm11051431] [Reference Citation Analysis]
10 Lacalle-bergeron L, Izquierdo-sandoval D, Sancho JV, López FJ, Hernández F, Portolés T. Chromatography hyphenated to high resolution mass spectrometry in untargeted metabolomics for investigation of food (bio)markers. TrAC Trends in Analytical Chemistry 2021;135:116161. [DOI: 10.1016/j.trac.2020.116161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Xu B, Wu C, Li Z, Song P, Chao Z. 1H NMR Combined with Multivariate Statistics for Discrimination of Female and Male Flower Buds of Populus tomentosa. Molecules 2021;26:6458. [PMID: 34770866 DOI: 10.3390/molecules26216458] [Reference Citation Analysis]
12 He Z, Luo Q, Liu Z, Gong L. Extensive evaluation of sample preparation workflow for gas chromatography-mass spectrometry-based plasma metabolomics and its application in rheumatoid arthritis. Analytica Chimica Acta 2020;1131:136-45. [DOI: 10.1016/j.aca.2020.06.029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Ferlizza E, Isani G, Dondi F, Andreani G, Vasylyeva K, Bellei E, Almeida AM, Matzapetakis M. Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J Proteomics 2020;222:103795. [PMID: 32335294 DOI: 10.1016/j.jprot.2020.103795] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
14 Lim SY, Selvaraji S, Lau H, Li SFY. Application of omics beyond the central dogma in coronary heart disease research: A bibliometric study and literature review. Comput Biol Med 2021;140:105069. [PMID: 34847384 DOI: 10.1016/j.compbiomed.2021.105069] [Reference Citation Analysis]
15 de S Farias C, Dias de Cerqueira M, Colepicolo P, Zambotti-Villela L, Fernandez LG, Ribeiro PR. HPLC/HR-MS-Based Metabolite Profiling and Chemometrics: A Powerful Approach to Identify Bioactive Compounds from Abarema cochliacarpos. Chem Biodivers 2021;18:e2100055. [PMID: 33780593 DOI: 10.1002/cbdv.202100055] [Reference Citation Analysis]
16 Ma Y, Zhou H, Li C, Zou X, Luo X, Wu L, Li T, Chen X, Mao M, Huang Y, Li E, An Y, Zhang L, Wang T, Xu X, Yan W, Jiang Y, Wang Y. Differential Metabolites in Chinese Autistic Children: A Multi-Center Study Based on Urinary 1H-NMR Metabolomics Analysis. Front Psychiatry 2021;12:624767. [PMID: 34045978 DOI: 10.3389/fpsyt.2021.624767] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Nazifova-Tasinova N, Radeva M, Galunska B, Grupcheva C. Metabolomic analysis in ophthalmology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020;164:236-46. [PMID: 32690974 DOI: 10.5507/bp.2020.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2021;37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Ribeiro PR, Teixeira RDS, Souza AR, Pereira TCS, Boffo EF, Carosio MGA, Ferreira AG, Oliveira RV, Rodrigues LEA, Silva JJ, de Souza AJ, Ladeia AMT. Blood plasma metabolomics of children and adolescents with sickle cell anaemia treated with hydroxycarbamide: a new tool for uncovering biochemical alterations. Br J Haematol 2021;192:922-31. [PMID: 33476407 DOI: 10.1111/bjh.17315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]