BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu C, Zhao J, Hu F, Zheng Y, Yang H, Pan S, Shi S, Chen X, Wang S. Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. Carbohydr Polym 2018;180:112-21. [PMID: 29103486 DOI: 10.1016/j.carbpol.2017.10.024] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Yu S, He C, Chen X. Injectable Hydrogels as Unique Platforms for Local Chemotherapeutics-Based Combination Antitumor Therapy. Macromol Biosci 2018;18:1800240. [DOI: 10.1002/mabi.201800240] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
2 Kim M, Ahn Y, Lee K, Jung W, Cha C. In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture. Carbohydrate Polymers 2020;229:115538. [DOI: 10.1016/j.carbpol.2019.115538] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
3 Farjadian F, Rezaeifard S, Naeimi M, Ghasemi S, Mohammadi-Samani S, Welland ME, Tayebi L. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam). Int J Nanomedicine 2019;14:6901-15. [PMID: 31564860 DOI: 10.2147/IJN.S214467] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
4 Zhao J, Zhou C, Wu C, Wu H, Zhu C, Ye C, Wang S, Zou D. Fe3+-Induced Synchronous Formation of Composite Hydrogels for Effective Synergistic Tumor Therapy in NIR-I/II Biowindows. ACS Appl Mater Interfaces 2018;10:41947-55. [PMID: 30430823 DOI: 10.1021/acsami.8b14649] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
5 Deng J, Xun X, Zheng W, Su Y, Zheng L, Wang C, Su M. Sequential delivery of bismuth nanoparticles and doxorubicin by injectable macroporous hydrogels for combined anticancer kilovoltage X-ray radio- and chemo-therapy. J Mater Chem B 2018;6:7966-73. [DOI: 10.1039/c8tb02284d] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
6 Zhou R, Zhu S, Gong L, Fu Y, Gu Z, Zhao Y. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. J Mater Chem B 2019;7:2588-607. [DOI: 10.1039/c8tb03240h] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
7 Zhao J, Li J, Zhu C, Hu F, Wu H, Man X, Li Z, Ye C, Zou D, Wang S. Design of Phase-Changeable and Injectable Alginate Hydrogel for Imaging-Guided Tumor Hyperthermia and Chemotherapy. ACS Appl Mater Interfaces 2018;10:3392-404. [PMID: 29313334 DOI: 10.1021/acsami.7b17608] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
8 Oliveira EP, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Kwiatkowska J, Reis RL, Oliveira JM, Walczak P. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater 2019;95:60-72. [PMID: 31075514 DOI: 10.1016/j.actbio.2019.05.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
9 Santos J, Musta V, Luca CM, Belei OA, Cambrea SC. Randomized, placebo-controlled trial of xyloglucan and gelose for the treatment of acute diarrhea in children. Expert Rev Gastroenterol Hepatol 2021;15:325-31. [PMID: 33028102 DOI: 10.1080/17474124.2021.1833715] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhou L, Zhao J, Chen Y, Zheng Y, Li J, Zhao J, Zhang J, Liu Y, Liu X, Wang S. MoS2-ALG-Fe/GOx hydrogel with Fenton catalytic activity for combined cancer photothermal, starvation, and chemodynamic therapy. Colloids and Surfaces B: Biointerfaces 2020;195:111243. [DOI: 10.1016/j.colsurfb.2020.111243] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 15.5] [Reference Citation Analysis]
11 Lee SG, Kim CH, Sung SW, Lee ES, Goh MS, Yoon HY, Kang MJ, Lee S, Choi YW. RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int J Nanomedicine 2018;13:3263-78. [PMID: 29910614 DOI: 10.2147/IJN.S166021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
12 Bewersdorff T, Gruber A, Eravci M, Dumbani M, Klinger D, Haase A. Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. Int J Nanomedicine 2019;14:7861-78. [PMID: 31576128 DOI: 10.2147/IJN.S215935] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
13 Tashakkorian H, Hasantabar V, Mostafazadeh A, Golpour M. Transparent chitosan based nanobiocomposite hydrogel: Synthesis, thermophysical characterization, cell adhesion and viability assay. Int J Biol Macromol 2020;144:715-24. [PMID: 31862375 DOI: 10.1016/j.ijbiomac.2019.10.157] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Xu M, Zhang K, Liu Y, Wang J, Wang K, Zhang Y. Multifunctional MoS2 nanosheets with Au NPs grown in situ for synergistic chemo-photothermal therapy. Colloids Surf B Biointerfaces 2019;184:110551. [PMID: 31622812 DOI: 10.1016/j.colsurfb.2019.110551] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
15 Li J, Duan H, Pu K. Nanotransducers for Near‐Infrared Photoregulation in Biomedicine. Adv Mater 2019;31:1901607. [DOI: 10.1002/adma.201901607] [Cited by in Crossref: 74] [Cited by in F6Publishing: 57] [Article Influence: 24.7] [Reference Citation Analysis]
16 Ullah S, Hashmi M, Kharaghani D, Khan MQ, Saito Y, Yamamoto T, Lee J, Kim IS. Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats. Int J Nanomedicine 2019;14:2693-703. [PMID: 31354260 DOI: 10.2147/IJN.S197665] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Wu Y, Liang Y, Liu Y, Hao Y, Tao N, Li J, Sun X, Zhou M, Liu YN. A Bi2S3-embedded gellan gum hydrogel for localized tumor photothermal/antiangiogenic therapy. J Mater Chem B 2021;9:3224-34. [PMID: 33885626 DOI: 10.1039/d1tb00257k] [Reference Citation Analysis]
18 Karavana SY, Şenyiğit ZA, Çalışkan Ç, Sevin G, Özdemir Dİ, Erzurumlu Y, Şen S, Baloğlu E. Gemcitabine hydrochloride microspheres used for intravesical treatment of superficial bladder cancer: a comprehensive in vitro/ex vivo/in vivo evaluation. Drug Des Devel Ther 2018;12:1959-75. [PMID: 29997433 DOI: 10.2147/DDDT.S164704] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
19 Khaledian S, Abdoli M, Shahlaei M, Behbood L, Kahrizi D, Arkan E, Moradi S. Two-dimensional nanostructure colloids in novel nano drug delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;585:124077. [DOI: 10.1016/j.colsurfa.2019.124077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Lima-sousa R, de Melo-diogo D, Alves CG, Cabral CS, Miguel SP, Mendonça AG, Correia IJ. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Materials Science and Engineering: C 2020;117:111294. [DOI: 10.1016/j.msec.2020.111294] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
21 Liu C, Guo X, Ruan C, Hu H, Jiang B, Liang H, Shen X. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomaterialia 2019;96:281-94. [DOI: 10.1016/j.actbio.2019.07.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
22 Zhang A, Li A, Zhao W, Yan G, Liu B, Liu M, Li M, Huo B, Liu J. An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS 2 nanodots for dually controlled drug release. Chemical Engineering Journal 2018;342:120-32. [DOI: 10.1016/j.cej.2018.02.081] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 7.8] [Reference Citation Analysis]
23 Liu C, Ruan C, Shi R, Jiang BP, Ji S, Shen XC. A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy. Biomater Sci 2019;7:1705-15. [PMID: 30758351 DOI: 10.1039/c8bm01541d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
24 Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 2018;22:27. [PMID: 30275970 DOI: 10.1186/s40824-018-0138-6] [Cited by in Crossref: 75] [Cited by in F6Publishing: 62] [Article Influence: 18.8] [Reference Citation Analysis]
25 Chauhan DS, Arunkumar P, Prasad R, Mishra SK, K Reddy BP, De A, Srivastava R. Facile synthesis of plasmonic zein nanoshells for imaging-guided photothermal cancer therapy. Mater Sci Eng C Mater Biol Appl 2018;90:539-48. [PMID: 29853123 DOI: 10.1016/j.msec.2018.04.081] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
26 Zheng Y, Wang W, Zhao J, Wu C, Ye C, Huang M, Wang S. Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr Polym 2019;222:115039. [PMID: 31320053 DOI: 10.1016/j.carbpol.2019.115039] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 17.7] [Reference Citation Analysis]
27 Ribeiro LNM, Franz-Montan M, Breitkreitz MC, Rodrigues da Silva GH, de Castro SR, Guilherme VA, de Araújo DR, de Paula E. Nanohybrid hydrogels designed for transbuccal anesthesia. Int J Nanomedicine 2018;13:6453-63. [PMID: 30410331 DOI: 10.2147/IJN.S180080] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
28 Esposito E, Campolo M, Casili G, Lanza M, Franco D, Filippone A, Peritore AF, Cuzzocrea S. Protective Effects of Xyloglucan in Association with the Polysaccharide Gelose in an Experimental Model of Gastroenteritis and Urinary Tract Infections. Int J Mol Sci 2018;19:E1844. [PMID: 29932149 DOI: 10.3390/ijms19071844] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
29 Xiong Z, Shen M, Shi X. Zwitterionic Modification of Nanomaterials for Improved Diagnosis of Cancer Cells. Bioconjugate Chem 2019;30:2519-27. [DOI: 10.1021/acs.bioconjchem.9b00543] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
30 Liu Y, Xi Y, Zhao J, Zhao J, Li J, Huang G, Li J, Fang F, Gu L, Wang S. Preparation of therapeutic-laden konjac hydrogel for tumor combination therapy. Chemical Engineering Journal 2019;375:122048. [DOI: 10.1016/j.cej.2019.122048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 9.7] [Reference Citation Analysis]
31 Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2021;330:257-83. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
32 Luo W, Xu X, Zhou B, He P, Li Y, Liu C. Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Mater Sci Eng C Mater Biol Appl 2019;100:855-61. [PMID: 30948123 DOI: 10.1016/j.msec.2019.03.028] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
33 Wang H, Yang J, Cao P, Guo N, Li Y, Zhao Y, Zhou S, Ouyang R, Miao Y. Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. Chinese Chemical Letters 2020;31:3015-26. [DOI: 10.1016/j.cclet.2020.05.003] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Yadav V, Roy S, Singh P, Khan Z, Jaiswal A. 2D MoS 2 -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small 2019;15:1803706. [DOI: 10.1002/smll.201803706] [Cited by in Crossref: 110] [Cited by in F6Publishing: 78] [Article Influence: 27.5] [Reference Citation Analysis]