BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu X, Huang F, Yu Y, Zhao P, Zhou Y, He Y, Xu Y, Zhang Y. Ofloxacin degradation over Cu–Ce tyre carbon catalysts by the microwave assisted persulfate process. Applied Catalysis B: Environmental 2019;253:149-59. [DOI: 10.1016/j.apcatb.2019.04.047] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Chen P, Gou Y, Ni J, Liang Y, Yang B, Jia F, Song S. Efficient Ofloxacin degradation with Co(Ⅱ)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation. Chemical Engineering Journal 2020;401:125978. [DOI: 10.1016/j.cej.2020.125978] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 13.5] [Reference Citation Analysis]
2 Liu H, Ye M, Ren Z, Lichtfouse E, Chen Z. Towards synergistic combination of biochar/ultrasonic persulfate enhancing removal of natural humic acids from water. Journal of Environmental Chemical Engineering 2022;10:107809. [DOI: 10.1016/j.jece.2022.107809] [Reference Citation Analysis]
3 Peng L, Shang Y, Gao B, Xu X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride. Applied Catalysis B: Environmental 2021;282:119484. [DOI: 10.1016/j.apcatb.2020.119484] [Cited by in Crossref: 59] [Cited by in F6Publishing: 23] [Article Influence: 59.0] [Reference Citation Analysis]
4 Niu L, Wei T, Li Q, Zhang G, Xian G, Long Z, Ren Z. Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review. Journal of Environmental Sciences 2020;96:109-16. [DOI: 10.1016/j.jes.2020.04.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
5 Cao X, Fang Y, Kan Y, Zhang Y, Zhang Y, Wei B, Li B, Wang J, Li L. N-doped low-rank coal based carbon catalysts for heterogeneous activation of peroxymonosulfate for ofloxacin oxidation via electron transfer and non-radical pathway. Journal of the Taiwan Institute of Chemical Engineers 2022;135:104352. [DOI: 10.1016/j.jtice.2022.104352] [Reference Citation Analysis]
6 Lv S, Liu J, Zhao N, Li C, Wang Z, Wang S. Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light. Journal of Hazardous Materials 2020;387:122011. [DOI: 10.1016/j.jhazmat.2019.122011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 12.5] [Reference Citation Analysis]
7 Cong Y, Yi J, Liang S, Zhang F, Zhang Y, Lv SW. Architecting an indirect Z-scheme NiCo2O4@CdS-Ag photocatalytic system with enhanced charge transfer for high-efficiency degradation of emerging pollutants. Environ Res 2022;:112739. [PMID: 35041814 DOI: 10.1016/j.envres.2022.112739] [Reference Citation Analysis]
8 Yu L, Wang L, Liu Y, Sun C, Zhao Y, Hou Z, Peng H, Wang S, Wei H. Pyrolyzed carbon derived from red soil as an efficient catalyst for cephalexin removal. Chemosphere 2021;277:130339. [PMID: 33780677 DOI: 10.1016/j.chemosphere.2021.130339] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Chen H, Wang J. Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2) process. Chemosphere 2021;269:128775. [DOI: 10.1016/j.chemosphere.2020.128775] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
10 Yu Y, Sun Y, Zhou Y, Xu A, Xu Y, Huang F, Zhang Y. The behavior of surface acidity on photo-Fenton degradation of ciprofloxacin over sludge derived carbon: Performance and mechanism. J Colloid Interface Sci 2021;597:84-93. [PMID: 33872889 DOI: 10.1016/j.jcis.2021.03.156] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
11 Chen M, Wu P, Zhu N, Dang Z, Bi Y, Pei F. Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: Performance and metals synergy. Chemical Engineering Journal 2020;392:123709. [DOI: 10.1016/j.cej.2019.123709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
12 Du N, Liu Y, Li Q, Miao W, Wang D, Mao S. Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants. Chemical Engineering Journal 2021;413:127545. [DOI: 10.1016/j.cej.2020.127545] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
13 Peng G, Qi C, Wang X, Zhou L, He Q, Zhou W, Chen L. Activation of peroxymonosulfate by calcined electroplating sludge for ofloxacin degradation. Chemosphere 2021;266:128944. [PMID: 33257045 DOI: 10.1016/j.chemosphere.2020.128944] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Niu L, Xian G, Long Z, Zhang G, Zhu J, Li J. MnCeOX with high efficiency and stability for activating persulfate to degrade AO7 and ofloxacin. Ecotoxicology and Environmental Safety 2020;191:110228. [DOI: 10.1016/j.ecoenv.2020.110228] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Kumar A, Sharma G, Kumari A, Guo C, Naushad M, Vo DN, Iqbal J, Stadler FJ. Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators. Applied Catalysis B: Environmental 2021;284:119808. [DOI: 10.1016/j.apcatb.2020.119808] [Cited by in Crossref: 43] [Cited by in F6Publishing: 11] [Article Influence: 43.0] [Reference Citation Analysis]
16 Si C, Ban H, Chen K, Wang X, Cao R, Yi Q, Qin Z, Shi L, Li Z, Cai W, Li C. Insight into the positive effect of Cu0/Cu+ ratio on the stability of Cu-ZnO-CeO2 catalyst for syngas hydrogenation. Applied Catalysis A: General 2020;594:117466. [DOI: 10.1016/j.apcata.2020.117466] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
17 Gao Y, Cong S, Yu H, Zou D. Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process. Separation and Purification Technology 2021;262:118330. [DOI: 10.1016/j.seppur.2021.118330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
18 Chen T, Zhu Z, Zhang H, Qiu Y, Yin D, Zhao G. Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation. ACS Appl Mater Interfaces 2020;12:42790-802. [DOI: 10.1021/acsami.0c11268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
19 Zhu Y, Wei M, Pan Z, Li L, Liang J, Yu K, Zhang Y. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products. Sci Total Environ 2020;705:135960. [PMID: 31841917 DOI: 10.1016/j.scitotenv.2019.135960] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
20 Bose S, Kumar M. Microwave-assisted persulfate/peroxymonosulfate process for environmental remediation. Current Opinion in Chemical Engineering 2022;36:100826. [DOI: 10.1016/j.coche.2022.100826] [Reference Citation Analysis]
21 He B, Zhao Z, Song L, Liu W, Yang Y, Shang J, Cheng X. Highly efficient activation of peroxymonosulfate by the (3R + 2H)-CuFeO2 nanocomposite photocatalyst: Intermediate toxicity, BVS validation ionic migration and degradation pathway. Separation and Purification Technology 2022;289:120729. [DOI: 10.1016/j.seppur.2022.120729] [Reference Citation Analysis]
22 Miao D, Zhao S, Zhu K, Zhang P, Wang T, Jia H, Sun H. Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation. Chemosphere 2020;253:126679. [DOI: 10.1016/j.chemosphere.2020.126679] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
23 Wang X, Jin H, Wu D, Nie Y, Tian X, Yang C, Zhou Z, Li Y. Fe3O4@S-doped ZnO: A magnetic, recoverable, and reusable Fenton-like catalyst for efficient degradation of ofloxacin under alkaline conditions. Environmental Research 2020;186:109626. [DOI: 10.1016/j.envres.2020.109626] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
24 Liu Y, Zhao Y, Wang J. Activation of peroxydisulfate by a novel Cu0-Cu2O@CNTs composite for 2, 4-dichlorophenol degradation. Science of The Total Environment 2021;754:141883. [DOI: 10.1016/j.scitotenv.2020.141883] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
25 Liu G, Zhang Y, Yu H, Jin R, Zhou J. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar. Journal of Hazardous Materials 2020;397:122783. [DOI: 10.1016/j.jhazmat.2020.122783] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
26 Liu B, Teng Y, Zhang X, Pan S, Wu H. Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system. Separation and Purification Technology 2022;288:120594. [DOI: 10.1016/j.seppur.2022.120594] [Reference Citation Analysis]
27 Tang Q, An X, Zhou J, Lan H, Liu H, Qu J. One-step exfoliation of polymeric C3N4 by atmospheric oxygen doping for photocatalytic persulfate activation. Journal of Colloid and Interface Science 2020;579:455-62. [DOI: 10.1016/j.jcis.2020.06.064] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
28 Hosseini M, Esrafili A, Farzadkia M, Kermani M, Gholami M. Application of Ni-doped ZnO deposited by RF magnetron sputtering technique on FTO as a photoanod in Photo-Electrocatalysis process of Ofloxacin degradation: synthesis, kinetics, and ecotoxicity study. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2020.1737038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Chen L, Sun W, Wei H, Yang X, Sun C, Yu L. Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols. Environ Sci Pollut Res Int 2021;28:42622-36. [PMID: 33818723 DOI: 10.1007/s11356-021-13336-4] [Reference Citation Analysis]
30 Cui M, Li Y, Sun Y, Wang H, Li M, Li L, Xu W. Degradation of Tetracycline in Polluted Wastewater by Persulfate over Copper Alginate/Graphene Oxide Composites. J Polym Environ 2021;29:2227-35. [DOI: 10.1007/s10924-020-02038-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Yang Y, Gu Y, Lin H, Jie B, Zheng Z, Zhang X. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol. J Colloid Interface Sci 2022;608:2884-95. [PMID: 34802757 DOI: 10.1016/j.jcis.2021.11.015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Xia H, Li C, Yang G, Shi Z, Jin C, He W, Xu J, Li G. A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere 2022;287:131981. [PMID: 34826886 DOI: 10.1016/j.chemosphere.2021.131981] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Niu L, Zhang G, Xian G, Ren Z, Wei T, Li Q, Zhang Y, Zou Z. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway. Separation and Purification Technology 2021;259:118156. [DOI: 10.1016/j.seppur.2020.118156] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 16.0] [Reference Citation Analysis]
34 Hu L, Wang P, Shen T, Wang Q, Wang X, Xu P, Zheng Q, Zhang G. The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review. Sci Total Environ 2020;722:137831. [PMID: 32199371 DOI: 10.1016/j.scitotenv.2020.137831] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 13.5] [Reference Citation Analysis]
35 Yang Z, Li Y, Zhang X, Cui X, He S, Liang H, Ding A. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate. Chemical Engineering Journal 2020;384:123319. [DOI: 10.1016/j.cej.2019.123319] [Cited by in Crossref: 32] [Cited by in F6Publishing: 11] [Article Influence: 16.0] [Reference Citation Analysis]
36 Zhao L, Li M, Jiang H, Xie M, Zhao R, Lin J. Activation of peroxymonosulfate by a stable Co-Mg-Al LDO heterogeneous catalyst for the efficient degradation of ofloxacin. Separation and Purification Technology 2022;294:121231. [DOI: 10.1016/j.seppur.2022.121231] [Reference Citation Analysis]
37 Li X, Jie B, Lin H, Deng Z, Qian J, Yang Y, Zhang X. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. J Environ Manage 2022;308:114664. [PMID: 35149402 DOI: 10.1016/j.jenvman.2022.114664] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Zhang D, Qi J, Ji H, Li S, Chen L, Huang T, Xu C, Chen X, Liu W. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution. Chemical Engineering Journal 2020;400:125918. [DOI: 10.1016/j.cej.2020.125918] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 10.5] [Reference Citation Analysis]
39 Jiang L, Ming J, Wang L, Jiang Y, Ren L, Wang Z, Cheng W. Visible-light-induced selective aerobic oxidation of sp 3 C–H bonds catalyzed by a heterogeneous AgI/BiVO 4 catalyst. Green Chem 2020;22:1156-63. [DOI: 10.1039/c9gc03727f] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]