BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chakravarthy H, Devanathan V. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets. J Mol Neurosci 2018;66:445-61. [PMID: 30293228 DOI: 10.1007/s12031-018-1188-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Dong W, Lv Z, Kong L, Ren X. Thioredoxin-interacting protein in diabetic retinal neurodegeneration: A novel potential therapeutic target for diabetic retinopathy. Front Neurosci 2022;16:957667. [DOI: 10.3389/fnins.2022.957667] [Reference Citation Analysis]
2 Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022:S0039-6257(22)00088-1. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Reference Citation Analysis]
3 Kim BJ, Liu T, Mastellos DC, Lambris JD. Emerging opportunities for C3 inhibition in the eye. Semin Immunol 2022;:101633. [PMID: 35787973 DOI: 10.1016/j.smim.2022.101633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: Pathophysiology and therapeutic interventions. Pharmacol Res 2022;182:106292. [PMID: 35691540 DOI: 10.1016/j.phrs.2022.106292] [Reference Citation Analysis]
5 Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021;10:3265. [PMID: 34831487 DOI: 10.3390/cells10113265] [Reference Citation Analysis]
6 Qiu AW, Huang DR, Li B, Fang Y, Zhang WW, Liu QH. IL-17A injury to retinal ganglion cells is mediated by retinal Müller cells in diabetic retinopathy. Cell Death Dis 2021;12:1057. [PMID: 34750361 DOI: 10.1038/s41419-021-04350-y] [Reference Citation Analysis]
7 Filippov VM, Petrachkov DV, Budzinskaya MV, Sidamonidze AL. [Modern concepts of pathogenesis of diabetic retinopathy]. Vestn Oftalmol 2021;137:306-13. [PMID: 34669342 DOI: 10.17116/oftalma2021137052306] [Reference Citation Analysis]
8 Li Y, Mitchell W, Elze T, Zebardast N. Association Between Diabetes, Diabetic Retinopathy, and Glaucoma. Curr Diab Rep 2021;21:38. [PMID: 34495413 DOI: 10.1007/s11892-021-01404-5] [Reference Citation Analysis]
9 Nellaiappan K, Kumari P, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2021. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
10 Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent Developments in Diabetic Retinal Neurodegeneration: A Literature Review. J Diabetes Res 2020;2020:5728674. [PMID: 34151902 DOI: 10.1155/2020/5728674] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
11 Alfarhan M, Jafari E, Narayanan SP. Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Biomolecules 2020;10:E1579. [PMID: 33233661 DOI: 10.3390/biom10111579] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Kim M, Kim RY, Park W, Park YG, Kim IB, Park YH. Electroretinography and retinal microvascular changes in type 2 diabetes. Acta Ophthalmol 2020;98:e807-13. [PMID: 32246578 DOI: 10.1111/aos.14421] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Eggers ED, Carreon TA. The effects of early diabetes on inner retinal neurons. Vis Neurosci 2020;37:E006. [PMID: 32933604 DOI: 10.1017/S095252382000005X] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 López-Bernal Á, García-Tejera O, Testi L, Villalobos FJ. Genotypic variability in radial resistance to water flow in olive roots and its response to temperature variations. Tree Physiol 2020;40:445-53. [PMID: 32031664 DOI: 10.1093/treephys/tpaa010] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Sinclair SH, Schwartz SS. Diabetic Retinopathy-An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Front Endocrinol (Lausanne). 2019;10:843. [PMID: 31920963 DOI: 10.3389/fendo.2019.00843] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
16 Sharma S, Chakravarthy H, Suresh G, Devanathan V. Adult Goat Retinal Neuronal Culture: Applications in Modeling Hyperglycemia. Front Neurosci 2019;13:983. [PMID: 31607843 DOI: 10.3389/fnins.2019.00983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
17 Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J Diabetes Res 2019;2019:8562408. [PMID: 31511825 DOI: 10.1155/2019/8562408] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 19.0] [Reference Citation Analysis]
18 Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019;147:104299. [PMID: 31207342 DOI: 10.1016/j.phrs.2019.104299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]