BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boudreault S, Roy P, Lemay G, Bisaillon M. Viral modulation of cellular RNA alternative splicing: A new key player in virus-host interactions? Wiley Interdiscip Rev RNA 2019;10:e1543. [PMID: 31034770 DOI: 10.1002/wrna.1543] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Rozman B, Fisher T, Stern-Ginossar N. Translation-A tug of war during viral infection. Mol Cell 2023;83:481-95. [PMID: 36334591 DOI: 10.1016/j.molcel.2022.10.012] [Reference Citation Analysis]
2 Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023:S1084-9521(23)00021-6. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Reference Citation Analysis]
3 Mukherjee SB, Mukherjee S, Detroja R, Frenkel-Morgenstern M. The landscape of differential splicing and transcript alternations in severe COVID-19 infection. FEBS J 2023. [PMID: 36628954 DOI: 10.1111/febs.16723] [Reference Citation Analysis]
4 Boudreault S, Martineau CA, Faucher-Giguère L, Abou-Elela S, Lemay G, Bisaillon M. Reovirus μ2 Protein Impairs Translation to Reduce U5 snRNP Protein Levels. Int J Mol Sci 2022;24. [PMID: 36614170 DOI: 10.3390/ijms24010727] [Reference Citation Analysis]
5 Boudreault S, Lemay G, Bisaillon M. U5 snRNP Core Proteins Are Key Components of the Defense Response against Viral Infection through Their Roles in Programmed Cell Death and Interferon Induction. Viruses 2022;14. [PMID: 36560714 DOI: 10.3390/v14122710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Basera A, Hull R, Demetriou D, Bates DO, Kaufmann AM, Dlamini Z, Marima R. Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities. Microorganisms 2022;10:1852. [PMID: 36144454 DOI: 10.3390/microorganisms10091852] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Soto AA, Ortiz G, Contreras S, Soto-rifo R, González PA. Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022;10:1754. [DOI: 10.3390/microorganisms10091754] [Reference Citation Analysis]
8 Hull R, Marima R, Alaouna M, Demetriou D, Reis RM, Molefi T, Dlamini Z. Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022;10:1448. [DOI: 10.3390/microorganisms10071448] [Reference Citation Analysis]
9 Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus μ2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res 2022:gkac272. [PMID: 35489070 DOI: 10.1093/nar/gkac272] [Reference Citation Analysis]
10 Vijayakumar A, Park A, Steitz JA. Modulation of mRNA 3'-End Processing and Transcription Termination in Virus-Infected Cells. Front Immunol 2022;13:828665. [PMID: 35222412 DOI: 10.3389/fimmu.2022.828665] [Reference Citation Analysis]
11 Wang C, Chen L, Chen Y, Jia W, Cai X, Liu Y, Ji F, Xiong P, Liang A, Liu R, Guan Y, Cheng Z, Weng Y, Wang W, Duan Y, Kuang D, Xu S, Cai H, Xia Q, Yang D, Wang MW, Yang X, Zhang J, Cheng C, Liu L, Liu Z, Liang R, Wang G, Li Z, Xia H, Xia T. Abnormal global alternative RNA splicing in COVID-19 patients. PLoS Genet 2022;18:e1010137. [PMID: 35421082 DOI: 10.1371/journal.pgen.1010137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zucko D, Hayir A, Grinde K, Boris-lawrie K. Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients. Viruses 2022;14:683. [DOI: 10.3390/v14040683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Curto P, Santa C, Cortes L, Manadas B, Simões I. Spotted Fever Group Rickettsia Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses. Microbiol Spectr 2021;:e0081421. [PMID: 34935429 DOI: 10.1128/spectrum.00814-21] [Reference Citation Analysis]
14 La Polla R, Testard MC, Goumaidi A, Chapot E, Legras-Lachuer C, de Saint-Vis B. Identification of differentially expressed gene pathways between cytopathogenic and non-cytopathogenic BVDV-1 strains by analysis of the transcriptome of infected primary bovine cells. Virology 2021;567:34-46. [PMID: 34953294 DOI: 10.1016/j.virol.2021.12.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Elumalai E, Muthuvel SK. Network Analysis of Dengue NS1 Interacting Core Human Proteins Driving Dengue Pathogenesis. CCB 2021;15:287-300. [DOI: 10.2174/2212796816666211216115753] [Reference Citation Analysis]
16 Lisy S, Rothamel K, Ascano M. RNA Binding Proteins as Pioneer Determinants of Infection: Protective, Proviral, or Both? Viruses 2021;13:2172. [PMID: 34834978 DOI: 10.3390/v13112172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res 2021;306:198594. [PMID: 34637813 DOI: 10.1016/j.virusres.2021.198594] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Liao KC, Chuo V, Fagg WS, Modahl CM, Widen S, Garcia-Blanco MA. The RNA binding protein Quaking represses splicing of the Fibronectin EDA exon and downregulates the interferon response. Nucleic Acids Res 2021;49:10034-45. [PMID: 34428287 DOI: 10.1093/nar/gkab732] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang H, Chan TW, Vashisht AA, Drew BG, Calkin AC, Harris TE, Wohlschlegel JA, Xiao X, Reue K. Lipin 1 modulates mRNA splicing during fasting adaptation in liver. JCI Insight 2021;6:150114. [PMID: 34494556 DOI: 10.1172/jci.insight.150114] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sun J, Fahmi NA, Nassereddeen H, Cheng S, Martinez I, Fan D, Yong J, Zhang W. Computational Methods to Study Human Transcript Variants in COVID-19 Infected Lung Cancer Cells. Int J Mol Sci 2021;22:9684. [PMID: 34575842 DOI: 10.3390/ijms22189684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021;304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021:elab037. [PMID: 34402498 DOI: 10.1093/bfgp/elab037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Patel A, McBride JAM, Mark BL. The endopeptidase of the maize-affecting Marafivirus type member maize rayado fino virus doubles as a deubiquitinase. J Biol Chem 2021;297:100957. [PMID: 34265303 DOI: 10.1016/j.jbc.2021.100957] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Liao KC, Garcia-Blanco MA. Role of Alternative Splicing in Regulating Host Response to Viral Infection. Cells 2021;10:1720. [PMID: 34359890 DOI: 10.3390/cells10071720] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Karlebach G, Aronow B, Baylin SB, Butler D, Foox J, Levy S, Meydan C, Mozsary C, Saravia-Butler AM, Taylor DM, Wurtele E, Mason CE, Beheshti A, Robinson PN. Betacoronavirus-specific alternate splicing. bioRxiv 2021:2021. [PMID: 34230929 DOI: 10.1101/2021.07.02.450920] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Ho JSY, Zhu Z, Marazzi I. Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021;593:362-71. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
27 Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021;12:658721. [PMID: 33854493 DOI: 10.3389/fmicb.2021.658721] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
28 Selkrig J, Stanifer M, Mateus A, Mitosch K, Barrio-Hernandez I, Rettel M, Kim H, Voogdt CGP, Walch P, Kee C, Kurzawa N, Stein F, Potel C, Jarzab A, Kuster B, Bartenschlager R, Boulant S, Beltrao P, Typas A, Savitski MM. SARS-CoV-2 infection remodels the host protein thermal stability landscape. Mol Syst Biol 2021;17:e10188. [PMID: 33590968 DOI: 10.15252/msb.202010188] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
29 Ashraf U, Benoit-Pilven C, Navratil V, Ligneau C, Fournier G, Munier S, Sismeiro O, Coppée JY, Lacroix V, Naffakh N. Influenza virus infection induces widespread alterations of host cell splicing. NAR Genom Bioinform 2020;2:lqaa095. [PMID: 33575639 DOI: 10.1093/nargab/lqaa095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Francies FZ, Dlamini Z. Aberrant Splicing Events and Epigenetics in Viral Oncogenomics: Current Therapeutic Strategies. Cells 2021;10:239. [PMID: 33530521 DOI: 10.3390/cells10020239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
31 Srivastava R, Daulatabad SV, Srivastava M, Janga SC. Role of SARS-CoV-2 in Altering the RNA-Binding Protein and miRNA-Directed Post-Transcriptional Regulatory Networks in Humans. Int J Mol Sci 2020;21:E7090. [PMID: 32993015 DOI: 10.3390/ijms21197090] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
32 Du K, Jiang T, Chen H, Murphy AM, Carr JP, Du Z, Li X, Fan Z, Zhou T. Viral Perturbation of Alternative Splicing of a Host Transcript Benefits Infection. Plant Physiol 2020;184:1514-31. [PMID: 32958561 DOI: 10.1104/pp.20.00903] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Mukherjee M, Goswami S. Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2. PLoS One 2020;15:e0237559. [PMID: 32780783 DOI: 10.1371/journal.pone.0237559] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
34 Li D, Su M, Sun PP, Guo WP, Wang CY, Wang JL, Wang H, Zhang Q, Du LY, Xie GC. Global profiling of the alternative splicing landscape reveals transcriptomic diversity during the early phase of enterovirus 71 infection. Virology 2020;548:213-25. [PMID: 32763492 DOI: 10.1016/j.virol.2020.06.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
35 Maranon DG, Anderson JR, Maranon AG, Wilusz J. The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. Wiley Interdiscip Rev RNA 2020;11:e1614. [PMID: 32638509 DOI: 10.1002/wrna.1614] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
36 Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. Plant Commun 2020;1:100099. [PMID: 32984814 DOI: 10.1016/j.xplc.2020.100099] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
37 Gao Z, Wu J, Jiang D, Xie J, Cheng J, Lin Y. ORF Ι of Mycovirus SsNSRV-1 is Associated with Debilitating Symptoms of Sclerotinia sclerotiorum. Viruses 2020;12:E456. [PMID: 32316519 DOI: 10.3390/v12040456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
38 Sun C. The SF3b complex: splicing and beyond. Cell Mol Life Sci 2020;77:3583-95. [PMID: 32140746 DOI: 10.1007/s00018-020-03493-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
39 Pingale KD, Kanade GD, Karpe YA. Heterogeneous Nuclear Ribonucleoproteins Participate in Hepatitis E Virus Replication. J Mol Biol 2020;432:2369-87. [PMID: 32119874 DOI: 10.1016/j.jmb.2020.02.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
40 Boudreault S, Roy P, Lemay G, Bisaillon M. Viral modulation of cellular RNA alternative splicing: A new key player in virus-host interactions? Wiley Interdiscip Rev RNA 2019;10:e1543. [PMID: 31034770 DOI: 10.1002/wrna.1543] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 8.5] [Reference Citation Analysis]