BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng L, Zhang Y, Jiang M, Mo Y, Wan R, Jia Z, Tollerud DJ, Zhang X, Zhang Q. Up-regulation of Gadd45α after exposure to metal nanoparticles: the role of hypoxia inducible factor 1α. Environ Toxicol 2015;30:490-9. [PMID: 24277352 DOI: 10.1002/tox.21926] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Che B, Luo Q, Zhai B, Fan G, Liu Z, Cheng K, Xin L. Cytotoxicity and genotoxicity of nanosilver in stable GADD45α promoter-driven luciferase reporter HepG2 and A549 cells. Environmental Toxicology 2017;32:2203-11. [DOI: 10.1002/tox.22433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
2 Nyga A, Hart A, Tetley TD. Importance of the HIF pathway in cobalt nanoparticle-induced cytotoxicity and inflammation in human macrophages. Nanotoxicology 2015;9:905-17. [PMID: 25676618 DOI: 10.3109/17435390.2014.991430] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
3 Feng S, Zhang Z, Mo Y, Tong R, Zhong Z, Chen Z, He D, Wan R, Gao M, Mo Y, Zhang Q, Huang Y. Activation of NLRP3 inflammasome in hepatocytes after exposure to cobalt nanoparticles: The role of oxidative stress. Toxicol In Vitro 2020;69:104967. [PMID: 32805375 DOI: 10.1016/j.tiv.2020.104967] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
4 Liu L, Kong L. Research progress on the carcinogenicity of metal nanomaterials. J Appl Toxicol 2021;41:1334-44. [PMID: 33527484 DOI: 10.1002/jat.4145] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018;48:522-39. [PMID: 30203727 DOI: 10.1080/10408444.2018.1491023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
6 Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021;19:370. [PMID: 34789290 DOI: 10.1186/s12951-021-01117-7] [Reference Citation Analysis]
7 Vieira LFA, Lins MP, Viana IMMN, Dos Santos JE, Smaniotto S, Reis MDDS. Metallic nanoparticles reduce the migration of human fibroblasts in vitro. Nanoscale Res Lett 2017;12:200. [PMID: 28314368 DOI: 10.1186/s11671-017-1982-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
8 Mo Y, Zhang Y, Wan R, Jiang M, Xu Y, Zhang Q. miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology 2020;14:1175-97. [PMID: 32924694 DOI: 10.1080/17435390.2020.1808727] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
9 Danilevich VN, Kozlov SA, Shevchuk TV, Oleinikov VA, Sizova SV, Khodarovich YM, Mulyukin AL. Ribonucleic acid (RNA) condensation by thermal cycling with metal cations: yield of nanoparticles and their applicability for transfection. J Biomol Struct Dyn 2020;38:3959-71. [PMID: 31543001 DOI: 10.1080/07391102.2019.1671228] [Reference Citation Analysis]
10 Mo Y, Zhang Y, Mo L, Wan R, Jiang M, Zhang Q. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: In vitro and in vivo studies. Environ Pollut 2020;267:115597. [PMID: 33254626 DOI: 10.1016/j.envpol.2020.115597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Younes M, Aquilina G, Castle L, Engel KH, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert-Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens-Berendsen I, Wölfle D, Corsini E, Cubadda F, De Groot D, FitzGerald R, Gunnare S, Gutleb AC, Mast J, Mortensen A, Oomen A, Piersma A, Plichta V, Ulbrich B, Van Loveren H, Benford D, Bignami M, Bolognesi C, Crebelli R, Dusinska M, Marcon F, Nielsen E, Schlatter J, Vleminckx C, Barmaz S, Carfí M, Civitella C, Giarola A, Rincon AM, Serafimova R, Smeraldi C, Tarazona J, Tard A, Wright M; EFSA Panel on Food Additives and Flavourings (FAF). Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 2021;19:e06585. [PMID: 33976718 DOI: 10.2903/j.efsa.2021.6585] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
12 Kanwal Z, Raza MA, Riaz S, Manzoor S, Tayyeb A, Sajid I, Naseem S. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. R Soc Open Sci 2019;6:182135. [PMID: 31218038 DOI: 10.1098/rsos.182135] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 6.7] [Reference Citation Analysis]
13 Laumonier T, Ruffieux E, Paccaud J, Kindler V, Hannouche D. In vitro evaluation of human myoblast function after exposure to cobalt and chromium ions. J Orthop Res 2020;38:1398-406. [PMID: 31883135 DOI: 10.1002/jor.24579] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Ertuğrul H, Yalçın B, Güneş M, Kaya B. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug and Chemical Toxicology 2020;43:279-86. [DOI: 10.1080/01480545.2019.1585444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Alaraby M, Demir E, Domenech J, Velázquez A, Hernández A, Marcos R. In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles using Drosophila melanogaster. Environ Sci : Nano 2020;7:610-22. [DOI: 10.1039/c9en00690g] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 2017;14:38. [PMID: 28923112 DOI: 10.1186/s12989-017-0219-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 9.4] [Reference Citation Analysis]