BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu X, Dai R, Ke M, Suheryani I, Meng W, Deng Y. Differential Proteomic Analysis of Dimethylnitrosamine (DMN)-Induced Liver Fibrosis. Proteomics 2017;17:1700267. [DOI: 10.1002/pmic.201700267] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Zhou Z, Mo Q, Zhou G, Wang Y. Gallic Acid Attenuates Dimethylnitrosamine-Induced Liver Fibrosis by Alteration of Smad Phosphoisoform Signaling in Rats. Biomed Res Int 2018;2018:1682743. [PMID: 30627538 DOI: 10.1155/2018/1682743] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
2 George J, Tsuchishima M, Tsutsumi M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis 2019;10:18. [PMID: 30622238 DOI: 10.1038/s41419-018-1272-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
3 Moreto F, Ferron AJT, Francisqueti-Ferron FV, D'Amato A, Garcia JL, Costa MR, Silva CCVA, Altomare A, Correa CR, Aldini G, Ferreira ALA. Differentially expressed proteins obtained by label-free quantitative proteomic analysis reveal affected biological processes and functions in Western diet-induced steatohepatitis. J Biochem Mol Toxicol 2021;35:1-11. [PMID: 33729641 DOI: 10.1002/jbt.22751] [Reference Citation Analysis]
4 Ahmad A, Ahmad R. Proteomic approach to identify molecular signatures during experimental hepatic fibrosis and resveratrol supplementation. International Journal of Biological Macromolecules 2018;119:1218-27. [DOI: 10.1016/j.ijbiomac.2018.08.062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Nevzorova YA, Boyer-diaz Z, Cubero FJ, Gracia-sancho J. Animal models for liver disease – A practical approach for translational research. Journal of Hepatology 2020;73:423-40. [DOI: 10.1016/j.jhep.2020.04.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 18.5] [Reference Citation Analysis]
6 Chang ML, Yang SS. Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019;8:E1423. [PMID: 31726658 DOI: 10.3390/cells8111423] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
7 George J, Tsuchishima M, Tsutsumi M. Metabolism of N-nitrosodimethylamine, methylation of macromolecules, and development of hepatic fibrosis in rodent models. J Mol Med (Berl) 2020;98:1203-13. [PMID: 32666246 DOI: 10.1007/s00109-020-01950-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Xu H, Chen GF, Ma YS, Zhang HW, Zhou Y, Liu GH, Chen DY, Ping J, Liu YH, Mou X, Fu D. Hepatic Proteomic Changes and Sirt1/AMPK Signaling Activation by Oxymatrine Treatment in Rats With Non-alcoholic Steatosis. Front Pharmacol 2020;11:216. [PMID: 32210812 DOI: 10.3389/fphar.2020.00216] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
9 Zhang Z, Yu J, Wang P, Lin L, Liu R, Zeng R, Ma H, Zhao Y. iTRAQ-based proteomic profiling reveals protein alterations after traumatic brain injury and supports thyroxine as a potential treatment. Mol Brain 2021;14:25. [PMID: 33504361 DOI: 10.1186/s13041-021-00739-0] [Reference Citation Analysis]
10 Wu S, Li J, Jin X. iTRAQ-based quantitative proteomic analysis reveals important metabolic pathways for arsenic-induced liver fibrosis in rats. Sci Rep 2018;8:3267. [PMID: 29459688 DOI: 10.1038/s41598-018-21580-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]