BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Yan C, Wang C, Guo Z, Liu X, Zhu W. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angew Chem Int Ed 2020;59:9059-66. [DOI: 10.1002/anie.202000165] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Yan C, Zhang Y, Guo Z. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews 2021;427:213556. [DOI: 10.1016/j.ccr.2020.213556] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 18.0] [Reference Citation Analysis]
2 Xu L, Sun L, Zeng F, Wu S. Near‐Infrared Fluorescent Nanoprobe for Detecting Hydrogen Peroxide in Inflammation and Ischemic Kidney Injury. Chin J Chem 2020;38:1304-10. [DOI: 10.1002/cjoc.202000166] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
3 Zong Q, Zheng R, Xiao X, Jiang M, Li J, Yuan Y. Dual-locking nanoprobe based on hemicyanine for orthogonal stimuli-triggered precise cancer imaging and therapy. J Control Release 2021;338:307-15. [PMID: 34454962 DOI: 10.1016/j.jconrel.2021.08.042] [Reference Citation Analysis]
4 Fang M, Yang J, Li Z. Light emission of organic luminogens: Generation, mechanism and application. Progress in Materials Science 2022;125:100914. [DOI: 10.1016/j.pmatsci.2021.100914] [Reference Citation Analysis]
5 Zhu Z, Wang Q, Chen X, Wang Q, Yan C, Zhao X, Zhao W, Zhu WH. Enzyme-Activatable Aggregation-Induced Emission Probe: Intraoperative-Pathological Fluorescent Diagnosis of Pancreatic Cancer via Specific Cathepsin E. Adv Mater 2021;:e2107444. [PMID: 34693566 DOI: 10.1002/adma.202107444] [Reference Citation Analysis]
6 Peng Q, Yang L, Li Y, Zhang Y, Li T, Qin Y, Song Y, Hou H, Li K. Aggregation/Viscosity-Induced Emission and Third-Order Nonlinear Optical Signal Inversion in a TICT System. J Phys Chem C 2020;124:22684-91. [DOI: 10.1021/acs.jpcc.0c06533] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Wu X, An JM, Shang J, Huh E, Qi S, Lee E, Li H, Kim G, Ma H, Oh MS, Kim D, Yoon J. A molecular approach to rationally constructing specific fluorogenic substrates for the detection of acetylcholinesterase activity in live cells, mice brains and tissues. Chem Sci 2020;11:11285-92. [PMID: 34094370 DOI: 10.1039/d0sc04213g] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Li H, Kim H, Han J, Nguyen V, Peng X, Yoon J. Activity‐based smart AIEgens for detection, bioimaging, and therapeutics: Recent progress and outlook. Aggregate 2021;2. [DOI: 10.1002/agt2.51] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem 2020;132:21329-36. [DOI: 10.1002/ange.202009380] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gao Y, Hu Y, Liu Q, Li X, Li X, Kim CY, James TD, Li J, Chen X, Guo Y. Two-Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angew Chem Int Ed Engl 2021;60:10756-65. [PMID: 33624914 DOI: 10.1002/anie.202101278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Dong L, Zhang M, Han H, Zang Y, Chen G, Li J, He X, Vidal S. A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters. Chem Sci 2021;13:247-56. [DOI: 10.1039/d1sc05057e] [Reference Citation Analysis]
12 Ryan LS, Gerberich J, Haris U, Nguyen D, Mason RP, Lippert AR. Ratiometric pH Imaging Using a 1,2-Dioxetane Chemiluminescence Resonance Energy Transfer Sensor in Live Animals. ACS Sens 2020;5:2925-32. [PMID: 32829636 DOI: 10.1021/acssensors.0c01393] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021;10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Reference Citation Analysis]
14 Li J, Hu Y, Li Z, Liu W, Deng T, Li J. Photoactivatable Red Chemiluminescent AIEgen Probe for In Vitro/Vivo Imaging Assay of Hydrazine. Anal Chem 2021;93:10601-10. [PMID: 34296856 DOI: 10.1021/acs.analchem.1c01804] [Reference Citation Analysis]
15 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Meng L, Jiang S, Song M, Yan F, Zhang W, Xu B, Tian W. TICT-Based Near-Infrared Ratiometric Organic Fluorescent Thermometer for Intracellular Temperature Sensing. ACS Appl Mater Interfaces 2020;12:26842-51. [DOI: 10.1021/acsami.0c03714] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
17 Zhu Z, Wang Q, Liao H, Liu M, Liu Z, Zhang Y, Zhu W. Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP). National Science Review 2021;8:nwaa198. [DOI: 10.1093/nsr/nwaa198] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
18 Mei J, Tian H. Most recent advances on enzyme‐activatable optical probes for bioimaging. Aggregate 2021;2. [DOI: 10.1002/agt2.32] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
19 East AK, Lucero MY, Chan J. New directions of activity-based sensing for in vivo NIR imaging. Chem Sci 2020;12:3393-405. [PMID: 34163614 DOI: 10.1039/d0sc03096a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
20 Jiang Y, Pu K. Molecular Probes for Autofluorescence-Free Optical Imaging. Chem Rev 2021;121:13086-131. [PMID: 34558282 DOI: 10.1021/acs.chemrev.1c00506] [Reference Citation Analysis]
21 Qi YL, Guo L, Chen LL, Yuan DD, Wang HR, Cao YY, Yang YS, Zhu HL. Two birds with one stone: a NIR fluorescent probe for mitochondrial protein imaging and its application in photodynamic therapy. J Mater Chem B 2021;9:6068-75. [PMID: 34286809 DOI: 10.1039/d1tb00881a] [Reference Citation Analysis]
22 Ryan LS, Nakatsuka A, Lippert AR. Photoactivatable 1,2-dioxetane chemiluminophores. Results in Chemistry 2021;3:100106. [DOI: 10.1016/j.rechem.2021.100106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu M, Zhai W, Chen H, Zhang H, Li C. Halogen Effects-Induced Bright D−π–A Fluorophore as Scaffold for NIR Fluorogenic Probes with High Contrast. Anal Chem 2020;92:10792-9. [DOI: 10.1021/acs.analchem.0c02247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhang H, Yan C, Li H, Shi L, Wang R, Guo Z, Zhu W. Rational Design of Near-Infrared Cyanine-Based Fluorescent Probes for Rapid In Vivo Sensing Cysteine. ACS Appl Bio Mater 2021;4:2001-8. [DOI: 10.1021/acsabm.0c00260] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
25 Peng H, Wang T, Li G, Huang J, Yuan Q. Dual-Locked Near-Infrared Fluorescent Probes for Precise Detection of Melanoma via Hydrogen Peroxide-Tyrosinase Cascade Activation. Anal Chem 2021. [PMID: 34958200 DOI: 10.1021/acs.analchem.1c04058] [Reference Citation Analysis]
26 Li J, Zhang Y, Wang P, Yu L, An J, Deng G, Sun Y, Seung Kim J. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics. Coordination Chemistry Reviews 2021;427:213559. [DOI: 10.1016/j.ccr.2020.213559] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
27 Zheng J, Xu Y, Fan L, Qin S, Li H, Sang M, Li R, Chen H, Yuan Z, Li B. A Bioresponsive Near‐Infrared Fluorescent Probe for Facile and Persistent Live‐Cell Tracking. Small 2020;16:2002211. [DOI: 10.1002/smll.202002211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ye S, Hu JJ, Zhao QA, Yang D. Fluorescent probes for in vitro and in vivo quantification of hydrogen peroxide. Chem Sci 2020;11:11989-97. [PMID: 34094420 DOI: 10.1039/d0sc04888g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
29 Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem Int Ed 2020;59:21143-50. [DOI: 10.1002/anie.202009380] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
30 Zhang W, Xia L, Ren X, Cui M, Liu T, Ling C, Xu Y, Deng D, Zhang X, Gu Y, Wang P. The improved targeting of an aspirin prodrug albumin-based nanosystem for visualizing and inhibiting lung metastasis of breast cancer. Biomater Sci 2020;8:5941-54. [PMID: 32966407 DOI: 10.1039/d0bm01035a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Zong C, Wang R, Jiang F, Zhang D, Yang H, Wang J, Lu X, Li F, Li P. Metal enhanced chemiluminescence nanosensor for ultrasensitive bioassay based on silver nanoparticles modified functional DNA dendrimer. Anal Chim Acta 2021;1165:338541. [PMID: 33975696 DOI: 10.1016/j.aca.2021.338541] [Reference Citation Analysis]
32 Liu C, Wang X, Liu J, Yue Q, Chen S, Lam JWY, Luo L, Tang BZ. Near‐Infrared AIE Dots with Chemiluminescence for Deep‐Tissue Imaging. Adv Mater 2020;32:2004685. [DOI: 10.1002/adma.202004685] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
33 Ye S, Hananya N, Green O, Chen H, Zhao AQ, Shen J, Shabat D, Yang D. A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew Chem Int Ed Engl 2020;59:14326-30. [PMID: 32472602 DOI: 10.1002/anie.202005429] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
34 Zhao XB, Kang JY, Shi YP. Noncovalent Dual-Locked Near-Infrared Fluorescent Probe for Precise Imaging of Tumor via Hypoxia/Glutathione Activation. Anal Chem 2022. [PMID: 35437984 DOI: 10.1021/acs.analchem.2c00406] [Reference Citation Analysis]
35 Tao Y, Yan C, Li D, Dai J, Cheng Y, Li H, Zhu W, Guo Z. Sequence-Activated Fluorescent Nanotheranostics for Real-Time Profiling Pancreatic Cancer. JACS Au. [DOI: 10.1021/jacsau.1c00553] [Reference Citation Analysis]
36 Wu L, Huang J, Pu K, James TD. Dual-locked spectroscopic probes for sensing and therapy. Nat Rev Chem 2021;5:406-21. [DOI: 10.1038/s41570-021-00277-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
37 Kagalwala HN, Reeves RT, Lippert AR. Chemiluminescent spiroadamantane-1,2-dioxetanes: Recent advances in molecular imaging and biomarker detection. Current Opinion in Chemical Biology 2022;68:102134. [DOI: 10.1016/j.cbpa.2022.102134] [Reference Citation Analysis]
38 Yao Y, Zhang Y, Yan C, Zhu WH, Guo Z. Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Chem Sci 2021;12:9885-94. [PMID: 34349961 DOI: 10.1039/d1sc02069b] [Reference Citation Analysis]
39 Hao M, Chi W, Wang C, Xu Z, Li Z, Liu X. Molecular Origins of Photoinduced Backward Intramolecular Charge Transfer. J Phys Chem C 2020;124:16820-6. [DOI: 10.1021/acs.jpcc.0c04218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Yang X, Han X, Zhang Y, Liu J, Tang J, Zhang D, Zhao Y, Ye Y. Imaging Hg2+-Induced Oxidative Stress by NIR Molecular Probe with "Dual-Key-and-Lock" Strategy. Anal Chem 2020;92:12002-9. [PMID: 32786484 DOI: 10.1021/acs.analchem.0c02509] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
41 Ye S, Hananya N, Green O, Chen H, Zhao AQ, Shen J, Shabat D, Yang D. A Highly Selective and Sensitive Chemiluminescent Probe for Real‐Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew Chem 2020;132:14432-6. [DOI: 10.1002/ange.202005429] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Gutkin S, Gandhesiri S, Brik A, Shabat D. Synthesis and Evaluation of Ubiquitin-Dioxetane Conjugate as a Chemiluminescent Probe for Monitoring Deubiquitinase Activity. Bioconjug Chem 2021;32:2141-7. [PMID: 34549948 DOI: 10.1021/acs.bioconjchem.1c00413] [Reference Citation Analysis]
43 Wang Y, Jiang L, Zhang Y, Lu Y, Li J, Wang H, Yao D, Wang D. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer. ACS Appl Mater Interfaces 2020;12:33564-74. [PMID: 32633941 DOI: 10.1021/acsami.0c10397] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
44 Miao Y, Liu S, Ma L, Yang W, Li J, Lv J. Ultralong and Color-Tunable Room-Temperature Phosphorescence Based on Commercial Melamine for Anticounterfeiting and Information Recognition. Anal Chem 2021;93:4075-83. [PMID: 33577298 DOI: 10.1021/acs.analchem.0c05212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]