BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peng J, Samanta A, Zeng X, Han S, Wang L, Su D, Loong DTB, Kang N, Park S, All AH, Jiang W, Yuan L, Liu X, Chang Y. Real-Time In Vivo Hepatotoxicity Monitoring through Chromophore-Conjugated Photon-Upconverting Nanoprobes. Angew Chem Int Ed 2017;56:4165-9. [DOI: 10.1002/anie.201612020] [Cited by in Crossref: 114] [Cited by in F6Publishing: 105] [Article Influence: 22.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang F, Qu X, Liu D, Ding C, Zhang C, Xian Y. Upconversion nanoparticles-MoS2 nanoassembly as a fluorescent turn-on probe for bioimaging of reactive oxygen species in living cells and zebrafish. Sensors and Actuators B: Chemical 2018;274:180-7. [DOI: 10.1016/j.snb.2018.07.125] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
2 Yang Z, Dai Y, Yin C, Fan Q, Zhang W, Song J, Yu G, Tang W, Fan W, Yung BC, Li J, Li X, Li X, Tang Y, Huang W, Song J, Chen X. Activatable Semiconducting Theranostics: Simultaneous Generation and Ratiometric Photoacoustic Imaging of Reactive Oxygen Species In Vivo. Adv Mater 2018;30:1707509. [DOI: 10.1002/adma.201707509] [Cited by in Crossref: 105] [Cited by in F6Publishing: 101] [Article Influence: 26.3] [Reference Citation Analysis]
3 Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed 2021;60:9804-27. [DOI: 10.1002/anie.201915833] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
4 Wang F, Zhang C, Qu X, Cheng S, Xian Y. Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H2S in living cells and zebrafish. Biosensors and Bioelectronics 2019;126:96-101. [DOI: 10.1016/j.bios.2018.10.056] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
5 Yan C, Shi L, Guo Z, Zhu W. Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. Chinese Chemical Letters 2019;30:1849-55. [DOI: 10.1016/j.cclet.2019.08.038] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 12.7] [Reference Citation Analysis]
6 Fu Q, Li H, Duan D, Wang C, Shen S, Ma H, Liu Z. External‐Radiation‐Induced Local Hydroxylation Enables Remote Release of Functional Molecules in Tumors. Angew Chem 2020;132:21730-6. [DOI: 10.1002/ange.202005612] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Wang J, Deng R. Energy Transfer in Dye-Coupled Lanthanide-Doped Nanoparticles: From Design to Application. Chem Asian J 2018;13:614-25. [DOI: 10.1002/asia.201701817] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
8 Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coordination Chemistry Reviews 2022;454:214356. [DOI: 10.1016/j.ccr.2021.214356] [Reference Citation Analysis]
9 Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem 2021;133:9888-912. [DOI: 10.1002/ange.201915833] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Song X, Guo Y, Jing C, Feng Y, Cao C, Kou M, Liu W, Wang D. Dual-Site Fluorescent Sensor as a Multiple Logic System for Studying the Dichotomous Function of Sulfur Dioxide under Oxidative Stress Induced by Peroxynitrite. Anal Chem 2022. [PMID: 35385251 DOI: 10.1021/acs.analchem.1c03792] [Reference Citation Analysis]
11 Wang R, Yan C, Zhang H, Guo Z, Zhu WH. In vivo real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment. Chem Sci 2020;11:3371-7. [PMID: 34122845 DOI: 10.1039/d0sc00290a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
12 Jiang W, Li Y, Wang W, Zhao Y, Fei J, Li C. A hepatocyte-targeting near-infrared ratiometric fluorescent probe for monitoring peroxynitrite during drug-induced hepatotoxicity and its remediation. Chem Commun 2019;55:14307-10. [DOI: 10.1039/c9cc07017f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
13 Qu A, Sun M, Xu L, Hao C, Wu X, Xu C, Kotov NA, Kuang H. Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc Natl Acad Sci U S A 2019;116:3391-400. [PMID: 30808736 DOI: 10.1073/pnas.1810764116] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
14 Li Z, Liang T, Wang Q, Liu Z. Strategies for Constructing Upconversion Luminescence Nanoprobes to Improve Signal Contrast. Small 2020;16:e1905084. [PMID: 31782913 DOI: 10.1002/smll.201905084] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Liu SG, Li N, Han L, Li LJ, Li NB, Luo HQ. Size-dependent modulation of fluorescence and light scattering: a new strategy for development of ratiometric sensing. Mater Horiz 2018;5:454-60. [DOI: 10.1039/c7mh00872d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 1] [Article Influence: 11.3] [Reference Citation Analysis]
16 Ling C, Cui M, Chen J, Xia L, Deng D, Gu Y, Wang P. A novel highly selective fluorescent probe with new chalcone fluorophore for monitoring and imaging endogenous peroxynitrite in living cells and drug-damaged liver tissue. Talanta 2020;215:120934. [PMID: 32312470 DOI: 10.1016/j.talanta.2020.120934] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
17 Liu Y, Lin G, Bao G, Guan M, Yang L, Liu Y, Wang D, Zhang X, Liao J, Fang G, Di X, Huang G, Zhou J, Cheng YY, Jin D. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for in Vivo Imaging. ACS Nano 2021. [PMID: 34714044 DOI: 10.1021/acsnano.1c07431] [Reference Citation Analysis]
18 Tang J, Yang X, Zhao F, Zhang D, Mo S, Ye Y. Visualizing peroxynitrite fluxes and protective effect of endogenous hydrogen sulfide during carbonyl stress in endothelial cell. Sensors and Actuators B: Chemical 2021;330:129283. [DOI: 10.1016/j.snb.2020.129283] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
19 Yi Z, Luo Z, Qin X, Chen Q, Liu X. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation. Acc Chem Res 2020;53:2692-704. [PMID: 33103883 DOI: 10.1021/acs.accounts.0c00513] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
20 Cao C, Zhou X, Xue M, Han C, Feng W, Li F. Dual Near-Infrared-Emissive Luminescent Nanoprobes for Ratiometric Luminescent Monitoring of ClO in Living Organisms. ACS Appl Mater Interfaces 2019;11:15298-305. [DOI: 10.1021/acsami.9b02008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 10.7] [Reference Citation Analysis]
21 Zhou J, Leaño JL Jr, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small 2018;14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Cited by in Crossref: 70] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
22 Cheng D, Xu W, Gong X, Yuan L, Zhang XB. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging. Acc Chem Res 2021;54:403-15. [PMID: 33382249 DOI: 10.1021/acs.accounts.0c00646] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
23 Zhang R, Zheng J, Zhang T. In vivo selective imaging of metabolic glycosylation with a tetrazine-modified upconversion nanoprobe. RSC Adv 2020;10:15990-6. [DOI: 10.1039/d0ra01832e] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hu Y, Wang Y, Wen X, Pan Y, Cheng X, An R, Gao G, Chen HY, Ye D. Responsive Trimodal Probes for In Vivo Imaging of Liver Inflammation by Coassembly and GSH-Driven Disassembly. Research (Wash D C) 2020;2020:4087069. [PMID: 33029587 DOI: 10.34133/2020/4087069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021;6:628-40. [DOI: 10.1021/acssensors.0c02343] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
26 Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L. Upconversion Luminescence-Activated DNA Nanodevice for ATP Sensing in Living Cells. J Am Chem Soc 2018;140:578-81. [PMID: 29281270 DOI: 10.1021/jacs.7b11161] [Cited by in Crossref: 135] [Cited by in F6Publishing: 114] [Article Influence: 33.8] [Reference Citation Analysis]
27 Tao Y, Chen L, Pan M, Zhu F, Zhu D. Tailored Biosensors for Drug Screening, Efficacy Assessment, and Toxicity Evaluation. ACS Sens 2021;6:3146-62. [PMID: 34516080 DOI: 10.1021/acssensors.1c01600] [Reference Citation Analysis]
28 Liang H, Hong Z, Li S, Song X, Zhang D, Chen Q, Li J, Yang H. An Activatable X‐Ray Scintillating Luminescent Nanoprobe for Early Diagnosis and Progression Monitoring of Thrombosis in Live Rat. Adv Funct Mater 2021;31:2006353. [DOI: 10.1002/adfm.202006353] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Wang N, Yu X, Zhang K, Mirkin CA, Li J. Upconversion Nanoprobes for the Ratiometric Luminescent Sensing of Nitric Oxide. J Am Chem Soc 2017;139:12354-7. [DOI: 10.1021/jacs.7b06059] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 18.6] [Reference Citation Analysis]
30 Li H, Kim D, Yao Q, Ge H, Chung J, Fan J, Wang J, Peng X, Yoon J. Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed 2021;60:17268-89. [DOI: 10.1002/anie.202009796] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
31 Wang Z, Ai X, Zhang Z, Wang Y, Wu X, Haindl R, Yeow EKL, Drexler W, Gao M, Xing B. NIR nanoprobe-facilitated cross-referencing manifestation of local disease biology for dynamic therapeutic response assessment. Chem Sci 2019;11:803-11. [PMID: 34123056 DOI: 10.1039/c9sc04909f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
32 Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2021;:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Reference Citation Analysis]
33 Wang H, Wang Z, Li Y, Xu T, Zhang Q, Yang M, Wang P, Gu Y. A Novel Theranostic Nanoprobe for In Vivo Singlet Oxygen Detection and Real‐Time Dose–Effect Relationship Monitoring in Photodynamic Therapy. Small 2019;15:1902185. [DOI: 10.1002/smll.201902185] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
34 Wang S, Xi W, Wang Z, Zhao H, Zhao L, Fang J, Wang H, Sun L. Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. J Mater Chem B 2020;8:5883-91. [PMID: 32538406 DOI: 10.1039/d0tb00993h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhao M, Wang J, Lei Z, Lu L, Wang S, Zhang H, Li B, Zhang F. NIR‐II pH Sensor with a FRET Adjustable Transition Point for In Situ Dynamic Tumor Microenvironment Visualization. Angew Chem Int Ed 2021;60:5091-5. [DOI: 10.1002/anie.202012021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
36 Li D, Wang S, Lei Z, Sun C, El-toni AM, Alhoshan MS, Fan Y, Zhang F. Peroxynitrite Activatable NIR-II Fluorescent Molecular Probe for Drug-Induced Hepatotoxicity Monitoring. Anal Chem 2019;91:4771-9. [DOI: 10.1021/acs.analchem.9b00317] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 25.0] [Reference Citation Analysis]
37 Zhuang H, Li B, Zhao M, Wei P, Yuan W, Zhang M, Han X, Chen Y, Yi T. Real-time monitoring and accurate diagnosis of drug-induced hepatotoxicity in vivo by ratio-fluorescence and photoacoustic imaging of peroxynitrite. Nanoscale 2020;12:10216-25. [PMID: 32356536 DOI: 10.1039/d0nr00963f] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Xie X, Tang F, Liu G, Li Y, Su X, Jiao X, Wang X, Tang B. Mitochondrial Peroxynitrite Mediation of Anthracycline-Induced Cardiotoxicity as Visualized by a Two-Photon Near-Infrared Fluorescent Probe. Anal Chem 2018;90:11629-35. [DOI: 10.1021/acs.analchem.8b03207] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 14.5] [Reference Citation Analysis]
39 Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan-Park MB, Xing B. Cyanine-Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew Chem Int Ed Engl 2021;60:16900-5. [PMID: 34018295 DOI: 10.1002/anie.202104100] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Lyu L, Cheong H, Ai X, Zhang W, Li J, Yang H, Lin J, Xing B. Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect. NPG Asia Mater 2018;10:685-702. [DOI: 10.1038/s41427-018-0065-y] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 8.5] [Reference Citation Analysis]
41 Xia L, Tong Y, Li L, Cui M, Gu Y, Wang P. A selective fluorescent turn-on probe for imaging peroxynitrite in living cells and drug-damaged liver tissues. Talanta 2019;204:431-7. [DOI: 10.1016/j.talanta.2019.06.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
42 Lei P, Feng J, Zhang H. Emerging biomaterials: Taking full advantage of the intrinsic properties of rare earth elements. Nano Today 2020;35:100952. [DOI: 10.1016/j.nantod.2020.100952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
43 Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. Mater Horiz 2022. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Reference Citation Analysis]
44 Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Reference Citation Analysis]
45 Ai X, Wang Z, Cheong H, Wang Y, Zhang R, Lin J, Zheng Y, Gao M, Xing B. Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat Commun 2019;10:1087. [PMID: 30842426 DOI: 10.1038/s41467-019-09001-7] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 23.3] [Reference Citation Analysis]
46 Wang Z, Zhang F, Xiong J, Mao Z, Liu Z. Investigations of drug-induced liver injury by a peroxynitrite activatable two-photon fluorescence probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021;246:118960. [DOI: 10.1016/j.saa.2020.118960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Wang H, Li Y, Yang M, Wang P, Gu Y. FRET-Based Upconversion Nanoprobe Sensitized by Nd 3+ for the Ratiometric Detection of Hydrogen Peroxide in Vivo. ACS Appl Mater Interfaces 2019;11:7441-9. [DOI: 10.1021/acsami.8b21549] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
48 Wang J, Zhang L, Su Y, Qu Y, Cao Y, Qin W, Liu Y. A Novel Fluorescent Probe Strategy Activated by β-Glucuronidase for Assisting Surgical Resection of Liver Cancer. Anal Chem 2022. [PMID: 35506678 DOI: 10.1021/acs.analchem.1c05635] [Reference Citation Analysis]
49 Huang L, Le T, Huang K, Han G. Enzymatic enhancing of triplet-triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nat Commun 2021;12:1898. [PMID: 33772017 DOI: 10.1038/s41467-021-22282-1] [Reference Citation Analysis]
50 Yang K, Hou L, Li Z, Lin T, Tian J, Zhao S. A mitochondria-targeted ratiometric fluorescent nanoprobe for imaging of peroxynitrite in living cells. Talanta 2021;231:122421. [PMID: 33965010 DOI: 10.1016/j.talanta.2021.122421] [Reference Citation Analysis]
51 Zheng J, Long X, Chen H, Ji Z, Shu B, Yue R, Liao Y, Ma S, Qiao K, Liu Y, Liao Y. Photoclick Reaction Constructs Glutathione-Responsive Theranostic System for Anti-Tuberculosis. Front Mol Biosci 2022;9:845179. [DOI: 10.3389/fmolb.2022.845179] [Reference Citation Analysis]
52 Lin P, Chen D, Zhang L, Xu J, Huang Y, Zhao S. Near-Infrared Dual-Emission Ratiometric Fluorescence Imaging Nanoprobe for Real-Time Tracing the Generation of Endogenous Peroxynitrite in Single Living Cells and In Vivo. ACS Omega 2020;5:13278-86. [PMID: 32548514 DOI: 10.1021/acsomega.0c01320] [Reference Citation Analysis]
53 Chen F, Teng L, Lu C, Zhang C, Rong Q, Zhao Y, Yang Y, Wang Y, Song G, Zhang X. Activatable Magnetic/Photoacoustic Nanoplatform for Redox-Unlocked Deep-Tissue Molecular Imaging In Vivo via Prussian Blue Nanoprobe. Anal Chem 2020;92:13452-61. [DOI: 10.1021/acs.analchem.0c02859] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
54 Zhang M, Wang N, Li Z. Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116602] [Reference Citation Analysis]
55 Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan‐park MB, Xing B. Cyanine‐Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew Chem 2021;133:17037-42. [DOI: 10.1002/ange.202104100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Wang P, Zhou F, Guan K, Wang Y, Fu X, Yang Y, Yin X, Song G, Zhang XB, Tan W. In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chem Sci 2019;11:1299-306. [PMID: 34123254 DOI: 10.1039/c9sc04875h] [Cited by in Crossref: 37] [Cited by in F6Publishing: 2] [Article Influence: 12.3] [Reference Citation Analysis]
57 Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018;118:1770-839. [DOI: 10.1021/acs.chemrev.7b00425] [Cited by in Crossref: 337] [Cited by in F6Publishing: 233] [Article Influence: 84.3] [Reference Citation Analysis]
58 Liang T, Li Z, Wang P, Zhao F, Liu J, Liu Z. Breaking Through the Signal-to-Background Limit of Upconversion Nanoprobes Using a Target-Modulated Sensitizing Switch. J Am Chem Soc 2018;140:14696-703. [DOI: 10.1021/jacs.8b07329] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
59 Zhao M, Wang J, Lei Z, Lu L, Wang S, Zhang H, Li B, Zhang F. NIR‐II pH Sensor with a FRET Adjustable Transition Point for In Situ Dynamic Tumor Microenvironment Visualization. Angew Chem 2021;133:5151-5. [DOI: 10.1002/ange.202012021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Qin X, Li F, Zhang Y, Ma G, Feng T, Luo Y, Huang P, Lin J. In Vivo Photoacoustic Detection and Imaging of Peroxynitrite. Anal Chem 2018;90:9381-5. [DOI: 10.1021/acs.analchem.8b01992] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
61 Zhang Z, Han Q, Lau JW, Xing B. Lanthanide-Doped Upconversion Nanoparticles Meet the Needs for Cutting-Edge Bioapplications: Recent Progress and Perspectives. ACS Materials Lett 2020;2:1516-31. [DOI: 10.1021/acsmaterialslett.0c00377] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
62 Zheng J, Wu Y, Xing D, Zhang T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res 2019;12:931-8. [DOI: 10.1007/s12274-019-2327-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
63 Gong X, Cheng D, Li W, Shen Y, Peng R, Shi L, He L, Yuan L. A highly selective ratiometric molecular probe for imaging peroxynitrite during drug-induced acute liver injury. J Mater Chem B 2021;9:8246-52. [PMID: 34499075 DOI: 10.1039/d1tb01534f] [Reference Citation Analysis]
64 Cheng D, Peng J, Lv Y, Su D, Liu D, Chen M, Yuan L, Zhang X. De Novo Design of Chemical Stability Near-Infrared Molecular Probes for High-Fidelity Hepatotoxicity Evaluation In Vivo. J Am Chem Soc 2019;141:6352-61. [DOI: 10.1021/jacs.9b01374] [Cited by in Crossref: 102] [Cited by in F6Publishing: 86] [Article Influence: 34.0] [Reference Citation Analysis]
65 Deng Z, Bi S, Jiang M, Zeng S. Endogenous H 2 S-Activated Orthogonal Second Near-Infrared Emissive Nanoprobe for In Situ Ratiometric Fluorescence Imaging of Metformin-Induced Liver Injury. ACS Nano 2021;15:3201-11. [DOI: 10.1021/acsnano.0c09799] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
66 Liu X, Lai H, Peng J, Cheng D, Zhang X, Yuan L. Chromophore‐Modified Highly Selective Ratiometric Upconversion Nanoprobes for Detection of ONOO ‐Related Hepatotoxicity In Vivo. Small 2019;15:1902737. [DOI: 10.1002/smll.201902737] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
67 Wu Y, Shi A, Li Y, Zeng H, Chen X, Wu J, Fan X. A near-infrared xanthene fluorescence probe for monitoring peroxynitrite in living cells and mouse inflammation model. Analyst 2018;143:5512-9. [DOI: 10.1039/c8an01107a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]
68 Chen J, Wang Z, She M, Liu M, Zhao Z, Chen X, Liu P, Zhang S, Li J. Precise Synthesis of GSH-Specific Fluorescent Probe for Hepatotoxicity Assessment Guided by Theoretical Calculation. ACS Appl Mater Interfaces 2019;11:32605-12. [DOI: 10.1021/acsami.9b08522] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
69 Hou T, Zhang K, Kang X, Guo X, Du L, Chen X, Yu L, Yue J, Ge H, Liu Y, Asiri AM, Alamry KA, Yu H, Wang S. Sensitive detection and imaging of endogenous peroxynitrite using a benzo[d]thiazole derived cyanine probe. Talanta 2019;196:345-51. [DOI: 10.1016/j.talanta.2018.12.083] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
70 Li Z, Yuan H, Yuan W, Su Q, Li F. Upconversion nanoprobes for biodetections. Coordination Chemistry Reviews 2018;354:155-68. [DOI: 10.1016/j.ccr.2017.06.025] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 15.5] [Reference Citation Analysis]
71 Cheng D, Xu W, Yuan L, Zhang X. Investigation of Drug-Induced Hepatotoxicity and Its Remediation Pathway with Reaction-Based Fluorescent Probes. Anal Chem 2017;89:7693-700. [PMID: 28627888 DOI: 10.1021/acs.analchem.7b01671] [Cited by in Crossref: 91] [Cited by in F6Publishing: 83] [Article Influence: 18.2] [Reference Citation Analysis]
72 Hou P, Wang J, Fu S, Liu L, Chen S. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. Spectrochim Acta A Mol Biomol Spectrosc 2019;213:342-6. [PMID: 30716645 DOI: 10.1016/j.saa.2019.01.081] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
73 Wu W, Zhang C, Rees TW, Liao X, Yan X, Chen Y, Ji L, Chao H. Lysosome-Targeting Iridium(III) Probe with Near-Infrared Emission for the Visualization of NO/O 2•- Crosstalk via In Vivo Peroxynitrite Imaging. Anal Chem 2020;92:6003-9. [DOI: 10.1021/acs.analchem.0c00259] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
74 Li H, Wang X, Ohulchanskyy TY, Chen G. Lanthanide‐Doped Near‐Infrared Nanoparticles for Biophotonics. Adv Mater 2021;33:2000678. [DOI: 10.1002/adma.202000678] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
75 Li H, Yao Q, Xu F, Xu N, Ma X, Fan J, Long S, Du J, Wang J, Peng X. Recognition of Exogenous and Endogenous Nitroxyl in Living Cells via a Two-Photon Fluorescent Probe. Anal Chem 2018;90:4641-8. [DOI: 10.1021/acs.analchem.7b05172] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
76 Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020;18:154. [PMID: 33121496 DOI: 10.1186/s12951-020-00713-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
77 Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2019;91:548-68. [DOI: 10.1021/acs.analchem.8b04049] [Cited by in Crossref: 93] [Cited by in F6Publishing: 66] [Article Influence: 23.3] [Reference Citation Analysis]
78 Gao R, Hao C, Xu L, Xu C, Kuang H. Spiny Nanorod and Upconversion Nanoparticle Satellite Assemblies for Ultrasensitive Detection of Messenger RNA in Living Cells. Anal Chem 2018;90:5414-21. [PMID: 29577726 DOI: 10.1021/acs.analchem.8b00617] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
79 Yu G, Feng N, Zhao D, Wang H, Jin Y, Liu D, Li Z, Yang X, Ge K, Zhang J. A highly selective and sensitive upconversion nanoprobe for monitoring hydroxyl radicals in living cells and the liver. Sci China Life Sci 2021;64:434-42. [PMID: 32239367 DOI: 10.1007/s11427-019-1601-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Hou JT, Wang B, Zhang Y, Cui B, Cao X, Zhang M, Ye Y, Wang S. Observation of peroxynitrite overproduction in cells during 5-fluorouracil treatment via a ratiometric fluorescent probe. Chem Commun (Camb) 2020;56:2759-62. [PMID: 32022003 DOI: 10.1039/c9cc09652c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
81 Liu K, Kang B, Luo X, Yang Z, Sun C, Li A, Fan Y, Chen X, Gao J, Lin H. Redox-Activated Contrast-Enhanced T1-Weighted Imaging Visualizes Glutathione-Mediated Biotransformation Dynamics in the Liver. ACS Nano 2021. [PMID: 34751559 DOI: 10.1021/acsnano.1c06026] [Reference Citation Analysis]
82 Chen S, Hou P, Wang J, Fu S, Liu L. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide. Spectrochim Acta A Mol Biomol Spectrosc 2018;203:258-62. [PMID: 29874636 DOI: 10.1016/j.saa.2018.05.108] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
83 Rao M, Fu J, Wen X, Sun B, Wu J, Liu X, Dong X. Near-infrared-excitable perovskite quantum dots via coupling with upconversion nanoparticles for dual-model anti-counterfeiting. New J Chem 2018;42:12353-6. [DOI: 10.1039/c8nj02315h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
84 Hou J, Yu K, Sunwoo K, Kim WY, Koo S, Wang J, Ren WX, Wang S, Yu X, Kim JS. Fluorescent Imaging of Reactive Oxygen and Nitrogen Species Associated with Pathophysiological Processes. Chem 2020;6:832-66. [DOI: 10.1016/j.chempr.2019.12.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
85 Li H, Huang Y, Chen C, Xiao A, Hou G, Huang Y, Feng X, Guan BO. Real-Time Cellular Cytochrome C Monitoring through an Optical Microfiber: Enabled by a Silver-Decorated Graphene Nanointerface. Adv Sci (Weinh) 2018;5:1701074. [PMID: 30128226 DOI: 10.1002/advs.201701074] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
86 Zhang B, Meng J, Mi X, Zhang C, Zhang Z, Zheng H. Enhanced upconversion fluorescent probe of single NaYF 4 :Yb 3+ /Er 3+ /Zn 2+ nanoparticles for copper ion detection. RSC Adv 2018;8:37618-22. [DOI: 10.1039/c8ra07103a] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
87 Wang K, Wu Q, Wang X, Liang G, Yang A, Li J. Near-infrared control and real-time detection of osteogenic differentiation in mesenchymal stem cells by multifunctional upconversion nanoparticles. Nanoscale 2020;12:10106-16. [DOI: 10.1039/d0nr00872a] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
88 Bao G, Wen S, Lin G, Yuan J, Lin J, Wong K, Bünzli JG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coordination Chemistry Reviews 2021;429:213642. [DOI: 10.1016/j.ccr.2020.213642] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
89 Loo JF, Chien Y, Yin F, Kong S, Ho H, Yong K. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coordination Chemistry Reviews 2019;400:213042. [DOI: 10.1016/j.ccr.2019.213042] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 9.3] [Reference Citation Analysis]
90 Li H, Wang X, Huang D, Chen G. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Nanotechnology 2020;31:072001. [PMID: 31627201 DOI: 10.1088/1361-6528/ab4f36] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
91 Fu Q, Li H, Duan D, Wang C, Shen S, Ma H, Liu Z. External‐Radiation‐Induced Local Hydroxylation Enables Remote Release of Functional Molecules in Tumors. Angew Chem Int Ed 2020;59:21546-52. [DOI: 10.1002/anie.202005612] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
92 Li H, Ma H. New progress in spectroscopic probes for reactive oxygen species. J Anal Test 2018;2:2-19. [DOI: 10.1007/s41664-018-0049-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
93 Tang Y, Li Y, Wang Z, Pei F, Hu X, Ji Y, Li X, Zhao H, Hu W, Lu X, Fan Q, Huang W. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity. Chem Commun 2019;55:27-30. [DOI: 10.1039/c8cc08413k] [Cited by in Crossref: 28] [Cited by in F6Publishing: 4] [Article Influence: 9.3] [Reference Citation Analysis]
94 Xu J, Tu D, Zheng W, Shang X, Huang P, Cheng Y, Wang Y, Chen X. Interfacial Defects Dictated In Situ Fabrication of Yolk-Shell Upconversion Nanoparticles by Electron-Beam Irradiation. Adv Sci (Weinh) 2018;5:1800766. [PMID: 30356918 DOI: 10.1002/advs.201800766] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
95 Yan C, Guo Z, Liu Y, Shi P, Tian H, Zhu WH. A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chem Sci 2018;9:6176-82. [PMID: 30090304 DOI: 10.1039/c8sc02079e] [Cited by in Crossref: 49] [Cited by in F6Publishing: 12] [Article Influence: 12.3] [Reference Citation Analysis]
96 Yu Z, Ge Y, Sun Q, Pan W, Wan X, Li N, Tang B. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite. Chem Sci 2018;9:3563-9. [PMID: 29780488 DOI: 10.1039/c8sc00098k] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 9.8] [Reference Citation Analysis]
97 Zhu S, Gu Z. Lanthanide-doped materials as dual imaging and therapeutic agents. Lanthanide-Based Multifunctional Materials. Elsevier; 2018. pp. 381-410. [DOI: 10.1016/b978-0-12-813840-3.00011-9] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
98 Liu Y, Jia Q, Guo Q, Jiang A, Zhou J. In Vivo Oxidative Stress Monitoring Through Intracellular Hydroxyl Radicals Detection by Recyclable Upconversion Nanoprobes. Anal Chem 2017;89:12299-305. [DOI: 10.1021/acs.analchem.7b03270] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
99 Liu C, Yu Y, Chen D, Zhao J, Yu Y, Li L, Lu Y. Cupredoxin engineered upconversion nanoparticles for ratiometric luminescence sensing of Cu2. Nanoscale Adv 2019;1:2580-5. [PMID: 32195453 DOI: 10.1039/c9na00168a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
100 Zhao M, Li B, Wu Y, He H, Zhu X, Zhang H, Dou C, Feng L, Fan Y, Zhang F. A Tumor‐Microenvironment‐Responsive Lanthanide–Cyanine FRET Sensor for NIR‐II Luminescence‐Lifetime In Situ Imaging of Hepatocellular Carcinoma. Adv Mater 2020;32:2001172. [DOI: 10.1002/adma.202001172] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 22.5] [Reference Citation Analysis]
101 Zuo Q, Wu Q, Lv Y, Gong X, Cheng D. Imaging of endoplasmic reticulum superoxide anion fluctuation in a liver injury model by a selective two-photon fluorescent probe. New J Chem 2020;44:5457-62. [DOI: 10.1039/d0nj00487a] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
102 Liu Q, Li J, Liu X, Yuan L, Zhao L, Chang YT, Liu X, Peng J. The screening of drug-induced nephrotoxicity using gold nanocluster-based ratiometric fluorescent probes. Nanoscale 2021;13:13835-44. [PMID: 34477658 DOI: 10.1039/d1nr01006a] [Reference Citation Analysis]
103 He K, Yu S, Wang X, Li D, Chen J, Zhong H, Xu Q, Wu YX, Gan N. The fabrication of transferrin-modified two-photon gold nanoclusters with near-infrared fluorescence and their application in bioimaging. Chem Commun (Camb) 2021;57:10391-4. [PMID: 34542119 DOI: 10.1039/d1cc03368a] [Reference Citation Analysis]
104 Zhang Y, Yan C, Zheng Q, Jia Q, Wang Z, Shi P, Guo Z. Harnessing Hypoxia-Dependent Cyanine Photocages for In Vivo Precision Drug Release. Angew Chem Int Ed Engl 2021;60:9553-61. [PMID: 33569863 DOI: 10.1002/anie.202017349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
105 Zhen X, Pu K. Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Res 2018;11:5258-80. [DOI: 10.1007/s12274-018-2135-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
106 Zha S, Fung YH, Chau H, Ma P, Lin J, Wang J, Chan LS, Zhu G, Lung HL, Wong K. Responsive upconversion nanoprobe for monitoring and inhibition of EBV-associated cancers via targeting EBNA1. Nanoscale 2018;10:15632-40. [DOI: 10.1039/c8nr05015e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
107 Liu Y, Jiang A, Jia Q, Zhai X, Liu L, Ma L, Zhou J. Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics. Chem Sci 2018;9:5242-51. [PMID: 29997879 DOI: 10.1039/c8sc00670a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
108 Wang A, Fang J, Ye S, Mao Q, Zhao Y, Cui C, Zhang Y, Feng Y, Li J, He L, Qiu L, Shi H. Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy. ACS Appl Mater Interfaces 2021;13:59787-802. [PMID: 34894664 DOI: 10.1021/acsami.1c21062] [Reference Citation Analysis]
109 Zhang Q, Yang F, Xu Z, Chaker M, Ma D. Are lanthanide-doped upconversion materials good candidates for photocatalysis? Nanoscale Horiz 2019;4:579-91. [DOI: 10.1039/c8nh00373d] [Cited by in Crossref: 34] [Article Influence: 11.3] [Reference Citation Analysis]
110 Zhang M, Zuo M, Wang C, Li Z, Cheng Q, Huang J, Wang Z, Liu Z. Monitoring Neuroinflammation with an HOCl-Activatable and Blood-Brain Barrier Permeable Upconversion Nanoprobe. Anal Chem 2020;92:5569-76. [PMID: 32189497 DOI: 10.1021/acs.analchem.0c00526] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
111 Wang Z, Xing B. Near-Infrared Multipurpose Lanthanide-Imaging Nanoprobes. Chem Asian J 2020;15:2076-91. [PMID: 32424994 DOI: 10.1002/asia.202000493] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
112 Chen Z, Meng X, Zou L, Zhao M, Liu S, Tao P, Jiang J, Zhao Q. A Dual-Emissive Phosphorescent Polymeric Probe for Exploring Drug-Induced Liver Injury via Imaging of Peroxynitrite Elevation In Vivo. ACS Appl Mater Interfaces 2020;12:12383-94. [DOI: 10.1021/acsami.9b18135] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
113 Chen B, Su Q, Kong W, Wang Y, Shi P, Wang F. Energy transfer-based biodetection using optical nanomaterials. J Mater Chem B 2018;6:2924-44. [DOI: 10.1039/c8tb00614h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 5.8] [Reference Citation Analysis]
114 Zhang Y, Chen X, Yuan Q, Bian Y, Li M, Wang Y, Gao X, Su D. Enzyme-activated near-infrared fluorogenic probe with high-efficiency intrahepatic targeting ability for visualization of drug-induced liver injury. Chem Sci 2021;12:14855-62. [PMID: 34820101 DOI: 10.1039/d1sc04825b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Kim J, Nam SH, Lim D, Suh YD. SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics. Nanoscale 2019;11:21724-7. [DOI: 10.1039/c9nr05159g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
116 Li A, Luo X, Li L, Chen D, Liu X, Yang Z, Yang L, Gao J, Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal Chem 2021;93:16552-61. [PMID: 34859996 DOI: 10.1021/acs.analchem.1c03744] [Reference Citation Analysis]
117 Wang J, Sheng T, Zhu X, Li Q, Wu Y, Zhang J, Liu J, Zhang Y. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications. Mater Chem Front 2021;5:1743-70. [DOI: 10.1039/d0qm00910e] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
118 Bao G, Wen S, Wang W, Zhou J, Zha S, Liu Y, Wong KL, Jin D. Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. Nano Lett 2021;21:9862-8. [PMID: 34780188 DOI: 10.1021/acs.nanolett.1c02391] [Reference Citation Analysis]
119 Zhang X, Zhao W, Li B, Li W, Zhang C, Hou X, Jiang J, Dong Y. Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice. Chem Sci 2018;9:8207-12. [PMID: 30542568 DOI: 10.1039/c8sc03226b] [Cited by in Crossref: 44] [Cited by in F6Publishing: 1] [Article Influence: 11.0] [Reference Citation Analysis]
120 Tao Y, Yan C, Li D, Dai J, Cheng Y, Li H, Zhu W, Guo Z. Sequence-Activated Fluorescent Nanotheranostics for Real-Time Profiling Pancreatic Cancer. JACS Au. [DOI: 10.1021/jacsau.1c00553] [Reference Citation Analysis]
121 Cheng D, Gong X, Wu Q, Yuan J, Lv Y, Yuan L, Zhang X. High-Selectivity Fluorescent Reporter toward Peroxynitrite in a Coexisting Nonalcoholic Fatty Liver and Drug-Induced Liver Diseases Model. Anal Chem 2020;92:11396-404. [PMID: 32683859 DOI: 10.1021/acs.analchem.0c02277] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
122 Wang F, Yuan Z, Mcmullen P, Li R, Zheng J, Xu Y, Xu M, He Q, Li B, Chen H. Near-Infrared-Light-Responsive Lipid Nanoparticles as an Intelligent Drug Release System for Cancer Therapy. Chem Mater 2019;31:3948-56. [DOI: 10.1021/acs.chemmater.9b00150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
123 Jiao L, Liu Y, Zhang X, Hong G, Zheng J, Cui J, Peng X, Song F. Constructing a Local Hydrophobic Cage in Dye-Doped Fluorescent Silica Nanoparticles to Enhance the Photophysical Properties. ACS Cent Sci 2020;6:747-59. [PMID: 32490191 DOI: 10.1021/acscentsci.0c00071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]