BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ray SK. Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res 2020;15:1601-12. [PMID: 32209759 DOI: 10.4103/1673-5374.276322] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Visintin R, Ray SK. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sciences 2022;12:247. [DOI: 10.3390/brainsci12020247] [Reference Citation Analysis]
2 Song X, Xu Y, Wu J, Shao H, Gao J, Feng X, Gu J. A sandwich structured drug delivery composite membrane for improved recovery after spinal cord injury under longtime controlled release. Colloids Surf B Biointerfaces 2021;199:111529. [PMID: 33418207 DOI: 10.1016/j.colsurfb.2020.111529] [Reference Citation Analysis]
3 Guo X, Kang J, Wang Z, Wang Y, Liu M, Zhu D, Yang F, Kang X. Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience 2022:S0306-4522(22)00292-5. [PMID: 35710066 DOI: 10.1016/j.neuroscience.2022.06.007] [Reference Citation Analysis]
4 Yang B, Wang PB, Mu N, Ma K, Wang S, Yang CY, Huang ZB, Lai Y, Feng H, Yin GF, Chen TN, Hu CS. Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats. Neural Regen Res 2021;16:1829-35. [PMID: 33510090 DOI: 10.4103/1673-5374.306095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Manea AJ, Ray SK. Regulation of autophagy as a therapeutic option in glioblastoma. Apoptosis 2021;26:574-99. [PMID: 34687375 DOI: 10.1007/s10495-021-01691-z] [Reference Citation Analysis]
6 Chen D, Li C, Lv R. MicroRNA-218 aggravates H2O2-induced damage in PC12 cells via spred2-mediated autophagy. Exp Ther Med 2021;22:1352. [PMID: 34659498 DOI: 10.3892/etm.2021.10787] [Reference Citation Analysis]
7 Odeya D, Sarya N, Galila A. Do Autophagy Enhancers/ROS Scavengers Alleviate Consequences of Mild Mitochondrial Dysfunction Induced in Neuronal-Derived Cells? Int J Mol Sci 2021;22:5753. [PMID: 34072255 DOI: 10.3390/ijms22115753] [Reference Citation Analysis]
8 Chang Y, Yang T, Ding H, Wang Z, Liang Q. Tauroursodeoxycholic acid protects rat spinal cord neurons after mechanical injury through regulating neuronal autophagy. Neuroscience Letters 2022;776:136578. [DOI: 10.1016/j.neulet.2022.136578] [Reference Citation Analysis]
9 Wang H, Yuan J, Dang X, Shi Z, Ban W, Ma D. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord injury by regulating the transformation from pri-mir-375 to miR-375. Cell Biosci 2021;11:52. [PMID: 33706799 DOI: 10.1186/s13578-020-00526-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Gholaminejhad M, Jameie SB, Abdi M, Abolhassani F, Mohammed I, Hassanzadeh G. All-Trans Retinoic Acid-Preconditioned Mesenchymal Stem Cells Improve Motor Function and Alleviate Tissue Damage After Spinal Cord Injury by Inhibition of HMGB1/NF-κB/NLRP3 Pathway Through Autophagy Activation. J Mol Neurosci 2022. [PMID: 35147911 DOI: 10.1007/s12031-022-01977-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Fan B, Wei Z, Feng S. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022;10:35. [PMID: 35396505 DOI: 10.1038/s41413-022-00199-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wang WZ, Li J, Liu L, Zhang ZD, Li MX, Li Q, Ma HX, Yang H, Hou XL. Role of circular RNA expression in the pathological progression after spinal cord injury. Neural Regen Res 2021;16:2048-55. [PMID: 33642393 DOI: 10.4103/1673-5374.308100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Gu Y, Chen D, Zhou L, Zhao X, Lin J, Lin B, Lin T, Chen Z, Chen Z, Wang Z, Liu W. Lysine-specific demethylase 1 inhibition enhances autophagy and attenuates early-stage post-spinal cord injury apoptosis. Cell Death Discov 2021;7:69. [PMID: 33824301 DOI: 10.1038/s41420-021-00455-7] [Reference Citation Analysis]
14 Bal E, Hanalioğlu Ş, Apaydın AS, Bal C, Şenat A, Öcal BG, Bahadır B, Türkoğlu ÖF. Anti-inflammatory and antioxidative effects of genistein in a model of spinal cord injury in rats. Asian Biomedicine 2021;15:233-43. [DOI: 10.2478/abm-2021-0029] [Reference Citation Analysis]
15 Nie H, Jiang Z. Bone mesenchymal stem cell-derived extracellular vesicles deliver microRNA-23b to alleviate spinal cord injury by targeting toll-like receptor TLR4 and inhibiting NF-κB pathway activation. Bioengineered 2021;12:8157-72. [PMID: 34663169 DOI: 10.1080/21655979.2021.1977562] [Reference Citation Analysis]
16 Abbaszadeh F, Jorjani M, Joghataei MT, Mehrabi S. Astaxanthin Modulates Autophagy, Apoptosis, and Neuronal Oxidative Stress in a Rat Model of Compression Spinal Cord Injury. Neurochem Res. [DOI: 10.1007/s11064-022-03593-1] [Reference Citation Analysis]