BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bastos AR, da Silva LP, Maia FR, Pina S, Rodrigues T, Sousa F, Oliveira JM, Cornish J, Correlo VM, Reis RL. Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering. Materials (Basel) 2019;12:E2074. [PMID: 31252675 DOI: 10.3390/ma12132074] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Xu L, Ye Q, Xie J, Yang J, Jiang W, Yuan H, Li J. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J Mater Chem B 2021. [PMID: 34908091 DOI: 10.1039/d1tb02230j] [Reference Citation Analysis]
2 Muthukumar T, Song JE, Khang G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019;24:E4514. [PMID: 31835526 DOI: 10.3390/molecules24244514] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
3 Duarte LG, Alencar WM, Iacuzio R, Silva NC, Picone CS. Synthesis, characterization and application of antibacterial lactoferrin nanoparticles. Current Research in Food Science 2022;5:642-52. [DOI: 10.1016/j.crfs.2022.03.009] [Reference Citation Analysis]
4 Boccaccio A. Design of Materials for Bone Tissue Scaffolds. Materials (Basel) 2021;14:5985. [PMID: 34683577 DOI: 10.3390/ma14205985] [Reference Citation Analysis]
5 Antoshin AA, Shpichka AI, Huang G, Chen K, Lu P, Svistunov AA, Lychagin AV, Lipina MM, Sinelnikov MY, Reshetov IV, Timashev PS. Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol Res 2021;167:105564. [PMID: 33744427 DOI: 10.1016/j.phrs.2021.105564] [Reference Citation Analysis]
6 Bonifacio MA, Cochis A, Cometa S, Scalzone A, Gentile P, Procino G, Milano S, Scalia AC, Rimondini L, De Giglio E. Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. Materials Science and Engineering: C 2020;108:110444. [DOI: 10.1016/j.msec.2019.110444] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
7 Icriverzi M, Bonciu A, Rusen L, Sima LE, Brajnicov S, Cimpean A, Evans RW, Dinca V, Roseanu A. Human Mesenchymal Stem Cell Response to Lactoferrin-based Composite Coatings. Materials (Basel) 2019;12:E3414. [PMID: 31635291 DOI: 10.3390/ma12203414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Słota D, Florkiewicz W, Piętak K, Szwed A, Włodarczyk M, Siwińska M, Rudnicka K, Sobczak-Kupiec A. Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia officinalis Extract. Materials (Basel) 2021;14:6000. [PMID: 34683591 DOI: 10.3390/ma14206000] [Reference Citation Analysis]
9 Amirthalingam S, Lee SS, Rajendran AK, Kim I, Hwang NS, Rangasamy J. Addition of lactoferrin and substance P in a chitin/PLGA-CaSO4 hydrogel for regeneration of calvarial bone defects. Mater Sci Eng C Mater Biol Appl 2021;126:112172. [PMID: 34082973 DOI: 10.1016/j.msec.2021.112172] [Reference Citation Analysis]
10 Jung S, Oh HK, Kim MS, Lee KY, Park H, Kook MS. Effect of Gellan Gum/Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria. Materials (Basel) 2020;13:E1318. [PMID: 32183273 DOI: 10.3390/ma13061318] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Materials Science and Engineering: C 2020;113:111008. [DOI: 10.1016/j.msec.2020.111008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
12 Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, Hu H, Cai Y, Lin S, Yu Z, Tan B, Guo W, Ling Z, Zou X. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater 2021;6:1839-51. [PMID: 33336115 DOI: 10.1016/j.bioactmat.2020.11.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
13 Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Reference Citation Analysis]
14 Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021;7:5397-431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Reference Citation Analysis]
15 Pall E, Roman A. Lactoferrin Functionalized Biomaterials: Tools for Prevention of Implant-Associated Infections. Antibiotics (Basel) 2020;9:E522. [PMID: 32824241 DOI: 10.3390/antibiotics9080522] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sikora M, Marcinkowska K, Marycz K, Wiglusz RJ, Śmieszek A. The Potential Selective Cytotoxicity of Poly (L- Lactic Acid)-Based Scaffolds Functionalized with Nanohydroxyapatite and Europium (III) Ions toward Osteosarcoma Cells. Materials (Basel) 2019;12:E3779. [PMID: 31752084 DOI: 10.3390/ma12223779] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]