BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B, Dos Remedios CG, Martin U, Zweigerdt R, Kraft T, Brenner B. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms. Front Physiol 2017;8:1111. [PMID: 29403388 DOI: 10.3389/fphys.2017.01111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Gintant G, Traebert M. The roles of human induced pluripotent stem cell-derived cardiomyocytes in drug discovery: managing in vitro safety study expectations. Expert Opin Drug Discov 2020;15:719-29. [PMID: 32129680 DOI: 10.1080/17460441.2020.1736549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Müller D, Klamt T, Gentemann L, Heisterkamp A, Kalies SMK. Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes. PLoS One 2021;16:e0252346. [PMID: 34086732 DOI: 10.1371/journal.pone.0252346] [Reference Citation Analysis]
3 Dorsch LM, Schuldt M, dos Remedios CG, Schinkel AFL, de Jong PL, Michels M, Kuster DWD, Brundel BJJM, van der Velden J. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells 2019;8:E741. [PMID: 31323898 DOI: 10.3390/cells8070741] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
4 Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 2020;17:341-59. [PMID: 32015528 DOI: 10.1038/s41569-019-0331-x] [Cited by in Crossref: 102] [Cited by in F6Publishing: 87] [Article Influence: 102.0] [Reference Citation Analysis]
5 Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018;5:120. [PMID: 30283789 DOI: 10.3389/fcvm.2018.00120] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
6 Lavine KJ, Greenberg MJ. Beyond genomics-technological advances improving the molecular characterization and precision treatment of heart failure. Heart Fail Rev 2021;26:405-15. [PMID: 32885327 DOI: 10.1007/s10741-020-10021-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021;118:e2025030118. [PMID: 34117120 DOI: 10.1073/pnas.2025030118] [Reference Citation Analysis]
8 Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019;116:17831-40. [PMID: 31427533 DOI: 10.1073/pnas.1910962116] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
9 Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int J Mol Sci 2020;21:E8893. [PMID: 33255277 DOI: 10.3390/ijms21238893] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Kay M, Soltani BM. LncRNAs in Cardiomyocyte Maturation: New Window for Cardiac Regenerative Medicine. Noncoding RNA 2021;7:20. [PMID: 33802186 DOI: 10.3390/ncrna7010020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Nayak A, Wang T, Franz P, Steffen W, Chizhov I, Tsiavaliaris G, Amrute-Nayak M. Single-molecule analysis reveals that regulatory light chains fine-tune skeletal myosin II function. J Biol Chem 2020;295:7046-59. [PMID: 32273340 DOI: 10.1074/jbc.RA120.012774] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
12 Bizy A, Klos M. Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020;10:E1561. [PMID: 32887495 DOI: 10.3390/ani10091561] [Reference Citation Analysis]
13 Amrute-Nayak M, Nayak A, Steffen W, Tsiavaliaris G, Scholz T, Brenner B. Transformation of the Nonprocessive Fast Skeletal Myosin II into a Processive Motor. Small 2019;15:e1804313. [PMID: 30657637 DOI: 10.1002/smll.201804313] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
14 Monasky MM, Pappone C, Piccoli M, Ghiroldi A, Micaglio E, Anastasia L. Calcium in Brugada Syndrome: Questions for Future Research. Front Physiol 2018;9:1088. [PMID: 30147658 DOI: 10.3389/fphys.2018.01088] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
15 Iorga B, Kraft T. Why make a strong muscle weaker? J Gen Physiol 2021;153:e202112928. [PMID: 34106212 DOI: 10.1085/jgp.202112928] [Reference Citation Analysis]
16 Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020;11:368. [PMID: 32477154 DOI: 10.3389/fphys.2020.00368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Christoffersson J, Meier F, Kempf H, Schwanke K, Coffee M, Beilmann M, Zweigerdt R, Mandenius CF. A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device. Bioengineering (Basel) 2018;5:E36. [PMID: 29734702 DOI: 10.3390/bioengineering5020036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
18 Weber N, Kowalski K, Holler T, Radocaj A, Fischer M, Thiemann S, de la Roche J, Schwanke K, Piep B, Peschel N, Krumm U, Lingk A, Wendland M, Greten S, Schmitto JD, Ismail I, Warnecke G, Zywietz U, Chichkov B, Meißner J, Haverich A, Martin U, Brenner B, Zweigerdt R, Kraft T. Advanced Single-Cell Mapping Reveals that in hESC Cardiomyocytes Contraction Kinetics and Action Potential Are Independent of Myosin Isoform. Stem Cell Reports 2020;14:788-802. [PMID: 32302556 DOI: 10.1016/j.stemcr.2020.03.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Franz P, Gassl V, Topf A, Eckelmann L, Iorga B, Tsiavaliaris G. A thermophoresis-based biosensor for real-time detection of inorganic phosphate during enzymatic reactions. Biosens Bioelectron 2020;169:112616. [PMID: 32979591 DOI: 10.1016/j.bios.2020.112616] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Müller D, Hagenah D, Biswanath S, Coffee M, Kampmann A, Zweigerdt R, Heisterkamp A, Kalies SMK. Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Sci Rep 2019;9:3625. [PMID: 30842507 DOI: 10.1038/s41598-019-40308-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
21 Halloin C, Coffee M, Manstein F, Zweigerdt R. Production of Cardiomyocytes from Human Pluripotent Stem Cells by Bioreactor Technologies. Methods Mol Biol 2019;1994:55-70. [PMID: 31124104 DOI: 10.1007/978-1-4939-9477-9_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]