BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One. 2011;6:e18293. [PMID: 21494607 DOI: 10.1371/journal.pone.0018293] [Cited by in Crossref: 286] [Cited by in F6Publishing: 252] [Article Influence: 28.6] [Reference Citation Analysis]
Number Citing Articles
1 Hazeltine LB, Selekman JA, Palecek SP. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 2013;31:1002-19. [PMID: 23510904 DOI: 10.1016/j.biotechadv.2013.03.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
2 Chan SS, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 2013;12:587-601. [PMID: 23642367 DOI: 10.1016/j.stem.2013.03.004] [Cited by in Crossref: 121] [Cited by in F6Publishing: 97] [Article Influence: 17.3] [Reference Citation Analysis]
3 Zimmerlin L, Park TS, Huo JS, Verma K, Pather SR, Talbot CC Jr, Agarwal J, Steppan D, Zhang YW, Considine M, Guo H, Zhong X, Gutierrez C, Cope L, Canto-Soler MV, Friedman AD, Baylin SB, Zambidis ET. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development 2016;143:4368-80. [PMID: 27660325 DOI: 10.1242/dev.138982] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 9.6] [Reference Citation Analysis]
4 Leyton-Mange JS, Milan DJ. Pluripotent stem cells as a platform for cardiac arrhythmia drug screening. Curr Treat Options Cardiovasc Med 2014;16:334. [PMID: 25074263 DOI: 10.1007/s11936-014-0334-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Choe MS, Yeo HC, Bae CM, Han HJ, Baek KM, Kim JS, Lim KS, Shin IS, Chang W, Yun SP, Lee HJ, Lee MY. Trolox-induced cardiac differentiation is mediated by the inhibition of Wnt/β-catenin signaling in human embryonic stem cells. Cell Biol Int 2019. [PMID: 31293030 DOI: 10.1002/cbin.11200] [Reference Citation Analysis]
6 Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021;473:1061-85. [PMID: 33629131 DOI: 10.1007/s00424-021-02536-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Iglesias-garcía O, Pelacho B, Prósper F. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology 2013;62:43-50. [DOI: 10.1016/j.yjmcc.2013.04.022] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
8 Qi SD, Smith PD, Choong PF. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons: iPSC for surgeons. ANZ J Surg 2014;84:417-23. [DOI: 10.1111/ans.12419] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
9 Vergara MN, Flores-Bellver M, Aparicio-Domingo S, McNally M, Wahlin KJ, Saxena MT, Mumm JS, Canto-Soler MV. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development 2017;144:3698-705. [PMID: 28870990 DOI: 10.1242/dev.146290] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
10 Wu J, Rostami MR, Cadavid Olaya DP, Tzanakakis ES. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 2014;9:e102486. [PMID: 25032842 DOI: 10.1371/journal.pone.0102486] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
11 Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-860. [PMID: 24930130 DOI: 10.1038/nmeth.2999] [Cited by in Crossref: 824] [Cited by in F6Publishing: 659] [Article Influence: 117.7] [Reference Citation Analysis]
12 Tan X, Dai Q, Guo T, Xu J, Dai Q. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes. Biochemical and Biophysical Research Communications 2018;495:2490-7. [DOI: 10.1016/j.bbrc.2017.12.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Fu J, Quek KY, Chuah YJ, Lim CS, Fan C, Wang D. The effects of gelatin–dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells. J Mater Chem B 2016;4:7961-73. [DOI: 10.1039/c6tb02631a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
14 Breckwoldt K, Letuffe-Brenière D, Mannhardt I, Schulze T, Ulmer B, Werner T, Benzin A, Klampe B, Reinsch MC, Laufer S, Shibamiya A, Prondzynski M, Mearini G, Schade D, Fuchs S, Neuber C, Krämer E, Saleem U, Schulze ML, Rodriguez ML, Eschenhagen T, Hansen A. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat Protoc 2017;12:1177-97. [PMID: 28492526 DOI: 10.1038/nprot.2017.033] [Cited by in Crossref: 114] [Cited by in F6Publishing: 89] [Article Influence: 28.5] [Reference Citation Analysis]
15 Zhu R, Millrod MA, Zambidis ET, Tung L. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells. Sci Rep 2016;6:18544. [PMID: 26729331 DOI: 10.1038/srep18544] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
16 Lees JG, Gardner DK, Harvey AJ. Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP.Stem Cells Int. 2017;2017:2874283. [PMID: 28804500 DOI: 10.1155/2017/2874283] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
17 Lian X, Zhang J, Zhu K, Kamp TJ, Palecek SP. Insulin inhibits cardiac mesoderm, not mesendoderm, formation during cardiac differentiation of human pluripotent stem cells and modulation of canonical Wnt signaling can rescue this inhibition. Stem Cells 2013;31:447-57. [PMID: 23193013 DOI: 10.1002/stem.1289] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
18 Jin G, Palecek SP. Inductive factors for generation of pluripotent stem cell-derived cardiomyocytes. Engineering Strategies for Regenerative Medicine. Elsevier; 2020. pp. 177-242. [DOI: 10.1016/b978-0-12-816221-7.00006-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S, Maier LS, Krause A, Dräger G, Ochs M, Haverich A, Gruh I, Martin U. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 2013;34:1134-46. [PMID: 23103664 DOI: 10.1093/eurheartj/ehs349] [Cited by in Crossref: 133] [Cited by in F6Publishing: 113] [Article Influence: 14.8] [Reference Citation Analysis]
20 Xu C. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol. 2012;52:1203-1212. [PMID: 22484618 DOI: 10.1016/j.yjmcc.2012.03.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
21 Yeo HC, Ting S, Brena RM, Koh G, Chen A, Toh SQ, Lim YM, Oh SK, Lee DY. Genome-Wide Transcriptome and Binding Sites Analyses Identify Early FOX Expressions for Enhancing Cardiomyogenesis Efficiency of hESC Cultures. Sci Rep 2016;6:31068. [PMID: 27501774 DOI: 10.1038/srep31068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
22 Karakikes I, Senyei GD, Hansen J, Kong CW, Azeloglu EU, Stillitano F, Lieu DK, Wang J, Ren L, Hulot JS. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med. 2014;3:18-31. [PMID: 24324277 DOI: 10.5966/sctm.2013-0110] [Cited by in Crossref: 100] [Cited by in F6Publishing: 81] [Article Influence: 12.5] [Reference Citation Analysis]
23 Herron TJ. Calcium and voltage mapping in hiPSC-CM monolayers. Cell Calcium 2016;59:84-90. [PMID: 26922095 DOI: 10.1016/j.ceca.2016.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
24 Park TS, Huo JS, Peters A, Talbot CC Jr, Verma K, Zimmerlin L, Kaplan IM, Zambidis ET. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors. PLoS One 2012;7:e42838. [PMID: 22905176 DOI: 10.1371/journal.pone.0042838] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
25 Ting S, Lecina M, Chan YC, Tse HF, Reuveny S, Oh SK. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells. World J Stem Cells 2013;5:86-97. [PMID: 23904910 DOI: 10.4252/wjsc.v5.i3.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
26 Guo X, Li S, Ji Q, Lian R, Chen J. Enhanced viability and neural differential potential in poor post-thaw hADSCs by agarose multi-well dishes and spheroid culture. Hum Cell 2015;28:175-89. [PMID: 26054839 DOI: 10.1007/s13577-015-0116-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
27 Blazeski A, Zhu R, Hunter DW, Weinberg SH, Zambidis ET, Tung L. Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Prog Biophys Mol Biol. 2012;110:166-177. [PMID: 22971665 DOI: 10.1016/j.pbiomolbio.2012.07.013] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
28 Merkert S, Martin U. Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells. Stem Cell Res 2016;16:377-86. [PMID: 26921872 DOI: 10.1016/j.scr.2016.02.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
29 Dambrot C, Buermans HP, Varga E, Kosmidis G, Langenberg K, Casini S, Elliott DA, Dinnyes A, Atsma DE, Mummery CL, Braam SR, Davis RP. Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research 2014;327:297-306. [DOI: 10.1016/j.yexcr.2014.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
30 Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016;5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
31 Gorospe G, Zhu R, Millrod MA, Zambidis ET, Tung L, Vidal R. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes. IEEE Trans Biomed Eng 2014;61:2389-95. [PMID: 25148658 DOI: 10.1109/TBME.2014.2311387] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
32 Piao Y, Hung SS, Lim SY, Wong RC, Ko MS. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med 2014;3:787-91. [PMID: 24904173 DOI: 10.5966/sctm.2013-0036] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 5.9] [Reference Citation Analysis]
33 Kubli DA, Sussman MA. Eat, breathe, ROS: controlling stem cell fate through metabolism. Expert Rev Cardiovasc Ther 2017;15:345-56. [PMID: 28406333 DOI: 10.1080/14779072.2017.1319278] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Suzuki K, Kimura T, Shinoda H, Bai G, Daniels MJ, Arai Y, Nakano M, Nagai T. Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat Commun 2016;7:13718. [PMID: 27966527 DOI: 10.1038/ncomms13718] [Cited by in Crossref: 106] [Cited by in F6Publishing: 76] [Article Influence: 21.2] [Reference Citation Analysis]
35 Ruvinov E, Sapir Y, Cohen S. Cardiac Tissue Engineering: Principles, Materials, and Applications. Synthesis Lectures on Tissue Engineering 2012;4:1-200. [DOI: 10.2200/s00437ed1v01y201207tis009] [Cited by in Crossref: 14] [Article Influence: 1.6] [Reference Citation Analysis]
36 Jara-Avaca M, Kempf H, Rückert M, Robles-Diaz D, Franke A, de la Roche J, Fischer M, Malan D, Sasse P, Solodenko W, Dräger G, Kirschning A, Martin U, Zweigerdt R. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports 2017;8:305-17. [PMID: 28089668 DOI: 10.1016/j.stemcr.2016.12.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
37 Herron TJ, Lee P, Jalife J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 2012;110:609-23. [PMID: 22343556 DOI: 10.1161/CIRCRESAHA.111.247494] [Cited by in Crossref: 184] [Cited by in F6Publishing: 79] [Article Influence: 20.4] [Reference Citation Analysis]
38 Duelen R, Gilbert G, Patel A, de Schaetzen N, De Waele L, Roderick L, Sipido KR, Verfaillie CM, Buyse GM, Thorrez L, Sampaolesi M. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int 2017;2017:4651238. [PMID: 28163723 DOI: 10.1155/2017/4651238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
39 Jenkins MJ, Farid SS. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnol J 2015;10:83-95. [PMID: 25524780 DOI: 10.1002/biot.201400348] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 8.9] [Reference Citation Analysis]
40 Hsiao C, Palecek SP. Microwell regulation of pluripotent stem cell self-renewal and differentiation. Bionanoscience 2012;2:266-76. [PMID: 23483802 DOI: 10.1007/s12668-012-0050-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
41 Engels MC, Rajarajan K, Feistritzer R, Sharma A, Nielsen UB, Schalij MJ, de Vries AA, Pijnappels DA, Wu SM. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells 2014;32:1493-502. [PMID: 24496962 DOI: 10.1002/stem.1660] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
42 Mehta A, Verma V, Nandihalli M, Ramachandra CJ, Sequiera GL, Sudibyo Y, Chung Y, Sun W, Shim W. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells. PLoS One 2014;9:e103485. [PMID: 25068310 DOI: 10.1371/journal.pone.0103485] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
43 Thompson SA, Burridge PW, Lipke EA, Shamblott M, Zambidis ET, Tung L. Engraftment of human embryonic stem cell derived cardiomyocytes improves conduction in an arrhythmogenic in vitro model. J Mol Cell Cardiol 2012;53:15-23. [PMID: 22713758 DOI: 10.1016/j.yjmcc.2012.01.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
44 He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater 2020;9:e2001175. [PMID: 33000909 DOI: 10.1002/adhm.202001175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
45 Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol. 2018;58:83-103. [PMID: 28992430 DOI: 10.1146/annurev-pharmtox-010617-053110] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
46 Zhao S, Xu Z, Wang H, Reese BE, Gushchina LV, Jiang M, Agarwal P, Xu J, Zhang M, Shen R, Liu Z, Weisleder N, He X. Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction. Nat Commun 2016;7:13306. [PMID: 27786170 DOI: 10.1038/ncomms13306] [Cited by in Crossref: 66] [Cited by in F6Publishing: 50] [Article Influence: 13.2] [Reference Citation Analysis]
47 Beckmann A, Schubert M, Hainz N, Haase A, Martin U, Tschernig T, Meier C. Ultrastructural demonstration of Cx43 gap junctions in induced pluripotent stem cells from human cord blood. Histochem Cell Biol 2016;146:529-37. [PMID: 27456332 DOI: 10.1007/s00418-016-1469-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
48 Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2013;31:829-837. [PMID: 23355363 DOI: 10.1002/stem.1331] [Cited by in Crossref: 222] [Cited by in F6Publishing: 188] [Article Influence: 31.7] [Reference Citation Analysis]
49 Jahnke HG, Steel D, Fleischer S, Seidel D, Kurz R, Vinz S, Dahlenborg K, Sartipy P, Robitzki AA. A novel 3D label-free monitoring system of hES-derived cardiomyocyte clusters: a step forward to in vitro cardiotoxicity testing. PLoS One 2013;8:e68971. [PMID: 23861955 DOI: 10.1371/journal.pone.0068971] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 2.9] [Reference Citation Analysis]
50 Yassa ME, Mansour IA, Sewelam NI, Hamza H, Gaafar T. The impact of growth factors on human induced pluripotent stem cells differentiation into cardiomyocytes. Life Sciences 2018;196:38-47. [DOI: 10.1016/j.lfs.2018.01.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
51 He X. Microscale Biomaterials with Bioinspired Complexity of Early Embryo Development and in the Ovary for Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2017;3:2692-701. [PMID: 29367949 DOI: 10.1021/acsbiomaterials.6b00540] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
52 Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res 2017;120:1487-500. [PMID: 28450366 DOI: 10.1161/CIRCRESAHA.117.310738] [Cited by in Crossref: 120] [Cited by in F6Publishing: 50] [Article Influence: 30.0] [Reference Citation Analysis]
53 Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A, Park TS, Zambidis ET, Meyer JS, Gamm DM, Yau KW, Canto-Soler MV. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047. [PMID: 24915161 DOI: 10.1038/ncomms5047] [Cited by in Crossref: 431] [Cited by in F6Publishing: 357] [Article Influence: 61.6] [Reference Citation Analysis]
54 Macarthur CC, Fontes A, Ravinder N, Kuninger D, Kaur J, Bailey M, Taliana A, Vemuri MC, Lieu PT. Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells Int 2012;2012:564612. [PMID: 22550511 DOI: 10.1155/2012/564612] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 5.2] [Reference Citation Analysis]
55 Jones AR, Edwards DH, Cummins MJ, Williams AJ, George CH. A Systemized Approach to Investigate Ca(2+) Synchronization in Clusters of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes. Front Cell Dev Biol 2015;3:89. [PMID: 26793710 DOI: 10.3389/fcell.2015.00089] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
56 Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen K, Xia Y, Florido MH, He W, Pan W, Prummer M, Warren CR, Jakob-Roetne R, Certa U, Jagasia R, Freskgård PO, Adatto I, Kling D, Huang P, Zon LI, Chaikof EL, Gerszten RE, Graf M, Iacone R, Cowan CA. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 2015;17:994-1003. [PMID: 26214132 DOI: 10.1038/ncb3205] [Cited by in Crossref: 284] [Cited by in F6Publishing: 234] [Article Influence: 47.3] [Reference Citation Analysis]
57 Jiang J, Han P, Zhang Q, Zhao J, Ma Y. Cardiac differentiation of human pluripotent stem cells. J Cell Mol Med 2012;16:1663-8. [PMID: 22248065 DOI: 10.1111/j.1582-4934.2012.01528.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
58 Feinberg AW. Engineered tissue grafts: opportunities and challenges in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med 2012;4:207-20. [PMID: 22012681 DOI: 10.1002/wsbm.164] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
59 Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 2014;:52010. [PMID: 25286293 DOI: 10.3791/52010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
60 Fynes K, Tostoes R, Ruban L, Weil B, Mason C, Veraitch FS. The differential effects of 2% oxygen preconditioning on the subsequent differentiation of mouse and human pluripotent stem cells. Stem Cells Dev 2014;23:1910-22. [PMID: 24734982 DOI: 10.1089/scd.2013.0504] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
61 Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther 2013;4:150. [PMID: 24476344 DOI: 10.1186/scrt380] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
62 Souidi M, Sleiman Y, Acimovic I, Pribyl J, Charrabi A, Baecker V, Scheuermann V, Pesl M, Jelinkova S, Skladal P, Dvorak P, Lacampagne A, Rotrekl V, Meli AC. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Int J Mol Sci 2021;22:E662. [PMID: 33440843 DOI: 10.3390/ijms22020662] [Reference Citation Analysis]
63 Lauschke K, Treschow AF, Rasmussen MA, Davidsen N, Holst B, Emnéus J, Taxvig C, Vinggaard AM. Creating a human-induced pluripotent stem cell-based NKX2.5 reporter gene assay for developmental toxicity testing. Arch Toxicol 2021;95:1659-70. [PMID: 33660062 DOI: 10.1007/s00204-021-03018-y] [Reference Citation Analysis]
64 Malecki M. Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies. J Stem Cell Res Ther 2013;3:138. [PMID: 23956947 DOI: 10.4172/2157-7633.1000138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
65 Silva TP, Sousa-Luís R, Fernandes TG, Bekman EP, Rodrigues CAV, Vaz SH, Moreira LM, Hashimura Y, Jung S, Lee B, Carmo-Fonseca M, Cabral JMS. Transcriptome profiling of human pluripotent stem cell-derived cerebellar organoids reveals faster commitment under dynamic conditions. Biotechnol Bioeng 2021;118:2781-803. [PMID: 33871054 DOI: 10.1002/bit.27797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Zhang J, Chou OH, Tse YL, Ng KM, Tse HF. Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies. Int J Mol Sci 2021;22:8132. [PMID: 34360897 DOI: 10.3390/ijms22158132] [Reference Citation Analysis]
67 Jabart E, Molho J, Sin K, Stansfield B, Kazmouz SG, Ventro D, Gardner K, Wu JC, Churko JM. Single-cell protein expression of hiPSC-derived cardiomyocytes using Single-Cell Westerns. J Mol Cell Cardiol 2020;149:115-22. [PMID: 33010256 DOI: 10.1016/j.yjmcc.2020.09.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Lowenthal J, Lipnick S, Rao M, Hull SC. Specimen collection for induced pluripotent stem cell research: harmonizing the approach to informed consent. Stem Cells Transl Med 2012;1:409-21. [PMID: 23197820 DOI: 10.5966/sctm.2012-0029] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
69 Jung G, Bernstein D. hiPSC Modeling of Inherited Cardiomyopathies. Curr Treat Options Cardiovasc Med 2014;16:320. [PMID: 24838688 DOI: 10.1007/s11936-014-0320-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
70 Rupert CE, Irofuala C, Coulombe KLK. Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques. PLoS One 2020;15:e0230001. [PMID: 32155214 DOI: 10.1371/journal.pone.0230001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
71 Silva TP, Bekman EP, Fernandes TG, Vaz SH, Rodrigues CAV, Diogo MM, Cabral JMS, Carmo-Fonseca M. Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-culture. Front Bioeng Biotechnol 2020;8:70. [PMID: 32117945 DOI: 10.3389/fbioe.2020.00070] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
72 Pesl M, Acimovic I, Pribyl J, Hezova R, Vilotic A, Fauconnier J, Vrbsky J, Kruzliak P, Skladal P, Kara T. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessels. 2014;29:834-846. [PMID: 24258387 DOI: 10.1007/s00380-013-0436-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
73 Pokushalov E, Romanov A, Steinberg JS. Stem Cell Therapy for Electrophysiological Disorders. Curr Cardiol Rep 2013;15. [DOI: 10.1007/s11886-013-0408-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
74 Kim WH, Jung DW, Williams DR. Making cardiomyocytes with your chemistry set: Small molecule-induced cardiogenesis in somatic cells. World J Cardiol 2015;7:125-33. [PMID: 25810812 DOI: 10.4330/wjc.v7.i3.125] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
75 Feric NT, Radisic M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016;96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Cited by in Crossref: 121] [Cited by in F6Publishing: 99] [Article Influence: 20.2] [Reference Citation Analysis]
76 Hotkar AJ, Balinsky W. Stem cells in the treatment of cardiovascular disease--an overview. Stem Cell Rev Rep 2012;8:494-502. [PMID: 21800038 DOI: 10.1007/s12015-011-9302-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
77 Ishida H, Saba R, Kokkinopoulos I, Hashimoto M, Yamaguchi O, Nowotschin S, Shiraishi M, Ruchaya P, Miller D, Harmer S, Poliandri A, Kogaki S, Sakata Y, Dunkel L, Tinker A, Hadjantonakis AK, Sawa Y, Sasaki H, Ozono K, Suzuki K, Yashiro K. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Rep. 2016;16:1026-1038. [PMID: 27396331 DOI: 10.1016/j.celrep.2016.06.050] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
78 Cashman TJ, Josowitz R, Gelb BD, Li RA, Dubois NC, Costa KD. Construction of Defined Human Engineered Cardiac Tissues to Study Mechanisms of Cardiac Cell Therapy. J Vis Exp 2016;:e53447. [PMID: 26967678 DOI: 10.3791/53447] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
79 Kinney MA, McDevitt TC. Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends Biotechnol 2013;31:78-84. [PMID: 23219200 DOI: 10.1016/j.tibtech.2012.11.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
80 Zhang J, Qin Y, Martinez M, Flores-Bellver M, Rodrigues M, Dinabandhu A, Cao X, Deshpande M, Qin Y, Aparicio-Domingo S, Rui Y, Tzeng SY, Salman S, Yuan J, Scott AW, Green JJ, Canto-Soler MV, Semenza GL, Montaner S, Sodhi A. HIF-1α and HIF-2α redundantly promote retinal neovascularization in patients with ischemic retinal disease. J Clin Invest 2021;131:139202. [PMID: 34128478 DOI: 10.1172/JCI139202] [Reference Citation Analysis]
81 Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, Reijo-Pera R, Feldman RA, Rassool F, Cooke J, Lutty G, Zambidis ET. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation. 2014;129:359-372. [PMID: 24163065 DOI: 10.1161/circulationaha.113.003000] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
82 Szepes M, Melchert A, Dahlmann J, Hegermann J, Werlein C, Jonigk D, Haverich A, Martin U, Olmer R, Gruh I. Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. Int J Mol Sci 2020;21:E8947. [PMID: 33255686 DOI: 10.3390/ijms21238947] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019;20:E4381. [PMID: 31489928 DOI: 10.3390/ijms20184381] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
84 Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 2012;18:910-9. [PMID: 22092279 DOI: 10.1089/ten.tea.2011.0341] [Cited by in Crossref: 261] [Cited by in F6Publishing: 221] [Article Influence: 29.0] [Reference Citation Analysis]
85 Burridge PW, Zambidis ET. Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol Biol 2013;997:149-61. [PMID: 23546754 DOI: 10.1007/978-1-62703-348-0_12] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
86 Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014;5:12. [PMID: 24444355 DOI: 10.1186/scrt401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
87 Völkner M, Pavlou M, Büning H, Michalakis S, Karl MO. Optimized Adeno-Associated Virus Vectors for Efficient Transduction of Human Retinal Organoids. Hum Gene Ther 2021;32:694-706. [PMID: 33752467 DOI: 10.1089/hum.2020.321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
88 Deshmukh RS, Kovács KA, Dinnyés A. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int 2012;2012:379569. [PMID: 22654918 DOI: 10.1155/2012/379569] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
89 Correia C, Serra M, Espinha N, Sousa M, Brito C, Burkert K, Zheng Y, Hescheler J, Carrondo MJ, Sarić T, Alves PM. Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev Rep 2014;10:786-801. [PMID: 25022569 DOI: 10.1007/s12015-014-9533-0] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
90 Brodarac A, Šarić T, Oberwallner B, Mahmoodzadeh S, Neef K, Albrecht J, Burkert K, Oliverio M, Nguemo F, Choi YH, Neiss WF, Morano I, Hescheler J, Stamm C. Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation. Stem Cell Res Ther 2015;6:83. [PMID: 25900017 DOI: 10.1186/s13287-015-0057-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
91 Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111:344-358. [PMID: 22821908 DOI: 10.1161/CIRCRESAHA.110.227512] [Cited by in Crossref: 438] [Cited by in F6Publishing: 234] [Article Influence: 48.7] [Reference Citation Analysis]
92 Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 2015;61:257-65. [PMID: 26005764 DOI: 10.1016/j.biomaterials.2015.05.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
93 Khan JM, Lyon AR, Harding SE. The case for induced pluripotent stem cell-derived cardiomyocytes in pharmacological screening. Br J Pharmacol 2013;169:304-17. [PMID: 22845396 DOI: 10.1111/j.1476-5381.2012.02118.x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 8.0] [Reference Citation Analysis]
94 Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 2012;21:1513-23. [PMID: 21933026 DOI: 10.1089/scd.2011.0254] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 6.0] [Reference Citation Analysis]
95 Dixon JE, Shah DA, Rogers C, Hall S, Weston N, Parmenter CD, McNally D, Denning C, Shakesheff KM. Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proc Natl Acad Sci USA. 2014;111:5580-5585. [PMID: 24706900 DOI: 10.1073/pnas.1319685111] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 7.6] [Reference Citation Analysis]
96 Addis RC, Epstein JA. Induced regeneration--the progress and promise of direct reprogramming for heart repair. Nat Med. 2013;19:829-836. [PMID: 23836233 DOI: 10.1038/nm.3225] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 8.9] [Reference Citation Analysis]
97 Dambrot C, Braam SR, Tertoolen LG, Birket M, Atsma DE, Mummery CL. Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. J Cell Mol Med 2014;18:1509-18. [PMID: 24981391 DOI: 10.1111/jcmm.12356] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 5.6] [Reference Citation Analysis]
98 Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018;50:323-35. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
99 Feric NT, Radisic M. Strategies and Challenges to Myocardial Replacement Therapy. Stem Cells Transl Med 2016;5:410-6. [PMID: 26933042 DOI: 10.5966/sctm.2015-0288] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
100 Pascut FC, Kalra S, George V, Welch N, Denning C, Notingher I. Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in-vitro by Raman spectroscopy. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:3517-24. [DOI: 10.1016/j.bbagen.2013.01.030] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 6.3] [Reference Citation Analysis]
101 Verma V, Purnamawati K, Manasi, Shim W. Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: A review. Cellular Signalling 2013;25:1096-107. [DOI: 10.1016/j.cellsig.2013.01.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
102 Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019;8:E1536. [PMID: 31795206 DOI: 10.3390/cells8121536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
103 Santoro R, Perrucci GL, Gowran A, Pompilio G. Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells Int 2019;2019:8203950. [PMID: 30906328 DOI: 10.1155/2019/8203950] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
104 Schaaf S, Shibamiya A, Mewe M, Eder A, Stöhr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 2011;6:e26397. [PMID: 22028871 DOI: 10.1371/journal.pone.0026397] [Cited by in Crossref: 247] [Cited by in F6Publishing: 205] [Article Influence: 24.7] [Reference Citation Analysis]
105 Kawaguchi N, Hayama E, Furutani Y, Nakanishi T. Prospective in vitro models of channelopathies and cardiomyopathies. Stem Cells Int 2012;2012:439219. [PMID: 22969812 DOI: 10.1155/2012/439219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
106 Matsa E, Denning C. In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes. J of Cardiovasc Trans Res 2012;5:581-92. [DOI: 10.1007/s12265-012-9376-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
107 Pecha S, Eschenhagen T, Reichenspurner H. Myocardial tissue engineering for cardiac repair. The Journal of Heart and Lung Transplantation 2016;35:294-8. [DOI: 10.1016/j.healun.2015.12.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
108 Guerzoni LPB, Tsukamoto Y, Gehlen DB, Rommel D, Haraszti T, Akashi M, De Laporte L. A Layer-by-Layer Single-Cell Coating Technique To Produce Injectable Beating Mini Heart Tissues via Microfluidics. Biomacromolecules 2019;20:3746-54. [PMID: 31433624 DOI: 10.1021/acs.biomac.9b00786] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
109 Myers FB, Silver JS, Zhuge Y, Beygui RE, Zarins CK, Lee LP, Abilez OJ. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning. Integr Biol (Camb) 2013;5:1495-506. [PMID: 24141327 DOI: 10.1039/c2ib20191g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
110 Lee P, Klos M, Bollensdorff C, Hou L, Ewart P, Kamp TJ, Zhang J, Bizy A, Guerrero-Serna G, Kohl P, Jalife J, Herron TJ. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ Res 2012;110:1556-63. [PMID: 22570367 DOI: 10.1161/CIRCRESAHA.111.262535] [Cited by in Crossref: 128] [Cited by in F6Publishing: 67] [Article Influence: 14.2] [Reference Citation Analysis]
111 Scheel O, Frech S, Amuzescu B, Eisfeld J, Lin KH, Knott T. Action potential characterization of human induced pluripotent stem cell-derived cardiomyocytes using automated patch-clamp technology. Assay Drug Dev Technol 2014;12:457-69. [PMID: 25353059 DOI: 10.1089/adt.2014.601] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
112 Wills LR, Rajagopalan P. Advances in Human Induced Pluripotent Stem Cell-Derived Hepatocytes for Use in Toxicity Testing. Ann Biomed Eng 2020;48:1045-57. [PMID: 31372857 DOI: 10.1007/s10439-019-02331-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
113 Mann SA, Heide J, Knott T, Airini R, Epureanu FB, Deftu AF, Deftu AT, Radu BM, Amuzescu B. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp. J Pharmacol Toxicol Methods 2019;100:106599. [PMID: 31228558 DOI: 10.1016/j.vascn.2019.106599] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
114 Biendarra-tiegs SM, Secreto FJ, Nelson TJ. Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. In: Turksen K, editor. Cell Biology and Translational Medicine, Volume 6. Cham: Springer International Publishing; 2020. pp. 1-29. [DOI: 10.1007/5584_2019_350] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
115 Schwanke K, Merkert S, Kempf H, Hartung S, Jara-Avaca M, Templin C, Göhring G, Haverich A, Martin U, Zweigerdt R. Fast and efficient multitransgenic modification of human pluripotent stem cells. Hum Gene Ther Methods 2014;25:136-53. [PMID: 24483184 DOI: 10.1089/hgtb.2012.248] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
116 Psaltis PJ, Spoon DB, Wong DT, Gulati R. An update on stem cell therapies for acute coronary syndrome. Curr Cardiol Rep 2014;16:526. [PMID: 25073868 DOI: 10.1007/s11886-014-0526-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
117 Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10:16-28. [PMID: 22226352 DOI: 10.1016/j.stem.2011.12.013] [Cited by in Crossref: 438] [Cited by in F6Publishing: 372] [Article Influence: 48.7] [Reference Citation Analysis]
118 Martin U. New Muscle for Old Hearts: Engineering Tissue from Pluripotent Stem Cells. Human Gene Therapy 2015;26:305-11. [DOI: 10.1089/hum.2015.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
119 Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020;165-166:60-76. [PMID: 31917972 DOI: 10.1016/j.addr.2019.12.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
120 Fair SR, Julian D, Hartlaub AM, Pusuluri ST, Malik G, Summerfied TL, Zhao G, Hester AB, Ackerman WE 4th, Hollingsworth EW, Ali M, McElroy CA, Buhimschi IA, Imitola J, Maitre NL, Bedrosian TA, Hester ME. Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development. Stem Cell Reports 2020;15:855-68. [PMID: 32976764 DOI: 10.1016/j.stemcr.2020.08.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 15.0] [Reference Citation Analysis]
121 Sison-young R, Kia R, Heslop J, Kelly L, Rowe C, Cross M, Kitteringham N, Hanley N, Park B, Goldring C. Human Pluripotent Stem Cells for Modeling Toxicity. Current Concepts in Drug Metabolism and Toxicology. Elsevier; 2012. pp. 207-56. [DOI: 10.1016/b978-0-12-398339-8.00006-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
122 Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016;96:1093-126. [PMID: 27335446 DOI: 10.1152/physrev.00036.2015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 55] [Article Influence: 17.3] [Reference Citation Analysis]
123 Bowler LA, Gavaghan DJ, Mirams GR, Whiteley JP. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology. Bull Math Biol 2019;81:7-38. [PMID: 30291590 DOI: 10.1007/s11538-018-0516-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
124 Lam PT, Gutierrez C, Del Rio-Tsonis K, Robinson ML. Generation of a Retina Reporter hiPSC Line to Label Progenitor, Ganglion, and Photoreceptor Cell Types. Transl Vis Sci Technol 2020;9:21. [PMID: 32714647 DOI: 10.1167/tvst.9.3.21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
125 Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C. Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays. 2013;35:281-298. [PMID: 22886688 DOI: 10.1002/bies.201200053] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 8.1] [Reference Citation Analysis]
126 Finklea FB, Tian Y, Kerscher P, Seeto WJ, Ellis ME, Lipke EA. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021;274:120818. [PMID: 34023620 DOI: 10.1016/j.biomaterials.2021.120818] [Reference Citation Analysis]
127 Li S, Chen G, Li RA. Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J Physiol. 2013;591:5279-5290. [PMID: 24018947 DOI: 10.1113/jphysiol.2013.256495] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
128 Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Chan HYS, Webb SE, Keung W, Chow H, Miller AL, Leung AY, Hajjar RJ, Li RA, Chan CW. A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 2014;23:1704-16. [PMID: 24564569 DOI: 10.1089/scd.2013.0509] [Cited by in Crossref: 79] [Cited by in F6Publishing: 69] [Article Influence: 11.3] [Reference Citation Analysis]
129 Park TS, Zimmerlin L, Evans-Moses R, Zambidis ET. Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. J Vis Exp 2018. [PMID: 29939183 DOI: 10.3791/57921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
130 Bizy A, Klos M. Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020;10:E1561. [PMID: 32887495 DOI: 10.3390/ani10091561] [Reference Citation Analysis]
131 Sala L, Bellin M, Mummery CL. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come? Br J Pharmacol 2017;174:3749-65. [PMID: 27641943 DOI: 10.1111/bph.13577] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 14.6] [Reference Citation Analysis]
132 Wang CY, Liu SY, Kuo FH, Lin HF, Liu CY, Yang YP, Tsai FT, Huang WC, Tarng YW, Lin HC, Lu KH, Yu WC, Yang MY. Using multiple-steps bioinformatic analysis to predict the potential microRNA targets by cardiogenic HoxA11. J Chin Med Assoc 2021;84:68-72. [PMID: 32773582 DOI: 10.1097/JCMA.0000000000000397] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Pryzhkova MV, Harris GM, Ma S, Jabbarzadeh E. Patterning Pluripotent Stem Cells at a Single Cell Level. J Biomater Tissue Eng 2013;3:461-71. [PMID: 30135745 DOI: 10.1166/jbt.2013.1106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
134 Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JM. Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochemical and Biophysical Research Communications 2018;499:611-7. [DOI: 10.1016/j.bbrc.2018.03.198] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
135 Tan Y, Han P, Gu Q, Chen G, Wang L, Ma R, Wu J, Feng C, Zhang Y, Wang L, Hu B, Li W, Hao J, Zhou Q. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. J Tissue Eng Regen Med 2018;12:153-63. [PMID: 27943600 DOI: 10.1002/term.2381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
136 Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, Kemp PJ, Staniforth A, Mellor I, Denning C. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J. 2014;35:1078-1087. [PMID: 23470493 DOI: 10.1093/eurheartj/eht067] [Cited by in Crossref: 82] [Cited by in F6Publishing: 65] [Article Influence: 10.3] [Reference Citation Analysis]
137 Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012;22:219-236. [PMID: 22143566 DOI: 10.1038/cr.2011.195] [Cited by in Crossref: 144] [Cited by in F6Publishing: 128] [Article Influence: 14.4] [Reference Citation Analysis]
138 Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2012;2:1448-1460. [PMID: 23103164 DOI: 10.1016/j.celrep.2012.09.015] [Cited by in Crossref: 182] [Cited by in F6Publishing: 141] [Article Influence: 20.2] [Reference Citation Analysis]
139 Kujala VJ, Pasqualini FS, Goss JA, Nawroth JC, Parker KK. Laminar ventricular myocardium on a microelectrode array-based chip. J Mater Chem B 2016;4:3534-43. [PMID: 32263387 DOI: 10.1039/c6tb00324a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
140 Magdy T, Burmeister BT, Burridge PW. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacol Ther 2016;168:113-25. [PMID: 27609196 DOI: 10.1016/j.pharmthera.2016.09.009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
141 Rajasingh S, Sigamani V, Gurusamy N, Rajasingh J. Efficient and Safe Method of Generating Induced Pluripotent Stem Cells from Human Skin Fibroblasts and Subsequent Differentiation into Functional Cardiomyocytes. Methods Mol Biol 2021. [PMID: 33774811 DOI: 10.1007/7651_2021_353] [Reference Citation Analysis]
142 Birenboim R, Markus A, Goldstein RS. Simple generation of neurons from human embryonic stem cells using agarose multiwell dishes. J Neurosci Methods 2013;214:9-14. [PMID: 23313848 DOI: 10.1016/j.jneumeth.2012.12.026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
143 Xu XQ, Sun W. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes. J Cell Biochem 2013;114:39-46. [PMID: 22903726 DOI: 10.1002/jcb.24359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
144 Schade D, Plowright AT. Medicinal Chemistry Approaches to Heart Regeneration. J Med Chem 2015;58:9451-79. [DOI: 10.1021/acs.jmedchem.5b00446] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
145 Mary G, Van de Walle A, Perez JE, Ukai T, Maekawa T, Luciani N, Wilhelm C. High‐Throughput Differentiation of Embryonic Stem Cells into Cardiomyocytes with a Microfabricated Magnetic Pattern and Cyclic Stimulation. Adv Funct Mater 2020;30:2002541. [DOI: 10.1002/adfm.202002541] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
146 Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2017;11:1658-74. [PMID: 26777594 DOI: 10.1002/term.2117] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
147 Efthymiou AG, Chen G, Rao M, Chen G, Boehm M. Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther 2014;14:1333-44. [PMID: 24881868 DOI: 10.1517/14712598.2014.922533] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
148 Burridge PW, Holmström A, Wu JC. Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Curr Protoc Hum Genet 2015;87:21.3.1-21.3.15. [PMID: 26439715 DOI: 10.1002/0471142905.hg2103s87] [Cited by in Crossref: 51] [Cited by in F6Publishing: 58] [Article Influence: 8.5] [Reference Citation Analysis]
149 Lieu DK, Turnbull IC, Costa KD, Li RA. Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. Drug Discov Today Dis Models 2012;9:e209-17. [PMID: 29422934 DOI: 10.1016/j.ddmod.2012.06.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
150 Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, Yang HT. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23:1119-1132. [PMID: 23896987 DOI: 10.1038/cr.2013.102] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 11.6] [Reference Citation Analysis]
151 Barile L, Altomare C, Zaza A. Induced pluripotent stem cells: progress towards a biomedical application. Expert Review of Cardiovascular Therapy 2014;9:1265-9. [DOI: 10.1586/erc.11.123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
152 Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019;20:E5760. [PMID: 31744081 DOI: 10.3390/ijms20225760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
153 Martins AM, Vunjak-Novakovic G, Reis RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 2014;10:177-90. [PMID: 24425421 DOI: 10.1007/s12015-013-9487-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 5.9] [Reference Citation Analysis]
154 Dixon JE, Osman G, Morris GE, Markides H, Rotherham M, Bayoussef Z, El Haj AJ, Denning C, Shakesheff KM. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proc Natl Acad Sci U S A 2016;113:E291-9. [PMID: 26733682 DOI: 10.1073/pnas.1518634113] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 13.0] [Reference Citation Analysis]
155 Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol 2013;169:247-68. [PMID: 22712727 DOI: 10.1111/j.1476-5381.2012.01965.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
156 Suhaeri M, Subbiah R, Van SY, Du P, Kim IG, Lee K, Park K. Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue Eng Part A 2015;21:1940-51. [PMID: 25836924 DOI: 10.1089/ten.TEA.2014.0591] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
157 Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech 2017;10:1039-59. [PMID: 28883014 DOI: 10.1242/dmm.030320] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 15.3] [Reference Citation Analysis]
158 Churko JM, Burridge PW, Wu JC. Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative Sendai virus in chemically defined conditions. Methods Mol Biol 2013;1036:81-8. [PMID: 23807788 DOI: 10.1007/978-1-62703-511-8_7] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
159 Tang Y, Liu L, Li J, Yu L, Wang L, Shi J, Chen Y. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale 2016;8:14530-40. [DOI: 10.1039/c6nr04545f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
160 FitzPatrick LM, Hawkins KE, Delhove JMKM, Fernandez E, Soldati C, Bullen LF, Nohturfft A, Waddington SN, Medina DL, Bolaños JP, McKay TR. NF-κB Activity Initiates Human ESC-Derived Neural Progenitor Cell Differentiation by Inducing a Metabolic Maturation Program. Stem Cell Reports 2018;10:1766-81. [PMID: 29681545 DOI: 10.1016/j.stemcr.2018.03.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
161 Trac D, Maxwell JT, Brown ME, Xu C, Davis ME. Aggregation of Child Cardiac Progenitor Cells Into Spheres Activates Notch Signaling and Improves Treatment of Right Ventricular Heart Failure. Circ Res 2019;124:526-38. [PMID: 30590978 DOI: 10.1161/CIRCRESAHA.118.313845] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
162 van den Heuvel NH, van Veen TA, Lim B, Jonsson MK. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. J Mol Cell Cardiol 2014;67:12-25. [PMID: 24370890 DOI: 10.1016/j.yjmcc.2013.12.011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
163 Liu W, Ren Z, Lu K, Song C, Cheung ECW, Zhou Z, Chen G. The Suppression of Medium Acidosis Improves the Maintenance and Differentiation of Human Pluripotent Stem Cells at High Density in Defined Cell Culture Medium. Int J Biol Sci. 2018;14:485-496. [PMID: 29805300 DOI: 10.7150/ijbs.24681] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
164 Mahairaki V, Ryu J, Peters A, Chang Q, Li T, Park TS, Burridge PW, Talbot CC, Asnaghi L, Martin LJ, Zambidis ET, Koliatsos VE. Induced pluripotent stem cells from familial Alzheimer's disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev. 2014;23:2996-3010. [PMID: 25027006 DOI: 10.1089/scd.2013.0511] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 9.5] [Reference Citation Analysis]
165 Guo C, Morris SA. Engineering cell identity: establishing new gene regulatory and chromatin landscapes. Curr Opin Genet Dev 2017;46:50-7. [PMID: 28667865 DOI: 10.1016/j.gde.2017.06.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
166 Moreau A, Boutjdir M, Chahine M. Induced pluripotent stem-cell-derived cardiomyocytes: cardiac applications, opportunities, and challenges. Can J Physiol Pharmacol 2017;95:1108-16. [DOI: 10.1139/cjpp-2016-0726] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
167 Zhang M, Schöler HR, Greber B. Rapid and efficient generation of neurons from human pluripotent stem cells in a multititre plate format. J Vis Exp 2013;:e4335. [PMID: 23486189 DOI: 10.3791/4335] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
168 Vestergaard ML, Grubb S, Koefoed K, Anderson-Jenkins Z, Grunnet-Lauridsen K, Calloe K, Clausen C, Christensen ST, Møllgård K, Andersen CY. Human Embryonic Stem Cell-Derived Cardiomyocytes Self-Arrange with Areas of Different Subtypes During Differentiation. Stem Cells Dev 2017;26:1566-77. [PMID: 28795648 DOI: 10.1089/scd.2017.0054] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
169 Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017;35:77-94. [PMID: 28007615 DOI: 10.1016/j.biotechadv.2016.12.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 57] [Article Influence: 15.0] [Reference Citation Analysis]
170 Kong CW, Chen S, Geng L, Shum AM, Sun D, Li RA. Increasing the physical size and nucleation status of human pluripotent stem cell-derived ventricular cardiomyocytes by cell fusion. Stem Cell Res 2017;19:76-81. [PMID: 28086122 DOI: 10.1016/j.scr.2017.01.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
171 Yanai A, Laver CR, Joe AW, Viringipurampeer IA, Wang X, Gregory-Evans CY, Gregory-Evans K. Differentiation of human embryonic stem cells using size-controlled embryoid bodies and negative cell selection in the production of photoreceptor precursor cells. Tissue Eng Part C Methods 2013;19:755-64. [PMID: 23363370 DOI: 10.1089/ten.TEC.2012.0524] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
172 Pólvora-Brandão D, Joaquim M, Godinho I, Aprile D, Álvaro AR, Onofre I, Raposo AC, Pereira de Almeida L, Duarte ST, da Rocha ST. Loss of hierarchical imprinting regulation at the Prader-Willi/Angelman syndrome locus in human iPSCs. Hum Mol Genet 2018;27:3999-4011. [PMID: 30102380 DOI: 10.1093/hmg/ddy274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
173 Husa A, Strobl MR, Strajeriu A, Wieser M, Strehl S, Fortschegger K. Generation of CD34 Fluorescent Reporter Human Induced Pluripotent Stem Cells for Monitoring Hematopoietic Differentiation. Stem Cells and Development 2018;27:1376-84. [DOI: 10.1089/scd.2018.0093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
174 Tadevosyan K, Iglesias-García O, Mazo MM, Prósper F, Raya A. Engineering and Assessing Cardiac Tissue Complexity. Int J Mol Sci 2021;22:1479. [PMID: 33540699 DOI: 10.3390/ijms22031479] [Reference Citation Analysis]
175 Park TS, Zimmerlin L, Evans-Moses R, Thomas J, Huo JS, Kanherkar R, He A, Ruzgar N, Grebe R, Bhutto I, Barbato M, Koldobskiy MA, Lutty G, Zambidis ET. Vascular progenitors generated from tankyrase inhibitor-regulated naïve diabetic human iPSC potentiate efficient revascularization of ischemic retina. Nat Commun 2020;11:1195. [PMID: 32139672 DOI: 10.1038/s41467-020-14764-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
176 Merkert S, Bednarski C, Göhring G, Cathomen T, Martin U. Generation of a gene-corrected isogenic control iPSC line from cystic fibrosis patient-specific iPSCs homozygous for p.Phe508del mutation mediated by TALENs and ssODN. Stem Cell Res 2017;23:95-7. [PMID: 28925369 DOI: 10.1016/j.scr.2017.07.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
177 Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Cited by in Crossref: 71] [Cited by in F6Publishing: 53] [Article Influence: 11.8] [Reference Citation Analysis]
178 Aguilar JS, Begum AN, Alvarez J, Zhang XB, Hong Y, Hao J. Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules. Biochem J 2015;469:235-41. [PMID: 26171831 DOI: 10.1042/BJ20150186] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
179 Atmanli A, Domian IJ. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends Cell Biol 2017;27:352-64. [PMID: 28007424 DOI: 10.1016/j.tcb.2016.11.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
180 Nagaria PK, Robert C, Park TS, Huo JS, Zambidis ET, Rassool FV. High-Fidelity Reprogrammed Human IPSCs Have a High Efficacy of DNA Repair and Resemble hESCs in Their MYC Transcriptional Signature. Stem Cells Int. 2016;2016:3826249. [PMID: 27688775 DOI: 10.1155/2016/3826249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
181 Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017;26:1141-61. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
182 Pawani H, Nagvenkar P, Pethe P, Bhartiya D. Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors. In Vitro Cell Dev Biol Anim 2013;49:82-93. [PMID: 23288411 DOI: 10.1007/s11626-012-9558-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
183 Darkins CL, Mandenius C. Design of large-scale manufacturing of induced pluripotent stem cell derived cardiomyocytes. Chemical Engineering Research and Design 2014;92:1142-52. [DOI: 10.1016/j.cherd.2013.08.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
184 Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA, Prosser R, Hirano M, Sauer MV, Egli D. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 2013;493:632-7. [PMID: 23254936 DOI: 10.1038/nature11800] [Cited by in Crossref: 172] [Cited by in F6Publishing: 136] [Article Influence: 19.1] [Reference Citation Analysis]
185 Dziedzicka D, Markouli C, Barbé L, Spits C, Sermon K, Geens M. A High Proliferation Rate is Critical for Reproducible and Standardized Embryoid Body Formation from Laminin-521-Based Human Pluripotent Stem Cell Cultures. Stem Cell Rev Rep 2016;12:721-30. [PMID: 27544201 DOI: 10.1007/s12015-016-9679-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
186 Kofron CM, Kim TY, Munarin F, Soepriatna AH, Kant RJ, Mende U, Choi BR, Coulombe KLK. A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021;11:10228. [PMID: 33986332 DOI: 10.1038/s41598-021-89478-9] [Reference Citation Analysis]
187 Noguchi R, Nakayama K, Itoh M, Kamohara K, Furukawa K, Oyama JI, Node K, Morita S. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant 2016;35:137-45. [PMID: 26433566 DOI: 10.1016/j.healun.2015.06.001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 9.7] [Reference Citation Analysis]
188 Nguyen PK, Lan F, Wang Y, Wu JC. Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res 2011;109:962-79. [PMID: 21960727 DOI: 10.1161/CIRCRESAHA.111.242909] [Cited by in Crossref: 77] [Cited by in F6Publishing: 43] [Article Influence: 7.7] [Reference Citation Analysis]
189 Zhao S, Agarwal P, Rao W, Huang H, Zhang R, Liu Z, Yu J, Weisleder N, Zhang W, He X. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr Biol (Camb) 2014;6:874-84. [PMID: 25036382 DOI: 10.1039/c4ib00100a] [Cited by in Crossref: 60] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
190 Quijada P, Sussman MA. Making it stick: chasing the optimal stem cells for cardiac regeneration. Expert Rev Cardiovasc Ther 2014;12:1275-88. [PMID: 25340282 DOI: 10.1586/14779072.2014.972941] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
191 Kadota S, Minami I, Morone N, Heuser JE, Agladze K, Nakatsuji N. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur Heart J 2013;34:1147-56. [PMID: 23201623 DOI: 10.1093/eurheartj/ehs418] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
192 Grancharova T, Gerbin KA, Rosenberg AB, Roco CM, Arakaki JE, DeLizo CM, Dinh SQ, Donovan-Maiye RM, Hirano M, Nelson AM, Tang J, Theriot JA, Yan C, Menon V, Palecek SP, Seelig G, Gunawardane RN. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep 2021;11:15845. [PMID: 34349150 DOI: 10.1038/s41598-021-94732-1] [Reference Citation Analysis]
193 Jiang B, Xiang Z, Ai Z, Wang H, Li Y, Ji W, Li T. Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials 2015;65:103-14. [DOI: 10.1016/j.biomaterials.2015.06.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
194 Kargaran PK, Mosqueira D, Kozicz T. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology. Front Cardiovasc Med 2020;7:604581. [PMID: 33585579 DOI: 10.3389/fcvm.2020.604581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
195 Singh A, Suri S, Lee T, Chilton JM, Cooke MT, Chen W, Fu J, Stice SL, Lu H, McDevitt TC, García AJ. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nat Methods 2013;10:438-44. [PMID: 23563795 DOI: 10.1038/nmeth.2437] [Cited by in Crossref: 88] [Cited by in F6Publishing: 64] [Article Influence: 11.0] [Reference Citation Analysis]
196 Merkert S, Wunderlich S, Bednarski C, Beier J, Haase A, Dreyer AK, Schwanke K, Meyer J, Göhring G, Cathomen T, Martin U. Efficient designer nuclease-based homologous recombination enables direct PCR screening for footprintless targeted human pluripotent stem cells. Stem Cell Reports 2014;2:107-18. [PMID: 24678453 DOI: 10.1016/j.stemcr.2013.12.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
197 Hsiao C, Tomai M, Glynn J, Palecek SP. Effects of 3D microwell culture on initial fate specification in human embryonic stem cells. AIChE J 2014;60:1225-35. [PMID: 25505348 DOI: 10.1002/aic.14351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
198 Wu CE, Yu CW, Chang KW, Chou WH, Lu CY, Ghelfi E, Wu FC, Jan PS, Huang MC, Allard P, Lin SP, Ho HN, Chen HF. Comparative global immune-related gene profiling of somatic cells, human pluripotent stem cells and their derivatives: implication for human lymphocyte proliferation. Exp Mol Med 2017;49:e376. [PMID: 28912571 DOI: 10.1038/emm.2017.134] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
199 Kolaja K. Stem cells and stem cell-derived tissues and their use in safety assessment. J Biol Chem. 2014;289:4555-4561. [PMID: 24362027 DOI: 10.1074/jbc.r113.481028] [Cited by in Crossref: 24] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
200 Kong CW, Geng L, Li RA. High-Content Electrophysiological Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes (hPSC-CMs). Methods Mol Biol 2018;1722:185-94. [PMID: 29264806 DOI: 10.1007/978-1-4939-7553-2_12] [Reference Citation Analysis]
201 Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisén J, Giacca M, Hare JM, Houser S, Lee RT, Marbán E, Martin JF, Molkentin JD, Murry CE, Riley PR, Ruiz-Lozano P, Sadek HA, Sussman MA, Hill JA. Cardiomyocyte Regeneration: A Consensus Statement. Circulation 2017;136:680-6. [PMID: 28684531 DOI: 10.1161/CIRCULATIONAHA.117.029343] [Cited by in Crossref: 248] [Cited by in F6Publishing: 141] [Article Influence: 62.0] [Reference Citation Analysis]
202 Redig JK, Adler E. Doing the dirty work: progress in the search for a reliable protocol for cardiomyogenesis. Stem Cell Res Ther 2011;2:35. [PMID: 21861857 DOI: 10.1186/scrt76] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
203 Martin U. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Front Med (Lausanne). 2017;4:229. [PMID: 29312943 DOI: 10.3389/fmed.2017.00229] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 10.5] [Reference Citation Analysis]
204 Di Baldassarre A, Cimetta E, Bollini S, Gaggi G, Ghinassi B. Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells. 2018;7. [PMID: 29799480 DOI: 10.3390/cells7060048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
205 Miranda CC, Fernandes TG, Diogo MM, Cabral JMS. Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018;5:E49. [PMID: 29933623 DOI: 10.3390/bioengineering5030049] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
206 Oh Y, Wei H, Ma D, Sun X, Liew R. Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart 2012;98:443-9. [PMID: 22285968 DOI: 10.1136/heartjnl-2011-301317] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
207 Milliron HY, Weiland MJ, Kort EJ, Jovinge S. Isolation of Cardiomyocytes Undergoing Mitosis With Complete Cytokinesis. Circ Res 2019;125:1070-86. [PMID: 31648614 DOI: 10.1161/CIRCRESAHA.119.314908] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
208 Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015;10:77-90. [PMID: 26052226 DOI: 10.4137/BMI.S20313] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
209 Sa S, Wong L, McCloskey KE. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access 2014;3:150-61. [PMID: 25126479 DOI: 10.1089/biores.2014.0018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
210 Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, Cheng T, Li Y, Lo CW, Yang L. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res 2012;95:327-35. [PMID: 22673369 DOI: 10.1093/cvr/cvs185] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
211 Eschenhagen T. The Beat Goes On: Human Heart Muscle From Pluripotent Stem Cells. Circ Res 2011;109:2-4. [DOI: 10.1161/circresaha.111.248039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
212 Zhang M, Schulte JS, Heinick A, Piccini I, Rao J, Quaranta R, Zeuschner D, Malan D, Kim KP, Röpke A, Sasse P, Araúzo-Bravo M, Seebohm G, Schöler H, Fabritz L, Kirchhof P, Müller FU, Greber B. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells 2015;33:1456-69. [PMID: 25639979 DOI: 10.1002/stem.1964] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 11.4] [Reference Citation Analysis]
213 Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res. 2014;13:202-213. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 42] [Article Influence: 8.3] [Reference Citation Analysis]
214 Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018;9:201. [PMID: 30053890 DOI: 10.1186/s13287-018-0947-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
215 Ting S, Liew SJ, Japson F, Shang F, Chong WK, Reuveny S, Tham JY, Li X, Oh S. Time‐resolved video analysis and management system for monitoring cardiomyocyte differentiation processes and toxicology assays. Biotechnology Journal 2014;9:675-83. [DOI: 10.1002/biot.201300262] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
216 Miranda CC, Barata T, Vaz SH, Ferreira C, Quintas A, Bekman EP. hiPSC-Based Model of Prenatal Exposure to Cannabinoids: Effect on Neuronal Differentiation. Front Mol Neurosci 2020;13:119. [PMID: 32733202 DOI: 10.3389/fnmol.2020.00119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
217 Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
218 Myers FB, Zarins CK, Abilez OJ, Lee LP. Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters. Lab Chip 2013;13:220-8. [PMID: 23207961 DOI: 10.1039/c2lc40905d] [Cited by in Crossref: 27] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
219 Koike H, Kubota K, Sekine K, Takebe T, Ouchi R, Zheng YW, Ueno Y, Tanigawa N, Taniguchi H. Establishment of automated culture system for murine induced pluripotent stem cells. BMC Biotechnol 2012;12:81. [PMID: 23127273 DOI: 10.1186/1472-6750-12-81] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
220 Schmeckpeper J, Verma A, Yin L, Beigi F, Zhang L, Payne A, Zhang Z, Pratt RE, Dzau VJ, Mirotsou M. Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 2015;85:215-25. [PMID: 26071893 DOI: 10.1016/j.yjmcc.2015.06.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
221 Erdmann G, Volz C, Boutros M. Systematic approaches to dissect biological processes in stem cells by image-based screening. Biotechnology Journal 2012;7:768-78. [DOI: 10.1002/biot.201200117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
222 Geng L, Kong CW, Wong AOT, Shum AM, Chow MZY, Che H, Zhang C, Yau KL, Chan CW, Keung W, Li RA. Probing flecainide block of INa using human pluripotent stem cell-derived ventricular cardiomyocytes adapted to automated patch-clamping and 2D monolayers. Toxicol Lett. 2018;294:61-72. [PMID: 29758359 DOI: 10.1016/j.toxlet.2018.05.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
223 Sirabella D, Cimetta E, Vunjak-Novakovic G. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells. Exp Biol Med (Maywood) 2015;240:1008-18. [PMID: 26069271 DOI: 10.1177/1535370215589910] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
224 Jafarzadeh M, Mohammad Soltani B, Ekhteraei Tousi S, Behmanesh M. Hsa-miR-497 as a new regulator in TGFβ signaling pathway and cardiac differentiation process. Gene 2018;675:150-6. [DOI: 10.1016/j.gene.2018.06.098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
225 Miller DC, Harmer SC, Poliandri A, Nobles M, Edwards EC, Ware JS, Sharp TV, McKay TR, Dunkel L, Lambiase PD, Tinker A. Ajmaline blocks INa and IKr without eliciting differences between Brugada syndrome patient and control human pluripotent stem cell-derived cardiac clusters. Stem Cell Res. 2017;25:233-244. [PMID: 29172153 DOI: 10.1016/j.scr.2017.11.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
226 Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair. Biomed Res Int. 2013;2013:547902. [PMID: 23509740 DOI: 10.1155/2013/547902] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
227 Du DT, Hellen N, Kane C, Terracciano CM. Action potential morphology of human induced pluripotent stem cell-derived cardiomyocytes does not predict cardiac chamber specificity and is dependent on cell density. Biophys J 2015;108:1-4. [PMID: 25564842 DOI: 10.1016/j.bpj.2014.11.008] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 10.2] [Reference Citation Analysis]
228 Kumar A, Cheng T, Song W, Cheuk B, Yang E, Yang L, Xie Y, Du Y. Two-step induction of trabecular meshwork cells from induced pluripotent stem cells for glaucoma. Biochem Biophys Res Commun 2020;529:411-7. [PMID: 32703444 DOI: 10.1016/j.bbrc.2020.05.225] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
229 Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2015;49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 9.2] [Reference Citation Analysis]
230 Wang Z, Huang J. Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines. Appl Biochem Biotechnol 2019;189:396-410. [PMID: 31025171 DOI: 10.1007/s12010-019-03012-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
231 Matsa E, Sallam K, Wu JC. Cardiac stem cell biology: glimpse of the past, present, and future. Circ Res 2014;114:21-7. [PMID: 24385505 DOI: 10.1161/CIRCRESAHA.113.302895] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
232 Dell'Era P, Benzoni P, Crescini E, Valle M, Xia E, Consiglio A, Memo M. Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes. World J Stem Cells 2015;7:329-42. [PMID: 25815118 DOI: 10.4252/wjsc.v7.i2.329] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
233 Rajamohan D, Kalra S, Duc Hoang M, George V, Staniforth A, Russell H, Yang X, Denning C. Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2016;25:439-52. [PMID: 26906236 DOI: 10.1089/scd.2015.0253] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
234 Ge X, Wang IN, Toma I, Sebastiano V, Liu J, Butte MJ, Reijo Pera RA, Yang PC. Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev 2012;21:2798-808. [PMID: 22530853 DOI: 10.1089/scd.2011.0435] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
235 Qi SD, Smith PD, Choong PF. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ J Surg. 2014;84:E1-11. [PMID: 23035845 DOI: 10.1111/j.1445-2197.2012.06282.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
236 Wang IN, Wang X, Ge X, Anderson J, Ho M, Ashley E, Liu J, Butte MJ, Yazawa M, Dolmetsch RE, Quertermous T, Yang PC. Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PLoS One 2012;7:e38328. [PMID: 22675543 DOI: 10.1371/journal.pone.0038328] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
237 Neely MD, Litt MJ, Tidball AM, Li GG, Aboud AA, Hopkins CR, Chamberlin R, Hong CC, Ess KC, Bowman AB. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci 2012;3:482-91. [PMID: 22860217 DOI: 10.1021/cn300029t] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 7.2] [Reference Citation Analysis]
238 Lei IL, Bu L, Wang Z. Derivation of cardiac progenitor cells from embryonic stem cells. J Vis Exp 2015;:52047. [PMID: 25650840 DOI: 10.3791/52047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
239 Bell WR, Meeker AK, Rizzo A, Rajpara S, Rosenthal IM, Flores Bellver M, Aparicio Domingo S, Zhong X, Barber JR, Joshu CE, Canto-Soler MV, Eberhart CG, Heaphy CM. A unique telomere DNA expansion phenotype in human retinal rod photoreceptors associated with aging and disease. Brain Pathol 2019;29:45-52. [PMID: 29668072 DOI: 10.1111/bpa.12618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
240 Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. Prog Biophys Mol Biol. 2012;110:178-195. [PMID: 22958937 DOI: 10.1016/j.pbiomolbio.2012.07.012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
241 Acimovic I, Vilotic A, Pesl M, Lacampagne A, Dvorak P, Rotrekl V, Meli AC. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomed Res Int 2014;2014:512831. [PMID: 24800237 DOI: 10.1155/2014/512831] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 5.1] [Reference Citation Analysis]
242 Prajapati C, Ojala M, Lappi H, Aalto-Setälä K, Pekkanen-Mattila M. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods. Stem Cell Res 2021;51:102176. [PMID: 33485184 DOI: 10.1016/j.scr.2021.102176] [Reference Citation Analysis]
243 Szebényi K, Péntek A, Erdei Z, Várady G, Orbán TI, Sarkadi B, Apáti Á. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression. Tissue Eng Part C Methods 2015;21:35-45. [PMID: 24734786 DOI: 10.1089/ten.TEC.2013.0646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
244 Filippo Buono M, von Boehmer L, Strang J, Hoerstrup SP, Emmert MY, Nugraha B. Human Cardiac Organoids for Modeling Genetic Cardiomyopathy. Cells 2020;9:E1733. [PMID: 32698471 DOI: 10.3390/cells9071733] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
245 Liu Z, Zhou J, Wang H, Zhao M, Wang C. Current status of induced pluripotent stem cells in cardiac tissue regeneration and engineering. Regen Med Res 2013;1:6. [PMID: 25984325 DOI: 10.1186/2050-490X-1-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
246 Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012;5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
247 Hazeltine LB, Badur MG, Lian X, Das A, Han W, Palecek SP. Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes. Acta Biomater. 2014;10:604-612. [PMID: 24200714 DOI: 10.1016/j.actbio.2013.10.033] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
248 Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015;24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
249 Kawaguchi N, Nakanishi T. Cardiomyocyte regeneration. Cells 2013;2:67-82. [PMID: 24709645 DOI: 10.3390/cells2010067] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
250 Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T. Creation of human cardiac cell sheets using pluripotent stem cells. Biochemical and Biophysical Research Communications 2012;425:321-7. [DOI: 10.1016/j.bbrc.2012.07.089] [Cited by in Crossref: 113] [Cited by in F6Publishing: 82] [Article Influence: 12.6] [Reference Citation Analysis]
251 Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020;21:E507. [PMID: 31941149 DOI: 10.3390/ijms21020507] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
252 Dunn DA, Hodge AJ, Lipke EA. Biomimetic materials design for cardiac tissue regeneration. WIREs Nanomed Nanobiotechnol 2014;6:15-39. [DOI: 10.1002/wnan.1241] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]