BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M, Cashman J, Mercola M. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res. 2011;109:360-364. [PMID: 21737789 DOI: 10.1161/circresaha.111.249540] [Cited by in Crossref: 179] [Cited by in F6Publishing: 86] [Article Influence: 17.9] [Reference Citation Analysis]
Number Citing Articles
1 Del Álamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R, Mercola M. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta 2016;1863:1717-27. [PMID: 26952934 DOI: 10.1016/j.bbamcr.2016.03.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
2 Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2013;169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
3 Cai W, Albini S, Wei K, Willems E, Guzzo RM, Tsuda M, Giordani L, Spiering S, Kurian L, Yeo GW, Puri PL, Mercola M. Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes Dev 2013;27:2332-44. [PMID: 24186978 DOI: 10.1101/gad.225144.113] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
4 Jridi I, Canté-Barrett K, Pike-Overzet K, Staal FJT. Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Front Cell Dev Biol 2020;8:615131. [PMID: 33614624 DOI: 10.3389/fcell.2020.615131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Baker AH, van Rooij E. miRNA overexpression induces cardiomyocyte proliferation in vivo. Mol Ther 2013;21:497-8. [PMID: 23449102 DOI: 10.1038/mt.2013.20] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
6 Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. Tissue Eng Part B Rev 2015;21:377-92. [PMID: 25813860 DOI: 10.1089/ten.TEB.2014.0662] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
7 Sirabella D, Cimetta E, Vunjak-Novakovic G. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells. Exp Biol Med (Maywood) 2015;240:1008-18. [PMID: 26069271 DOI: 10.1177/1535370215589910] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
8 Doyle MJ, Magli A, Estharabadi N, Amundsen D, Mills LJ, Martin CM. Sox7 Regulates Lineage Decisions in Cardiovascular Progenitor Cells. Stem Cells Dev 2019;28:1089-103. [PMID: 31154937 DOI: 10.1089/scd.2019.0040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 2015;61:257-65. [PMID: 26005764 DOI: 10.1016/j.biomaterials.2015.05.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
10 Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, Letang V, Cervello P, Itier JM, Pruniaux MP, Hulot JS. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. Int J Mol Sci. 2017;18. [PMID: 28587156 DOI: 10.3390/ijms18061173] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
11 Jara-Avaca M, Kempf H, Rückert M, Robles-Diaz D, Franke A, de la Roche J, Fischer M, Malan D, Sasse P, Solodenko W, Dräger G, Kirschning A, Martin U, Zweigerdt R. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports 2017;8:305-17. [PMID: 28089668 DOI: 10.1016/j.stemcr.2016.12.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
12 Spiering S, Davidovics H, Bushway PJ, Mercola M, Willems E. High content screening for modulators of cardiac differentiation in human pluripotent stem cells. Methods Mol Biol 2015;1263:43-61. [PMID: 25618335 DOI: 10.1007/978-1-4939-2269-7_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Guo Y, Dorn T, Kühl SJ, Linnemann A, Rothe M, Pfister AS, Vainio S, Laugwitz KL, Moretti A, Kühl M. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. Dev Biol 2019;449:1-13. [PMID: 30797757 DOI: 10.1016/j.ydbio.2019.02.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair. Biomed Res Int. 2013;2013:547902. [PMID: 23509740 DOI: 10.1155/2013/547902] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
15 Zbinden A, Layland SL, Urbanczyk M, Carvajal Berrio DA, Marzi J, Zauner M, Hammerschmidt A, Brauchle EM, Sudrow K, Fink S, Templin M, Liebscher S, Klein G, Deb A, Duffy GP, Crooks GM, Eble JA, Mikkola HKA, Nsair A, Seifert M, Schenke-Layland K. Nidogen-1 Mitigates Ischemia and Promotes Tissue Survival and Regeneration. Adv Sci (Weinh) 2021;8:2002500. [PMID: 33643791 DOI: 10.1002/advs.202002500] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2015;49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
17 Okolotowicz KJ, Bushway P, Lanier M, Gilley C, Mercola M, Cashman JR. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells. Bioorg Med Chem 2015;23:5282-92. [PMID: 26278027 DOI: 10.1016/j.bmc.2015.07.073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
18 Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111:344-358. [PMID: 22821908 DOI: 10.1161/CIRCRESAHA.110.227512] [Cited by in Crossref: 438] [Cited by in F6Publishing: 235] [Article Influence: 48.7] [Reference Citation Analysis]
19 Ye S, Li P, Tong C, Ying QL. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 2013;32:2548-60. [PMID: 23942238 DOI: 10.1038/emboj.2013.175] [Cited by in Crossref: 134] [Cited by in F6Publishing: 115] [Article Influence: 16.8] [Reference Citation Analysis]
20 Gao Q, Guo M, Jiang X, Hu X, Wang Y, Fan Y. A cocktail method for promoting cardiomyocyte differentiation from bone marrow-derived mesenchymal stem cells. Stem Cells Int 2014;2014:162024. [PMID: 25101130 DOI: 10.1155/2014/162024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
21 Buikema JW, Mady AS, Mittal NV, Atmanli A, Caron L, Doevendans PA, Sluijter JP, Domian IJ. Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development 2013;140:4165-76. [PMID: 24026118 DOI: 10.1242/dev.099325] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
22 Bouveret R, Waardenberg AJ, Schonrock N, Ramialison M, Doan T, de Jong D, Bondue A, Kaur G, Mohamed S, Fonoudi H, Chen CM, Wouters MA, Bhattacharya S, Plachta N, Dunwoodie SL, Chapman G, Blanpain C, Harvey RP. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. Elife 2015;4. [PMID: 26146939 DOI: 10.7554/eLife.06942] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
23 Rapti K, Stillitano F, Karakikes I, Nonnenmacher M, Weber T, Hulot JS, Hajjar RJ. Effectiveness of gene delivery systems for pluripotent and differentiated cells. Mol Ther Methods Clin Dev 2015;2:14067. [PMID: 26052535 DOI: 10.1038/mtm.2014.67] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
24 Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10:16-28. [PMID: 22226352 DOI: 10.1016/j.stem.2011.12.013] [Cited by in Crossref: 438] [Cited by in F6Publishing: 374] [Article Influence: 48.7] [Reference Citation Analysis]
25 Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marbán E, Cho HC. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2015;4:129-42. [PMID: 25533636 DOI: 10.1016/j.stemcr.2014.11.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 46] [Article Influence: 9.7] [Reference Citation Analysis]
26 Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells†. Biol Reprod 2021;105:52-63. [PMID: 33899086 DOI: 10.1093/biolre/ioab075] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Josowitz R, Lu J, Falce C, D'Souza SL, Wu M, Cohen N, Dubois NC, Zhao Y, Sobie EA, Fishman GI, Gelb BD. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PLoS One 2014;9:e101316. [PMID: 25010565 DOI: 10.1371/journal.pone.0101316] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
28 Mercola M, Colas A, Willems E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 2013;112:534-48. [PMID: 23371902 DOI: 10.1161/CIRCRESAHA.111.250266] [Cited by in Crossref: 84] [Cited by in F6Publishing: 46] [Article Influence: 10.5] [Reference Citation Analysis]
29 Liu Y, Chen L, Diaz AD, Benham A, Xu X, Wijaya CS, Fa'ak F, Luo W, Soibam B, Azares A, Yu W, Lyu Q, Stewart MD, Gunaratne P, Cooney A, McConnell BK, Schwartz RJ. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Sci Rep. 2016;6:31457. [PMID: 27538477 DOI: 10.1038/srep31457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
30 Ting S, Lecina M, Chan YC, Tse HF, Reuveny S, Oh SK. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells. World J Stem Cells 2013;5:86-97. [PMID: 23904910 DOI: 10.4252/wjsc.v5.i3.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
31 Notbohm J, Napiwocki BN, deLange WJ, Stempien A, Saraswathibhatla A, Craven RJ, Salick MR, Ralphe JC, Crone WC. Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes. Exp Mech 2019;59:1235-48. [PMID: 31680699 DOI: 10.1007/s11340-019-00473-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, Bernstein I, Zheng Y, Murry CE. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 2017;12:15-31. [PMID: 27906170 DOI: 10.1038/nprot.2016.153] [Cited by in Crossref: 92] [Cited by in F6Publishing: 72] [Article Influence: 18.4] [Reference Citation Analysis]
33 Drowley L, McPheat J, Nordqvist A, Peel S, Karlsson U, Martinsson S, Müllers E, Dellsén A, Knight S, Barrett I, Sánchez J, Magnusson B, Greber B, Wang QD, Plowright AT. Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Transl Med 2020;9:47-60. [PMID: 31508905 DOI: 10.1002/sctm.19-0069] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
34 Ifkovits JL, Addis RC, Epstein JA, Gearhart JD. Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS One. 2014;9:e89678. [PMID: 24586958 DOI: 10.1371/journal.pone.0089678] [Cited by in Crossref: 123] [Cited by in F6Publishing: 103] [Article Influence: 17.6] [Reference Citation Analysis]
35 Schade D, Lanier M, Willems E, Okolotowicz K, Bushway P, Wahlquist C, Gilley C, Mercola M, Cashman JR. Synthesis and SAR of b-annulated 1,4-dihydropyridines define cardiomyogenic compounds as novel inhibitors of TGFβ signaling. J Med Chem 2012;55:9946-57. [PMID: 23130626 DOI: 10.1021/jm301144g] [Cited by in Crossref: 47] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
36 Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 2014;:52010. [PMID: 25286293 DOI: 10.3791/52010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
37 Reichman DE, Park L, Man L, Redmond D, Chao K, Harvey RP, Taketo MM, Rosenwaks Z, James D. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development 2018;145:dev159905. [PMID: 29217753 DOI: 10.1242/dev.159905] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
38 Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. Adv Ther (Weinh) 2020;3:1900182. [PMID: 33665356 DOI: 10.1002/adtp.201900182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
39 Vandana JJ, Lacko LA, Chen S. Phenotypic technologies in stem cell biology. Cell Chem Biol 2021;28:257-70. [PMID: 33651977 DOI: 10.1016/j.chembiol.2021.02.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Li XH, Li Q, Jiang L, Deng C, Liu Z, Fu Y, Zhang M, Tan H, Feng Y, Shan Z, Wang J, Yu XY. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction. Stem Cells Transl Med 2015;4:1415-24. [PMID: 26564862 DOI: 10.5966/sctm.2015-0136] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
41 Lin Y, Linask KL, Mallon B, Johnson K, Klein M, Beers J, Xie W, Du Y, Liu C, Lai Y, Zou J, Haigney M, Yang H, Rao M, Chen G. Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med 2017;6:527-38. [PMID: 28191759 DOI: 10.5966/sctm.2015-0428] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
42 Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Roa Lara A, Kensah G, Gruh I, Haverich A, Martin U, Zweigerdt R. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 2014;3:1132-46. [PMID: 25454631 DOI: 10.1016/j.stemcr.2014.09.017] [Cited by in Crossref: 148] [Cited by in F6Publishing: 117] [Article Influence: 21.1] [Reference Citation Analysis]
43 Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017;74:3711-39. [PMID: 28573431 DOI: 10.1007/s00018-017-2546-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
44 Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021;9:658088. [PMID: 34055788 DOI: 10.3389/fcell.2021.658088] [Reference Citation Analysis]
45 Kinney MA, Sargent CY, McDevitt TC. Temporal modulation of β-catenin signaling by multicellular aggregation kinetics impacts embryonic stem cell cardiomyogenesis. Stem Cells Dev 2013;22:2665-77. [PMID: 23767804 DOI: 10.1089/scd.2013.0007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
46 Lieu DK, Turnbull IC, Costa KD, Li RA. Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. Drug Discov Today Dis Models 2012;9:e209-17. [PMID: 29422934 DOI: 10.1016/j.ddmod.2012.06.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
47 Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019;20:E5760. [PMID: 31744081 DOI: 10.3390/ijms20225760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
48 Yao J, Wu X, Qiao X, Zhang D, Zhang L, Ma JA, Cai X, Boström KI, Yao Y. Shifting osteogenesis in vascular calcification. JCI Insight 2021;6:143023. [PMID: 33848269 DOI: 10.1172/jci.insight.143023] [Reference Citation Analysis]
49 Drowley L, Koonce C, Peel S, Jonebring A, Plowright AT, Kattman SJ, Andersson H, Anson B, Swanson BJ, Wang QD, Brolen G. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation. Stem Cells Transl Med 2016;5:164-74. [PMID: 26683871 DOI: 10.5966/sctm.2015-0114] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
50 Poudel B, Bilbao D, Sarathchandra P, Germack R, Rosenthal N, Santini MP. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea. Biochem Biophys Res Commun 2011;416:293-9. [PMID: 22100652 DOI: 10.1016/j.bbrc.2011.11.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
51 Lanier M, Schade D, Willems E, Tsuda M, Spiering S, Kalisiak J, Mercola M, Cashman JR. Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: a structure-activity relationship study based on inhibitors for the Wnt response. J Med Chem 2012;55:697-708. [PMID: 22191557 DOI: 10.1021/jm2010223] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
52 Seo HH, Lee CY, Lee J, Lim S, Choi E, Park JC, Lee S, Hwang KC. The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells. Stem Cell Res Ther 2016;7:90. [PMID: 27405982 DOI: 10.1186/s13287-016-0348-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
53 Kumar N, Richter J, Cutts J, Bush KT, Trujillo C, Nigam SK, Gaasterland T, Brafman D, Willert K. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. Elife 2015;4:e08413. [PMID: 26554899 DOI: 10.7554/eLife.08413] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
54 Chen Y, Zeng D, Ding L, Li XL, Liu XT, Li WJ, Wei T, Yan S, Xie JH, Wei L, Zheng QS. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. BMC Cell Biol 2015;16:22. [PMID: 26335746 DOI: 10.1186/s12860-015-0067-3] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
55 Arshi A, Nakashima Y, Nakano H, Eaimkhong S, Evseenko D, Reed J, Stieg AZ, Gimzewski JK, Nakano A. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Sci Technol Adv Mater 2013;14:025003. [PMID: 24311969 DOI: 10.1088/1468-6996/14/2/025003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 9.6] [Reference Citation Analysis]
56 Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M, Tabei R, Ohno R, Fujita C, Haruna T, Yuasa S, Sano M, Fujita J, Fukuda K. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med. 2014;3:1473-1483. [PMID: 25355733 DOI: 10.5966/sctm.2014-0072] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 6.7] [Reference Citation Analysis]
57 Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development. Stem Cell Reports 2016;7:764-76. [PMID: 27641648 DOI: 10.1016/j.stemcr.2016.08.008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 9.2] [Reference Citation Analysis]
58 Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014;5:12. [PMID: 24444355 DOI: 10.1186/scrt401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
59 Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton's jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther. 2017;8:185. [PMID: 28807014 DOI: 10.1186/s13287-017-0638-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
60 Kim WH, Jung DW, Williams DR. Making cardiomyocytes with your chemistry set: Small molecule-induced cardiogenesis in somatic cells. World J Cardiol 2015;7:125-33. [PMID: 25810812 DOI: 10.4330/wjc.v7.i3.125] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
61 Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, Eisenberg LM. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cells Dev 2013;22:654-67. [PMID: 22994322 DOI: 10.1089/scd.2012.0181] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
62 Ding M, Andersson H, Martinsson S, Sabirsh A, Jonebring A, Wang QD, Plowright AT, Drowley L. Aligned nanofiber scaffolds improve functionality of cardiomyocytes differentiated from human induced pluripotent stem cell-derived cardiac progenitor cells. Sci Rep 2020;10:13575. [PMID: 32782331 DOI: 10.1038/s41598-020-70547-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
63 Gay A, Towler DA. Wnt signaling in cardiovascular disease: opportunities and challenges. Curr Opin Lipidol 2017;28:387-96. [PMID: 28723729 DOI: 10.1097/MOL.0000000000000445] [Cited by in Crossref: 57] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
64 Hadas Y, Katz MG, Bridges CR, Zangi L. Modified mRNA as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdiscip Rev Syst Biol Med 2017;9. [PMID: 27911047 DOI: 10.1002/wsbm.1367] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
65 Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848-E1857. [PMID: 22645348 DOI: 10.1073/pnas.1200250109] [Cited by in Crossref: 941] [Cited by in F6Publishing: 803] [Article Influence: 104.6] [Reference Citation Analysis]
66 Acimovic I, Vilotic A, Pesl M, Lacampagne A, Dvorak P, Rotrekl V, Meli AC. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomed Res Int 2014;2014:512831. [PMID: 24800237 DOI: 10.1155/2014/512831] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
67 Cheng J, Tsuda M, Okolotowicz K, Dwyer M, Bushway PJ, Colas AR, Lancman JJ, Schade D, Perea-Gil I, Bruyneel AAN, Lee J, Vadgama N, Quach J, McKeithan WL, Biechele TL, Wu JC, Moon RT, Si Dong PD, Karakikes I, Cashman JR, Mercola M. Small-molecule probe reveals a kinase cascade that links stress signaling to TCF/LEF and Wnt responsiveness. Cell Chem Biol 2021;28:625-635.e5. [PMID: 33503403 DOI: 10.1016/j.chembiol.2021.01.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Tanaka A, Yuasa S, Node K, Fukuda K. Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015;16:18894-922. [PMID: 26274955 DOI: 10.3390/ijms160818894] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
69 Kishino Y, Fujita J, Tohyama S, Okada M, Tanosaki S, Someya S, Fukuda K. Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflamm Regen 2020;40:1. [PMID: 31938077 DOI: 10.1186/s41232-019-0110-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 15.0] [Reference Citation Analysis]
70 Myers FB, Silver JS, Zhuge Y, Beygui RE, Zarins CK, Lee LP, Abilez OJ. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning. Integr Biol (Camb) 2013;5:1495-506. [PMID: 24141327 DOI: 10.1039/c2ib20191g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
71 KalantarMotamedi Y, Peymani M, Baharvand H, Nasr-Esfahani MH, Bender A. Systematic selection of small molecules to promote differentiation of embryonic stem cells and experimental validation for generating cardiomyocytes. Cell Death Discov 2016;2:16007. [PMID: 27551501 DOI: 10.1038/cddiscovery.2016.7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
72 Zhu H, Scharnhorst KS, Stieg AZ, Gimzewski JK, Minami I, Nakatsuji N, Nakano H, Nakano A. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Sci Rep 2017;7:43210. [PMID: 28266620 DOI: 10.1038/srep43210] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
73 Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C. Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays. 2013;35:281-298. [PMID: 22886688 DOI: 10.1002/bies.201200053] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 8.1] [Reference Citation Analysis]
74 Salick MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 2014;35:4454-64. [PMID: 24582552 DOI: 10.1016/j.biomaterials.2014.02.001] [Cited by in Crossref: 99] [Cited by in F6Publishing: 78] [Article Influence: 14.1] [Reference Citation Analysis]
75 Zanella F, Lyon RC, Sheikh F. Modeling heart disease in a dish: from somatic cells to disease-relevant cardiomyocytes. Trends Cardiovasc Med 2014;24:32-44. [PMID: 24054750 DOI: 10.1016/j.tcm.2013.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
76 Dohn TE, Waxman JS. Distinct phases of Wnt/β-catenin signaling direct cardiomyocyte formation in zebrafish. Dev Biol 2012;361:364-76. [PMID: 22094017 DOI: 10.1016/j.ydbio.2011.10.032] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
77 Hlaing SM, Garcia LA, Contreras JR, Norris KC, Ferrini MG, Artaza JN. 1,25-Vitamin D3 promotes cardiac differentiation through modulation of the WNT signaling pathway. J Mol Endocrinol 2014;53:303-17. [PMID: 25139490 DOI: 10.1530/JME-14-0168] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
78 Engels MC, Rajarajan K, Feistritzer R, Sharma A, Nielsen UB, Schalij MJ, de Vries AA, Pijnappels DA, Wu SM. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells 2014;32:1493-502. [PMID: 24496962 DOI: 10.1002/stem.1660] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
79 Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev Rep 2015;11:710-27. [PMID: 26085192 DOI: 10.1007/s12015-015-9596-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
80 Palpant NJ, Pabon L, Rabinowitz JS, Hadland BK, Stoick-Cooper CL, Paige SL, Bernstein ID, Moon RT, Murry CE. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 2013;140:3799-808. [PMID: 23924634 DOI: 10.1242/dev.094789] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
81 Nemade H, Acharya A, Chaudhari U, Nembo E, Nguemo F, Riet N, Abken H, Hescheler J, Papadopoulos S, Sachinidis A. Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells. Cells 2020;9:E554. [PMID: 32120775 DOI: 10.3390/cells9030554] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
82 Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017;35:77-94. [PMID: 28007615 DOI: 10.1016/j.biotechadv.2016.12.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
83 Xie M, Cao N, Ding S. Small molecules for cell reprogramming and heart repair: progress and perspective. ACS Chem Biol. 2014;9:34-44. [PMID: 24372513 DOI: 10.1021/cb400865w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
84 Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013;65:1091-133. [PMID: 23818131 DOI: 10.1124/pr.112.007393] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 4.1] [Reference Citation Analysis]
85 Hasson SA, Inglese J. Innovation in academic chemical screening: filling the gaps in chemical biology. Curr Opin Chem Biol 2013;17:329-38. [PMID: 23683346 DOI: 10.1016/j.cbpa.2013.04.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
86 Addis RC, Epstein JA. Induced regeneration--the progress and promise of direct reprogramming for heart repair. Nat Med. 2013;19:829-836. [PMID: 23836233 DOI: 10.1038/nm.3225] [Cited by in Crossref: 71] [Cited by in F6Publishing: 55] [Article Influence: 8.9] [Reference Citation Analysis]