BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kou X, Li J, Liu X, Chang J, Zhao Q, Jia S, Fan J, Chen N. Swimming attenuates d -galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics. Journal of Applied Physiology 2017;122:1462-9. [DOI: 10.1152/japplphysiol.00018.2017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, Bai Y, Huang T, Xu B. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behavioural Brain Research 2019;376:112171. [DOI: 10.1016/j.bbr.2019.112171] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
2 Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, Lakhani HV, Sodhi K. A Review of miRNAs as Biomarkers and Effect of Dietary Modulation in Obesity Associated Cognitive Decline and Neurodegenerative Disorders. Front Mol Neurosci 2021;14:756499. [PMID: 34690698 DOI: 10.3389/fnmol.2021.756499] [Reference Citation Analysis]
3 Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-Induced Benefits for Alzheimer's Disease by Stimulating Mitophagy and Improving Mitochondrial Function. Front Aging Neurosci 2021;13:755665. [PMID: 34658846 DOI: 10.3389/fnagi.2021.755665] [Reference Citation Analysis]
4 Li B, Fan J, Chen N. A Novel Regulator of Type II Diabetes: MicroRNA-143. Trends in Endocrinology & Metabolism 2018;29:380-8. [DOI: 10.1016/j.tem.2018.03.019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
5 Kou X, Chen D, Chen N. Physical Activity Alleviates Cognitive Dysfunction of Alzheimer's Disease through Regulating the mTOR Signaling Pathway. Int J Mol Sci 2019;20:E1591. [PMID: 30934958 DOI: 10.3390/ijms20071591] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
6 Kou X, Chen D, Chen N. The Regulation of microRNAs in Alzheimer's Disease. Front Neurol 2020;11:288. [PMID: 32362867 DOI: 10.3389/fneur.2020.00288] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
7 Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front Psychol 2018;9:509. [PMID: 29755380 DOI: 10.3389/fpsyg.2018.00509] [Cited by in Crossref: 158] [Cited by in F6Publishing: 119] [Article Influence: 39.5] [Reference Citation Analysis]
8 Wahl D, Cavalier AN, LaRocca TJ. Novel Strategies for Healthy Brain Aging. Exerc Sport Sci Rev 2021;49:115-25. [PMID: 33739944 DOI: 10.1249/JES.0000000000000242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Shen K, Liu X, Chen D, Chang J, Zhang Y, Kou X. Voluntary wheel-running exercise attenuates brain aging of rats through activating miR-130a-mediated autophagy. Brain Res Bull 2021;172:203-11. [PMID: 33964346 DOI: 10.1016/j.brainresbull.2021.04.027] [Reference Citation Analysis]
10 Kuznetsova M, Wilson C, Hannan AJ, Renoir T. How the enriched get richer? Experience-dependent modulation of microRNAs and the therapeutic effects of environmental enrichment. Pharmacol Biochem Behav 2020;195:172940. [PMID: 32413435 DOI: 10.1016/j.pbb.2020.172940] [Reference Citation Analysis]
11 Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019;10:E720. [PMID: 31533339 DOI: 10.3390/genes10090720] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 14.3] [Reference Citation Analysis]
12 Chen F, Feng L, Zheng YL, Lu J, Fan SH, Shan Q, Zheng GH, Wang YJ, Wu DM, Li MQ, Wang QQ, Zhang ZF. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment. Environ Pollut 2020;258:113693. [PMID: 31838391 DOI: 10.1016/j.envpol.2019.113693] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
13 Bao C, Yang Z, Cai Q, Li Q, Li H, Shu B. Incremental load training improves renal fibrosis by regulating the TGF‑β1/TAK1/MKK3/p38MAPK signaling pathway and inducing the activation of autophagy in aged mice. Int J Mol Med 2019;44:1677-86. [PMID: 31545406 DOI: 10.3892/ijmm.2019.4344] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Alipour MR, Naderi R, Alihemmati A, Sheervalilou R, Ghiasi R. Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. J Diabetes Metab Disord 2020;19:1439-46. [PMID: 33520845 DOI: 10.1007/s40200-020-00670-6] [Reference Citation Analysis]
15 Zhong W, Shi X, Yuan H, Bu H, Wu L, Wang R. Effects of Exercise Training on the Autophagy-Related Muscular Proteins Expression in Ovariectomized Rats. Front Physiol 2019;10:735. [PMID: 31263428 DOI: 10.3389/fphys.2019.00735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Chen D, Zhang Y, Zhang M, Chang J, Zeng Z, Kou X, Chen N. Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats. Front Aging Neurosci 2020;12:105. [PMID: 32390823 DOI: 10.3389/fnagi.2020.00105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Norwitz NG, Querfurth H. mTOR Mysteries: Nuances and Questions About the Mechanistic Target of Rapamycin in Neurodegeneration. Front Neurosci 2020;14:775. [PMID: 32903821 DOI: 10.3389/fnins.2020.00775] [Reference Citation Analysis]
18 Trajano GS, Blazevich AJ. Novel Strategies for Healthy Brain Aging. Exerc Sport Sci Rev 2021;49:126-32. [PMID: 33720913 DOI: 10.1249/JES.0000000000000243] [Reference Citation Analysis]
19 Shwe T, Bo-Htay C, Ongnok B, Chunchai T, Jaiwongkam T, Kerdphoo S, Kumfu S, Pratchayasakul W, Pattarasakulchai T, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy restores cognitive function and hippocampal pathologies in both aging and aging-obese rats. Mech Ageing Dev 2021;195:111465. [PMID: 33662435 DOI: 10.1016/j.mad.2021.111465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Xu L, Zheng YL, Yin X, Xu SJ, Tian D, Zhang CY, Wang S, Ma JZ. Excessive Treadmill Training Enhances Brain-Specific MicroRNA-34a in the Mouse Hippocampus. Front Mol Neurosci 2020;13:7. [PMID: 32082120 DOI: 10.3389/fnmol.2020.00007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020;21:E4977. [PMID: 32674523 DOI: 10.3390/ijms21144977] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 2017;80:443-56. [PMID: 28666827 DOI: 10.1016/j.neubiorev.2017.06.012] [Cited by in Crossref: 85] [Cited by in F6Publishing: 72] [Article Influence: 17.0] [Reference Citation Analysis]
23 Zhang Y, Chen N. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training. Oxid Med Cell Longev 2018;2018:3617508. [PMID: 29849885 DOI: 10.1155/2018/3617508] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
24 Chen P, Chen F, Lei J, Li Q, Zhou B. Activation of the miR-34a-Mediated SIRT1/mTOR Signaling Pathway by Urolithin A Attenuates D-Galactose-Induced Brain Aging in Mice. Neurotherapeutics 2019;16:1269-82. [PMID: 31420820 DOI: 10.1007/s13311-019-00753-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
25 Wang X, Zhou Y, Gao Q, Ping D, Wang Y, Wu W, Lin X, Fang Y, Zhang J, Shao A. The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. Oxid Med Cell Longev 2020;2020:3232869. [PMID: 33193999 DOI: 10.1155/2020/3232869] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
26 Zhang Y, Liao B, Hu S, Pan SY, Wang GP, Wang YL, Qin ZH, Luo L. High intensity interval training induces dysregulation of mitochondrial respiratory complex and mitophagy in the hippocampus of middle-aged mice. Behav Brain Res 2021;412:113384. [PMID: 34147565 DOI: 10.1016/j.bbr.2021.113384] [Reference Citation Analysis]
27 Wu C, Yang L, Tucker D, Dong Y, Zhu L, Duan R, Liu TC, Zhang Q. Beneficial Effects of Exercise Pretreatment in a Sporadic Alzheimer's Rat Model. Med Sci Sports Exerc 2018;50:945-56. [PMID: 29232315 DOI: 10.1249/MSS.0000000000001519] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
28 Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2021;82:S227-50. [PMID: 33216029 DOI: 10.3233/JAD-200870] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]