BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z. Rodent models of AKI-CKD transition. Am J Physiol Renal Physiol 2018;315:F1098-106. [PMID: 29949392 DOI: 10.1152/ajprenal.00199.2018] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Peng C, Chen J, Li H, Jiao Q, Zhang Z, Wang L, Yuan Q, Wang B, Huang Y, Ma X. Intermittent hilar occlusion attenuates or prevents renal ischaemia-reperfusion in mice. Biomedicine & Pharmacotherapy 2022;153:113457. [DOI: 10.1016/j.biopha.2022.113457] [Reference Citation Analysis]
2 Iskander A, Yan LJ. Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD+-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022;12:1078. [PMID: 36008971 DOI: 10.3390/biom12081078] [Reference Citation Analysis]
3 Matsumoto T, Doi S, Nakashima A, Ike T, Sasaki K, Masaki T. Upregulation of Mineralocorticoid Receptor Contributes to Development of Salt-Sensitive Hypertension after Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2022;23:7831. [PMID: 35887178 DOI: 10.3390/ijms23147831] [Reference Citation Analysis]
4 Silva EO, Conde C, Machado DI, Ventura S, Couto SMF, Vattimo MFF. Effect of curcumin on acute chronic kidney disease due to ischemia-reperfusion syndrome. Rev Esc Enferm USP 2022;56:e20210440. [PMID: 35770890 DOI: 10.1590/1980-220X-REEUSP-2021-0440en] [Reference Citation Analysis]
5 Wang F, Otsuka T, Adelnia F, Takahashi K, Delgado R, Harkins KD, Zu Z, de Caestecker MP, Harris RC, Gore JC, Takahashi T. Multiparametric magnetic resonance imaging in diagnosis of long-term renal atrophy and fibrosis after ischemia reperfusion induced acute kidney injury in mice. NMR Biomed 2022;:e4786. [PMID: 35704387 DOI: 10.1002/nbm.4786] [Reference Citation Analysis]
6 Liang Y, Qu L, Liu Z, Liang L, Wang Y, Quan S, Wang Y, Tang L. The IRE1/JNK signaling pathway regulates inflammation cytokines and production of glomerular extracellular matrix in the acute kidney injury to chronic kidney disease transition. Mol Biol Rep 2022. [PMID: 35696049 DOI: 10.1007/s11033-022-07588-7] [Reference Citation Analysis]
7 Baudoux T, Jadot I, Declèves AE, Antoine MH, Colet JM, Botton O, De Prez E, Pozdzik A, Husson C, Caron N, Nortier JL. Experimental Aristolochic Acid Nephropathy: A Relevant Model to Study AKI-to-CKD Transition. Front Med (Lausanne) 2022;9:822870. [PMID: 35602498 DOI: 10.3389/fmed.2022.822870] [Reference Citation Analysis]
8 Machado SE, Spangler D, Black LM, Traylor AM, Balla J, Zarjou A. A Reproducible Mouse Model of Moderate CKD With Early Manifestations of Osteoblastic Transition of Cardiovascular System. Front Physiol 2022;13:897179. [DOI: 10.3389/fphys.2022.897179] [Reference Citation Analysis]
9 Klinkhammer BM, Buchtler S, Djudjaj S, Bouteldja N, Palsson R, Edvardsson VO, Thorsteinsdottir M, Floege J, Mack M, Boor P. Current kidney function parameters overestimate kidney tissue repair in reversible experimental kidney disease. Kidney Int 2022:S0085-2538(22)00337-4. [PMID: 35483527 DOI: 10.1016/j.kint.2022.02.039] [Reference Citation Analysis]
10 Davis G, Kurse A, Agarwal A, Sheikh-hamad D, Kumar MNVR. Nano-encapsulation strategies to circumvent drug-induced kidney injury and targeted nanomedicines to treat kidney diseases. Current Opinion in Toxicology 2022. [DOI: 10.1016/j.cotox.2022.100346] [Reference Citation Analysis]
11 Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 2022;:155194. [PMID: 35346693 DOI: 10.1016/j.metabol.2022.155194] [Reference Citation Analysis]
12 Yuqiang C, Lisha Z, Jiejun W, Qin X, Niansong W. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation. Ren Fail 2022;44:473-81. [PMID: 35285384 DOI: 10.1080/0886022X.2022.2048857] [Reference Citation Analysis]
13 Freitas F, Attwell D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. Elife 2022;11:e74211. [PMID: 35285797 DOI: 10.7554/eLife.74211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Yan LJ. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021;4:329-42. [PMID: 34977484 DOI: 10.1002/ame2.12194] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
15 An N, Yang C, Wu HL, Guo Y, Huang XJ, Huang TS, Wu ZH, Xue J, Chen RH, Li ZH, Pan QJ, Liu HF. Hydroxychloroquine administration exacerbates acute kidney injury complicated by lupus nephritis. Arthritis Res Ther 2022;24:6. [PMID: 34980245 DOI: 10.1186/s13075-021-02700-x] [Reference Citation Analysis]
16 Silva EDO, Conde C, Machado DI, Ventura S, Couto SMF, Vattimo MDFF. Efeito da curcumina na doença renal crônica agudizada pela síndrome isquemia-reperfusão. Rev esc enferm USP 2022;56:e20210440. [DOI: 10.1590/1980-220x-reeusp-2021-0440pt] [Reference Citation Analysis]
17 Wen L, Tao SH, Guo F, Li LZ, Yang HL, Liang Y, Zhang LD, Ma L, Fu P. Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway. Acta Pharmacol Sin 2021. [PMID: 34937916 DOI: 10.1038/s41401-021-00837-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, Tanaka S, Tsukamoto S, Kamimura D, Kinguchi S, Yamashita A, Wakui H, Tamura K. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep 2021;11:23587. [PMID: 34880315 DOI: 10.1038/s41598-021-02864-1] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
19 Yang Y, Lee EH, Yang Z. Hypoxia conditioned mesenchymal stem cells in tissue regeneration application. Tissue Eng Part B Rev 2021. [PMID: 34569290 DOI: 10.1089/ten.TEB.2021.0145] [Reference Citation Analysis]
20 Zhou Y, Luo Z, Liao C, Cao R, Hussain Z, Wang J, Zhou Y, Chen T, Sun J, Huang Z, Liu B, Zhang X, Guan Y, Deng T. MHC class II in renal tubules plays an essential role in renal fibrosis. Cell Mol Immunol 2021;18:2530-40. [PMID: 34556823 DOI: 10.1038/s41423-021-00763-z] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Huang CW, Lee SY, Wei TT, Kuo YH, Wu ST, Ku HC. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed Pharmacother 2021;142:112028. [PMID: 34399201 DOI: 10.1016/j.biopha.2021.112028] [Reference Citation Analysis]
22 Lan S, Yang B, Migneault F, Turgeon J, Bourgault M, Dieudé M, Cardinal H, Hickey MJ, Patey N, Hébert MJ. Caspase-3-dependent peritubular capillary dysfunction is pivotal for the transition from acute to chronic kidney disease after acute ischemia-reperfusion injury. Am J Physiol Renal Physiol 2021;321:F335-51. [PMID: 34338031 DOI: 10.1152/ajprenal.00690.2020] [Reference Citation Analysis]
23 Liu D, Du Y, Jin FY, Xu XL, Du YZ. Renal Cell-Targeted Drug Delivery Strategy for Acute Kidney Injury and Chronic Kidney Disease: A Mini-Review. Mol Pharm 2021. [PMID: 34337953 DOI: 10.1021/acs.molpharmaceut.1c00511] [Reference Citation Analysis]
24 Ide S, Kobayashi Y, Ide K, Strausser SA, Abe K, Herbek S, O'Brien LL, Crowley SD, Barisoni L, Tata A, Tata PR, Souma T. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife 2021;10:e68603. [PMID: 34279220 DOI: 10.7554/eLife.68603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Xie D, Wang J, Hu G, Chen C, Yang H, Ritter JK, Qu Y, Li N. Kidney-Targeted Delivery of Prolyl Hydroxylase Domain Protein 2 Small Interfering RNA with Nanoparticles Alleviated Renal Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2021;378:235-43. [PMID: 34103333 DOI: 10.1124/jpet.121.000667] [Reference Citation Analysis]
26 Sears S, Siskind L. Potential Therapeutic Targets for Cisplatin-Induced Kidney Injury: Lessons from Other Models of AKI and Fibrosis. J Am Soc Nephrol 2021:ASN. [PMID: 34049962 DOI: 10.1681/ASN.2020101455] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
27 Hyndman KA. Histone Deacetylases in Kidney Physiology and Acute Kidney Injury. Semin Nephrol 2020;40:138-47. [PMID: 32303277 DOI: 10.1016/j.semnephrol.2020.01.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
28 Huang J, Bayliss G, Zhuang S. Porcine models of acute kidney injury. Am J Physiol Renal Physiol 2021;320:F1030-44. [PMID: 33900853 DOI: 10.1152/ajprenal.00022.2021] [Reference Citation Analysis]
29 Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, Luo Z, Ye Y, Sun Q. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol 2021;12:645100. [PMID: 33936063 DOI: 10.3389/fimmu.2021.645100] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
30 Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021;43:619-42. [PMID: 33784950 DOI: 10.1080/0886022X.2021.1901739] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Kobayashi Y, Yamaoka K. Analysis of intraoperative modifiable factors to prevent acute kidney injury after elective noncardiac surgery: intraoperative hypotension and crystalloid administration related to acute kidney injury. JA Clin Rep 2021;7:27. [PMID: 33761037 DOI: 10.1186/s40981-021-00429-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Xu D, Chen PP, Zheng PQ, Yin F, Cheng Q, Zhou ZL, Xie HY, Li JY, Ni JY, Wang YZ, Chen SJ, Zhou L, Wang XX, Liu J, Zhang W, Lu LM. KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia-reperfusion kidney injury. Acta Pharmacol Sin 2021;42:436-50. [PMID: 32647339 DOI: 10.1038/s41401-020-0463-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
33 Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021;22:E816. [PMID: 33467524 DOI: 10.3390/ijms22020816] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Li S, Wen L, Hu X, Wei Q, Dong Z. HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021;13:E180. [PMID: 33430279 DOI: 10.3390/cancers13020180] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
35 Last J, Brenner M, Yen HT, Aziz M, Denning NL, Wang P. MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice. Heliyon 2020;6:e05794. [PMID: 33409388 DOI: 10.1016/j.heliyon.2020.e05794] [Reference Citation Analysis]
36 Wang ZH, Deng LH, Chi CW, Wang H, Huang YY, Zheng Q. A Preclinical Systematic Review of Curcumin for Protecting the Kidney with Ischemia Reperfusion Injury. Oxid Med Cell Longev 2020;2020:4546851. [PMID: 33274000 DOI: 10.1155/2020/4546851] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Li X, Pan J, Li H, Li G, Liu X, Liu B, He Z, Peng Z, Zhang H, Li Y, Xiang X, Chai X, Yuan Y, Zheng P, Liu F, Zhang D. DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice. Nat Commun 2020;11:4467. [PMID: 32948751 DOI: 10.1038/s41467-020-18304-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 23] [Article Influence: 0.5] [Reference Citation Analysis]
38 Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, Yin D, Liu H, Tang RN, Crowley SD, Lv LL, Liu BC. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv 2020;6:eaaz0748. [PMID: 32851154 DOI: 10.1126/sciadv.aaz0748] [Cited by in Crossref: 16] [Cited by in F6Publishing: 52] [Article Influence: 8.0] [Reference Citation Analysis]
39 Zhang J, Wang X, Wei J, Wang L, Jiang S, Xu L, Qu L, Yang K, Fu L, Buggs J, Cheng F, Liu R. A two-stage bilateral ischemia-reperfusion injury-induced AKI to CKD transition model in mice. Am J Physiol Renal Physiol 2020;319:F304-11. [PMID: 32567350 DOI: 10.1152/ajprenal.00017.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
40 Nishi H, Takemura K, Higashihara T, Inagi R. Uremic Sarcopenia: Clinical Evidence and Basic Experimental Approach. Nutrients 2020;12:E1814. [PMID: 32570738 DOI: 10.3390/nu12061814] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
41 Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020;256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Rojas-Morales P, León-Contreras JC, Granados-Pineda J, Hernández-Pando R, Gonzaga G, Sánchez-Lozada LG, Osorio-Alonso H, Pedraza-Chaverri J, Tapia E. Protection against renal ischemia and reperfusion injury by short-term time-restricted feeding involves the mitochondrial unfolded protein response. Free Radic Biol Med 2020;154:75-83. [PMID: 32376457 DOI: 10.1016/j.freeradbiomed.2020.04.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Ishiuchi N, Nakashima A, Doi S, Yoshida K, Maeda S, Kanai R, Yamada Y, Ike T, Doi T, Kato Y, Masaki T. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res Ther 2020;11:130. [PMID: 32197638 DOI: 10.1186/s13287-020-01642-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
44 Polichnowski AJ, Griffin KA, Licea-Vargas H, Lan R, Picken MM, Long J, Williamson GA, Rosenberger C, Mathia S, Venkatachalam MA, Bidani AK. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition. Am J Physiol Renal Physiol 2020;318:F1086-99. [PMID: 32174143 DOI: 10.1152/ajprenal.00590.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
45 Zhu H, Liao J, Zhou X, Hong X, Song D, Hou FF, Liu Y, Fu H. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling. Kidney Int 2020;97:1017-31. [PMID: 32245660 DOI: 10.1016/j.kint.2020.01.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
46 Liu L, Deng Y, Cai Y, Lu P, Guo Y, Zhang C, Li Q, Zhang T, Han M, Xu G. Ablation of Gsa impairs renal tubule proliferation after injury via CDK2/cyclin E. Am J Physiol Renal Physiol 2020;318:F793-803. [PMID: 32036696 DOI: 10.1152/ajprenal.00367.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Feng D, Ngov C, Henley N, Boufaied N, Gerarduzzi C. Characterization of Matricellular Protein Expression Signatures in Mechanistically Diverse Mouse Models of Kidney Injury. Sci Rep 2019;9:16736. [PMID: 31723159 DOI: 10.1038/s41598-019-52961-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
48 Fu Y, Cai J, Li F, Liu Z, Shu S, Wang Y, Liu Y, Tang C, Dong Z. Chronic effects of repeated low-dose cisplatin treatment in mouse kidneys and renal tubular cells. Am J Physiol Renal Physiol 2019;317:F1582-92. [PMID: 31532246 DOI: 10.1152/ajprenal.00385.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
49 Silver SA, Gerarduzzi C. Found in Translation: Reasons for Optimism in the Pursuit to Prevent Chronic Kidney Disease After Acute Kidney Injury. Can J Kidney Health Dis 2019;6:2054358119868740. [PMID: 31452903 DOI: 10.1177/2054358119868740] [Reference Citation Analysis]
50 Rojas-Morales P, Tapia E, León-Contreras JC, González-Reyes S, Jiménez-Osorio AS, Trujillo J, Pavón N, Granados-Pineda J, Hernández-Pando R, Sánchez-Lozada LG, Osorio-Alonso H, Pedraza-Chaverri J. Mechanisms of Fasting-Mediated Protection against Renal Injury and Fibrosis Development after Ischemic Acute Kidney Injury. Biomolecules 2019;9:E404. [PMID: 31443530 DOI: 10.3390/biom9090404] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
51 Zhuo H, Zhou D, Wang Y, Mo H, Yu Y, Liu Y. Sonic hedgehog selectively promotes lymphangiogenesis after kidney injury through noncanonical pathway. Am J Physiol Renal Physiol 2019;317:F1022-33. [PMID: 31411078 DOI: 10.1152/ajprenal.00077.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
52 Scarfe L, Menshikh A, Newton E, Zhu Y, Delgado R, Finney C, de Caestecker MP. Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2019;317:F1068-80. [PMID: 31411074 DOI: 10.1152/ajprenal.00305.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
53 Guan Y, Nakano D, Zhang Y, Li L, Tian Y, Nishiyama A. A mouse model of renal fibrosis to overcome the technical variability in ischaemia/reperfusion injury among operators. Sci Rep 2019;9:10435. [PMID: 31320707 DOI: 10.1038/s41598-019-46994-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
54 Perales-Quintana MM, Saucedo AL, Lucio-Gutiérrez JR, Waksman N, Alarcon-Galvan G, Govea-Torres G, Sanchez-Martinez C, Pérez-Rodríguez E, Guzman-de la Garza FJ, Cordero-Pérez P. Metabolomic and biochemical characterization of a new model of the transition of acute kidney injury to chronic kidney disease induced by folic acid. PeerJ 2019;7:e7113. [PMID: 31275747 DOI: 10.7717/peerj.7113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
55 Wei J, Zhang J, Wang L, Jiang S, Fu L, Buggs J, Liu R. New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury. Am J Physiol Renal Physiol 2019;317:F286-95. [PMID: 31116604 DOI: 10.1152/ajprenal.00021.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
56 Soranno DE, Gil HW, Kirkbride-Romeo L, Altmann C, Montford JR, Yang H, Levine A, Buchanan J, Faubel S. Matching Human Unilateral AKI, a Reverse Translational Approach to Investigate Kidney Recovery after Ischemia. J Am Soc Nephrol 2019;30:990-1005. [PMID: 31072827 DOI: 10.1681/ASN.2018080808] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
57 Xu L, Li X, Zhang F, Wu L, Dong Z, Zhang D. EGFR drives the progression of AKI to CKD through HIPK2 overexpression. Theranostics 2019;9:2712-26. [PMID: 31131063 DOI: 10.7150/thno.31424] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
58 Manolopoulou M, Matlock BK, Nlandu-Khodo S, Simmons AJ, Lau KS, Phillips-Mignemi M, Ivanova A, Alford CE, Flaherty DK, Gewin LS. Novel kidney dissociation protocol and image-based flow cytometry facilitate improved analysis of injured proximal tubules. Am J Physiol Renal Physiol 2019;316:F847-55. [PMID: 30759021 DOI: 10.1152/ajprenal.00354.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
59 Chai X, Huang HB, Feng G, Cao YH, Cheng QS, Li SH, He CY, Lu WH, Qin MM. Baseline Serum Cystatin C Is a Potential Predictor for Acute Kidney Injury in Patients with Acute Pancreatitis. Dis Markers 2018;2018:8431219. [PMID: 30581500 DOI: 10.1155/2018/8431219] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
60 Shu S, Zhu J, Liu Z, Tang C, Cai J, Dong Z. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine 2018;37:269-80. [PMID: 30314894 DOI: 10.1016/j.ebiom.2018.10.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 10.5] [Reference Citation Analysis]
61 Polichnowski AJ. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states. Am J Physiol Renal Physiol 2018;315:F1513-8. [PMID: 30256130 DOI: 10.1152/ajprenal.00419.2018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]