BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Carota IA, Kenig-Kozlovsky Y, Onay T, Scott R, Thomson BR, Souma T, Bartlett CS, Li Y, Procissi D, Ramirez V, Yamaguchi S, Tarjus A, Tanna CE, Li C, Eremina V, Vestweber D, Oladipupo SS, Breyer MD, Quaggin SE. Targeting VE-PTP phosphatase protects the kidney from diabetic injury. J Exp Med 2019;216:936-49. [PMID: 30886059 DOI: 10.1084/jem.20180009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Justo AFO, Afonso PPL. The role of vascular endothelial protein tyrosine phosphatase on nitric oxide synthase function in diabetes: from molecular biology to the clinic. J Cell Commun Signal 2021;15:467-71. [PMID: 33683570 DOI: 10.1007/s12079-021-00611-9] [Reference Citation Analysis]
2 Vestweber D. Vascular Endothelial Protein Tyrosine Phosphatase Regulates Endothelial Function. Physiology (Bethesda) 2021;36:84-93. [PMID: 33595386 DOI: 10.1152/physiol.00026.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Huang ZY, Liao PJ, Liu YX, Zhong M, Sun AH, Jiang XC, Wang XP, Zhang M. Protein tyrosine phosphatase, receptor type B is a potential biomarker and facilitates cervical cancer metastasis via epithelial-mesenchymal transition. Bioengineered 2021;12:5739-48. [PMID: 34516350 DOI: 10.1080/21655979.2021.1968250] [Reference Citation Analysis]
4 Zhao M, Wang S, Zuo A, Zhang J, Wen W, Jiang W, Chen H, Liang D, Sun J, Wang M. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett 2021;26:40. [PMID: 34479471 DOI: 10.1186/s11658-021-00283-8] [Reference Citation Analysis]
5 Tanabe K, Wada J, Sato Y. Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol 2020;16:289-303. [PMID: 32144398 DOI: 10.1038/s41581-020-0260-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
6 He F, Zhang D, Chen Q, Zhao Y, Wu L, Li Z, Zhang C, Jiang Z, Wang Y. Angiopoietin‐Tie signaling in kidney diseases: an updated review. FEBS Lett 2019;593:2706-15. [DOI: 10.1002/1873-3468.13568] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
7 Siragusa M, Oliveira Justo AF, Malacarne PF, Strano A, Buch A, Withers B, Peters KG, Fleming I. VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res 2021;117:1546-56. [PMID: 32653904 DOI: 10.1093/cvr/cvaa213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
8 Arishe OO, Webb RC. VE-PTP inhibition: a novel therapeutic target for hypertension in diabetic patients. Cardiovasc Res 2021;117:1423-5. [PMID: 33913485 DOI: 10.1093/cvr/cvab143] [Reference Citation Analysis]
9 Kida Y. Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int J Mol Sci 2020;21:E8255. [PMID: 33158122 DOI: 10.3390/ijms21218255] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Li G, Nottebaum AF, Brigell M, Navarro ID, Ipe U, Mishra S, Gomez-Caraballo M, Schmitt H, Soldo B, Pakola S, Withers B, Peters KG, Vestweber D, Stamer WD. A Small Molecule Inhibitor of VE-PTP Activates Tie2 in Schlemm's Canal Increasing Outflow Facility and Reducing Intraocular Pressure. Invest Ophthalmol Vis Sci 2020;61:12. [PMID: 33315051 DOI: 10.1167/iovs.61.14.12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Li G, Sachdev U, Peters K, Liang X, Lotze MT. The VE-PTP Inhibitor AKB-9778 Improves Antitumor Activity and Diminishes the Toxicity of Interleukin 2 (IL-2) Administration. J Immunother 2019;42:237-43. [PMID: 31348125 DOI: 10.1097/CJI.0000000000000290] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Thomson BR, Liu P, Onay T, Du J, Tompson SW, Misener S, Purohit RR, Young TL, Jin J, Quaggin SE. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nat Commun 2021;12:6072. [PMID: 34663817 DOI: 10.1038/s41467-021-26346-0] [Reference Citation Analysis]
13 Mercier C, Rousseau M, Geraldes P. Growth Factor Deregulation and Emerging Role of Phosphatases in Diabetic Peripheral Artery Disease. Front Cardiovasc Med 2020;7:619612. [PMID: 33490120 DOI: 10.3389/fcvm.2020.619612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Thomson BR, Carota IA, Souma T, Soman S, Vestweber D, Quaggin SE. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. Elife 2019;8:e48474. [PMID: 31621585 DOI: 10.7554/eLife.48474] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
15 Ricciardi CA, Gnudi L. Vascular growth factors as potential new treatment in cardiorenal syndrome in diabetes. Eur J Clin Invest 2021;51:e13579. [PMID: 33942293 DOI: 10.1111/eci.13579] [Reference Citation Analysis]
16 Hayashi SI, Rakugi H, Morishita R. Insight into the Role of Angiopoietins in Ageing-Associated Diseases. Cells 2020;9:E2636. [PMID: 33302426 DOI: 10.3390/cells9122636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Zhang A, Fang H, Chen J, He L, Chen Y. Role of VEGF-A and LRG1 in Abnormal Angiogenesis Associated With Diabetic Nephropathy. Front Physiol 2020;11:1064. [PMID: 32982792 DOI: 10.3389/fphys.2020.01064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
18 Chang F, Liu C, Luo A, Tao-min Huang T, Tsai M, Chen Y, Lai C, Chiang C, Lin T, Chiang W, Chen Y, Chu T, Lin S. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney International 2022. [DOI: 10.1016/j.kint.2022.06.026] [Reference Citation Analysis]
19 Wang Y, He W. Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Front Pharmacol 2021;12:630617. [PMID: 33859563 DOI: 10.3389/fphar.2021.630617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Allison SJ. VE-PTP phosphatase: a new target for diabetic kidney disease. Nat Rev Nephrol 2019;15:317. [PMID: 30936497 DOI: 10.1038/s41581-019-0147-2] [Reference Citation Analysis]
21 Dubinski D, Hattingen E, Senft C, Seifert V, Peters KG, Reiss Y, Devraj K, Plate KH. Controversial roles for dexamethasone in glioblastoma - Opportunities for novel vascular targeting therapies. J Cereb Blood Flow Metab 2019;39:1460-8. [PMID: 31238763 DOI: 10.1177/0271678X19859847] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]