BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848-E1857. [PMID: 22645348 DOI: 10.1073/pnas.1200250109] [Cited by in Crossref: 941] [Cited by in F6Publishing: 811] [Article Influence: 104.6] [Reference Citation Analysis]
Number Citing Articles
1 Kuroda T, Yasuda S, Matsuyama S, Tano K, Kusakawa S, Sawa Y, Kawamata S, Sato Y. Highly sensitive droplet digital PCR method for detection of residual undifferentiated cells in cardiomyocytes derived from human pluripotent stem cells. Regen Ther 2015;2:17-23. [PMID: 31245455 DOI: 10.1016/j.reth.2015.08.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
2 Hermans KC, Blankesteijn WM. Wnt Signaling in Cardiac Disease. Compr Physiol 2015;5:1183-209. [PMID: 26140714 DOI: 10.1002/cphy.c140060] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
3 Bezzerides VJ, Zhang A, Xiao L, Simonson B, Khedkar SA, Baba S, Ottaviano F, Lynch S, Hessler K, Rigby AC, Milan D, Das S, Rosenzweig A. Inhibition of serum and glucocorticoid regulated kinase-1 as novel therapy for cardiac arrhythmia disorders. Sci Rep 2017;7:346. [PMID: 28336914 DOI: 10.1038/s41598-017-00413-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
4 Lippmann ES, Estevez-Silva MC, Ashton RS. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 2014;32:1032-42. [PMID: 24357014 DOI: 10.1002/stem.1622] [Cited by in Crossref: 82] [Cited by in F6Publishing: 62] [Article Influence: 13.7] [Reference Citation Analysis]
5 Bao X, Lian X, Hacker TA, Schmuck EG, Qian T, Bhute VJ, Han T, Shi M, Drowley L, Plowright A, Wang QD, Goumans MJ, Palecek SP. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat Biomed Eng 2016;1:0003. [PMID: 28462012 DOI: 10.1038/s41551-016-0003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
6 Ting S, Lecina M, Chan YC, Tse HF, Reuveny S, Oh SK. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells. World J Stem Cells 2013;5:86-97. [PMID: 23904910 DOI: 10.4252/wjsc.v5.i3.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
7 de Lange WJ, Farrell ET, Kreitzer CR, Jacobs DR, Lang D, Glukhov AV, Ralphe JC. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. Am J Physiol Heart Circ Physiol 2021;320:H1670-86. [PMID: 33606581 DOI: 10.1152/ajpheart.00941.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019;3:011501. [PMID: 31069331 DOI: 10.1063/1.5055873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tamura F, Tani H, Tohyama S, Fujita J, Miyoshi H, Kawamura Y, Goshima N, Iwasaki YW, Murano K, Saito K, Oda M, Andersen P, Kwon C, Uosaki H, Nishizono H, Fukuda K, Ieda M. Tbx6 Induces Nascent Mesoderm from Pluripotent Stem Cells and Temporally Controls Cardiac versus Somite Lineage Diversification. Cell Stem Cell 2018;23:382-395.e5. [PMID: 30100166 DOI: 10.1016/j.stem.2018.07.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
10 Sun C, Zhang J, Zheng D, Wang J, Yang H, Zhang X. Transcriptome variations among human embryonic stem cell lines are associated with their differentiation propensity. PLoS One. 2018;13:e0192625. [PMID: 29444173 DOI: 10.1371/journal.pone.0192625] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
11 Huebsch N, Loskill P, Deveshwar N, Spencer CI, Judge LM, Mandegar MA, Fox CB, Mohamed TM, Ma Z, Mathur A, Sheehan AM, Truong A, Saxton M, Yoo J, Srivastava D, Desai TA, So PL, Healy KE, Conklin BR. Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses. Sci Rep 2016;6:24726. [PMID: 27095412 DOI: 10.1038/srep24726] [Cited by in Crossref: 132] [Cited by in F6Publishing: 102] [Article Influence: 26.4] [Reference Citation Analysis]
12 Wang D, Liu C, Wang Y, Wang W, Wang K, Wu X, Li Z, Zhao C, Li L, Peng L. Impact of miR-26b on cardiomyocyte differentiation in P19 cells through regulating canonical/non-canonical Wnt signalling. Cell Prolif 2017;50. [PMID: 28810055 DOI: 10.1111/cpr.12371] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
13 Alonso-Barroso E, Pérez B, Desviat LR, Richard E. Cardiomyocytes Derived from Induced Pluripotent Stem Cells as a Disease Model for Propionic Acidemia. Int J Mol Sci 2021;22:1161. [PMID: 33503868 DOI: 10.3390/ijms22031161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Garreta E, de Oñate L, Fernández-Santos ME, Oria R, Tarantino C, Climent AM, Marco A, Samitier M, Martínez E, Valls-Margarit M, Matesanz R, Taylor DA, Fernández-Avilés F, Izpisua Belmonte JC, Montserrat N. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials 2016;98:64-78. [PMID: 27179434 DOI: 10.1016/j.biomaterials.2016.04.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
15 Nagai Y, Tsuchiya H, Runkle EA, Young PD, Ji MQ, Norton L, Drebin JA, Zhang H, Greene MI. Disabling of the erbB Pathway Followed by IFN-γ Modifies Phenotype and Enhances Genotoxic Eradication of Breast Tumors. Cell Rep 2015;12:2049-59. [PMID: 26365188 DOI: 10.1016/j.celrep.2015.08.044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
16 Selekman JA, Grundl NJ, Kolz JM, Palecek SP. Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Eng Part C Methods 2013;19:949-60. [PMID: 23560510 DOI: 10.1089/ten.TEC.2013.0011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
17 Lee J, Jung SM, Ebert AD, Wu H, Diecke S, Kim Y, Yi H, Park SH, Ju JH. Generation of Functional Cardiomyocytes from the Synoviocytes of Patients with Rheumatoid Arthritis via Induced Pluripotent Stem Cells. Sci Rep 2016;6:32669. [PMID: 27609119 DOI: 10.1038/srep32669] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
18 Bernstein D, Burridge P. Patient-Specific Pluripotent Stem Cells in Doxorubicin Cardiotoxicity: A New Window Into Personalized Medicine. Prog Pediatr Cardiol 2014;37:23-7. [PMID: 25530693 DOI: 10.1016/j.ppedcard.2014.10.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
19 Dai Y, Amenov A, Ignatyeva N, Koschinski A, Xu H, Soong PL, Tiburcy M, Linke WA, Zaccolo M, Hasenfuss G, Zimmermann WH, Ebert A. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep. 2020;10:209. [PMID: 31937807 DOI: 10.1038/s41598-019-56597-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
20 Palomo V, Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Expert Opin Ther Pat 2017;27:657-66. [PMID: 27828716 DOI: 10.1080/13543776.2017.1259412] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
21 Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021;9:639699. [PMID: 34262897 DOI: 10.3389/fcell.2021.639699] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Fang X, Miao S, Yu Y, Ding F, Han X, Wu H, Zhao Z, Wang Y, Hu S, Lei W. MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway. Journal of Molecular and Cellular Cardiology 2019;134:1-12. [DOI: 10.1016/j.yjmcc.2019.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ferrer CM, Alders M, Postma AV, Park S, Klein MA, Cetinbas M, Pajkrt E, Glas A, van Koningsbruggen S, Christoffels VM, Mannens MMAM, Knegt L, Etchegaray JP, Sadreyev RI, Denu JM, Mostoslavsky G, van Maarle MC, Mostoslavsky R. An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes Dev 2018;32:373-88. [PMID: 29555651 DOI: 10.1101/gad.307330.117] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
24 Tsao CJ, Taraballi F, Pandolfi L, Velasquez-Mao AJ, Ruano R, Tasciotti E, Jacot JG. Controlled Release of Small Molecules for Cardiac Differentiation of Pluripotent Stem Cells. Tissue Eng Part A 2018;24:1798-807. [PMID: 30129882 DOI: 10.1089/ten.TEA.2018.0054] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
25 Rupert CE, Irofuala C, Coulombe KLK. Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques. PLoS One 2020;15:e0230001. [PMID: 32155214 DOI: 10.1371/journal.pone.0230001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Lam AT, Li J, Chen AK, Reuveny S, Oh SK, Birch WR. Cationic surface charge combined with either vitronectin or laminin dictates the evolution of human embryonic stem cells/microcarrier aggregates and cell growth in agitated cultures. Stem Cells Dev 2014;23:1688-703. [PMID: 24641164 DOI: 10.1089/scd.2013.0645] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
27 Oliveira MSD, Saldanha-araujo F, Goes AMD, Costa FF, de Carvalho JL. Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discovery Today 2017;22:1730-9. [DOI: 10.1016/j.drudis.2017.07.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Liu K, Yu C, Xie M, Li K, Ding S. Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chem Biol 2016;23:893-916. [PMID: 27524294 DOI: 10.1016/j.chembiol.2016.07.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
29 Lavine KJ, Greenberg MJ. Beyond genomics-technological advances improving the molecular characterization and precision treatment of heart failure. Heart Fail Rev 2021;26:405-15. [PMID: 32885327 DOI: 10.1007/s10741-020-10021-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton's jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther. 2017;8:185. [PMID: 28807014 DOI: 10.1186/s13287-017-0638-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
31 Gaggi G, Di Credico A, Izzicupo P, Sancilio S, Di Mauro M, Iannetti G, Dolci S, Amabile G, Di Baldassarre A, Ghinassi B. Decellularized Extracellular Matrices and Cardiac Differentiation: Study on Human Amniotic Fluid-Stem Cells. Int J Mol Sci 2020;21:E6317. [PMID: 32878275 DOI: 10.3390/ijms21176317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Chuang W, Sharma A, Shukla P, Li G, Mall M, Rajarajan K, Abilez OJ, Hamaguchi R, Wu JC, Wernig M, Wu SM. Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Sci Rep 2017;7:44840. [PMID: 28327614 DOI: 10.1038/srep44840] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
33 Xu F, Yang J, Shang J, Lan F, Li M, Shi L, Shen L, Wang Y, Ge J. MicroRNA-302d promotes the proliferation of human pluripotent stem cell-derived cardiomyocytes by inhibiting LATS2 in the Hippo pathway. Clin Sci (Lond) 2019;133:1387-99. [PMID: 31239293 DOI: 10.1042/CS20190099] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Hiramatsu H, Kobayashi K, Kobayashi K, Haraguchi T, Ino Y, Todo T, Iba H. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep 2017;7:889. [PMID: 28420882 DOI: 10.1038/s41598-017-00982-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
35 Ren J, Han P, Ma X, Farah EN, Bloomekatz J, Zeng XI, Zhang R, Swim MM, Witty AD, Knight HG, Deshpande R, Xu W, Yelon D, Chen S, Chi NC. Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Dev Cell 2019;50:729-743.e5. [PMID: 31402282 DOI: 10.1016/j.devcel.2019.07.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
36 Bertero A, Yiangou L, Brown S, Ortmann D, Pawlowski M, Vallier L. Conditional Manipulation of Gene Function in Human Cells with Optimized Inducible shRNA. Curr Protoc Stem Cell Biol 2018;44:5C.4.1-5C.4.48. [PMID: 29512130 DOI: 10.1002/cpsc.45] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
37 Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ, Gaudette GR, Ott HC. Bioengineering Human Myocardium on Native Extracellular Matrix. Circ Res 2016;118:56-72. [PMID: 26503464 DOI: 10.1161/CIRCRESAHA.115.306874] [Cited by in Crossref: 195] [Cited by in F6Publishing: 78] [Article Influence: 32.5] [Reference Citation Analysis]
38 Tan Y, Richards D, Coyle RC, Yao J, Xu R, Gou W, Wang H, Menick DR, Tian B, Mei Y. Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomater 2017;51:495-504. [PMID: 28087483 DOI: 10.1016/j.actbio.2017.01.029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
39 Matthys OB, Hookway TA, McDevitt TC. Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells. Curr Stem Cell Rep 2016;2:43-51. [PMID: 27330934 DOI: 10.1007/s40778-016-0030-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
40 Thavandiran N, Nunes SS, Xiao Y, Radisic M. Topological and electrical control of cardiac differentiation and assembly. Stem Cell Res Ther 2013;4:14. [PMID: 23425700 DOI: 10.1186/scrt162] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
41 Verma V, Purnamawati K, Manasi, Shim W. Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: A review. Cellular Signalling 2013;25:1096-107. [DOI: 10.1016/j.cellsig.2013.01.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
42 Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019;8:E1536. [PMID: 31795206 DOI: 10.3390/cells8121536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 Nakano A, Nakano H, Smith KA, Palpant NJ. The developmental origins and lineage contributions of endocardial endothelium. Biochim Biophys Acta 2016;1863:1937-47. [PMID: 26828773 DOI: 10.1016/j.bbamcr.2016.01.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
44 Chetty S, Pagliuca FW, Honore C, Kweudjeu A, Rezania A, Melton DA. A simple tool to improve pluripotent stem cell differentiation. Nat Methods. 2013;10:553-556. [PMID: 23584186 DOI: 10.1038/nmeth.2442] [Cited by in Crossref: 122] [Cited by in F6Publishing: 105] [Article Influence: 15.3] [Reference Citation Analysis]
45 Pant T, Mishra MK, Bai X, Ge ZD, Bosnjak ZJ, Dhanasekaran A. Microarray analysis of long non-coding RNA and mRNA expression profiles in diabetic cardiomyopathy using human induced pluripotent stem cell-derived cardiomyocytes. Diab Vasc Dis Res 2019;16:57-68. [PMID: 30482051 DOI: 10.1177/1479164118813888] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
46 Fonoudi H, Ansari H, Abbasalizadeh S, Blue GM, Aghdami N, Winlaw DS, Harvey RP, Bosman A, Baharvand H. Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol. J Vis Exp 2016. [PMID: 27500408 DOI: 10.3791/54276] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
47 Chirikian O, Goodyer WR, Dzilic E, Serpooshan V, Buikema JW, McKeithan W, Wu H, Li G, Lee S, Merk M, Galdos F, Beck A, Ribeiro AJS, Paige S, Mercola M, Wu JC, Pruitt BL, Wu SM. CRISPR/Cas9-based targeting of fluorescent reporters to human iPSCs to isolate atrial and ventricular-specific cardiomyocytes. Sci Rep 2021;11:3026. [PMID: 33542270 DOI: 10.1038/s41598-021-81860-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
48 Efthymiou AG, Chen G, Rao M, Chen G, Boehm M. Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther 2014;14:1333-44. [PMID: 24881868 DOI: 10.1517/14712598.2014.922533] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
49 Bhute VJ, Bao X, Dunn KK, Knutson KR, McCurry EC, Jin G, Lee WH, Lewis S, Ikeda A, Palecek SP. Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics 2017;7:2078-91. [PMID: 28656061 DOI: 10.7150/thno.19390] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
50 Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018;9:44. [PMID: 29482607 DOI: 10.1186/s13287-018-0773-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
51 Li K, Kong Y, Zhang M, Xie F, Liu P, Xu S. Differentiation of pluripotent stem cells for regenerative medicine. Biochemical and Biophysical Research Communications 2016;471:1-4. [DOI: 10.1016/j.bbrc.2016.01.182] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
52 Luo XL, Zhang P, Liu X, Huang S, Rao SL, Ding Q, Yang HT. Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells. Pflugers Arch 2021;473:991-1007. [PMID: 34031754 DOI: 10.1007/s00424-021-02578-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Biagi D, Fantozzi ET, Campos-Oliveira JC, Naghetini MV, Ribeiro AF Jr, Rodrigues S, Ogusuku I, Vanderlinde R, Christie MLA, Mello DB, de Carvalho ACC, Valadares M, Cruvinel E, Dariolli R. In Situ Maturated Early-Stage Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improve Cardiac Function by Enhancing Segmental Contraction in Infarcted Rats. J Pers Med 2021;11:374. [PMID: 34064343 DOI: 10.3390/jpm11050374] [Reference Citation Analysis]
54 Iop L, Dal Sasso E, Menabò R, Di Lisa F, Gerosa G. The Rapidly Evolving Concept of Whole Heart Engineering. Stem Cells Int 2017;2017:8920940. [PMID: 29250121 DOI: 10.1155/2017/8920940] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
55 Ibarra-Ibarra BR, Franco M, Paez A, López EV, Massó F. Improved Efficiency of Cardiomyocyte-Like Cell Differentiation from Rat Adipose Tissue-Derived Mesenchymal Stem Cells with a Directed Differentiation Protocol. Stem Cells Int 2019;2019:8940365. [PMID: 31065283 DOI: 10.1155/2019/8940365] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
56 Randolph LN, Bao X, Zhou C, Lian X. An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives. Sci Rep 2017;7:1549. [PMID: 28484230 DOI: 10.1038/s41598-017-01684-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
57 Ward T, Tai W, Morton S, Impens F, Van Damme P, Van Haver D, Timmerman E, Venturini G, Zhang K, Jang MY, Willcox JAL, Haghighi A, Gelb BD, Chung WK, Goldmuntz E, Porter GA Jr, Lifton RP, Brueckner M, Yost HJ, Bruneau BG, Gorham J, Kim Y, Pereira A, Homsy J, Benson CC, DePalma SR, Varland S, Chen CS, Arnesen T, Gevaert K, Seidman C, Seidman JG. Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency. Circ Res 2021;128:1156-69. [PMID: 33557580 DOI: 10.1161/CIRCRESAHA.120.316966] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
58 Stauske M, Rodriguez Polo I, Haas W, Knorr DY, Borchert T, Streckfuss-Bömeke K, Dressel R, Bartels I, Tiburcy M, Zimmermann WH, Behr R. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells 2020;9:E1349. [PMID: 32485910 DOI: 10.3390/cells9061349] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
59 Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 2014;4:6614. [PMID: 25310989 DOI: 10.1038/srep06614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
60 Fan Y, Ho BX, Pang JKS, Pek NMQ, Hor JH, Ng SY, Soh BS. Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes. Stem Cell Res Ther 2018;9:338. [PMID: 30526659 DOI: 10.1186/s13287-018-1086-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
61 Hofsteen P, Robitaille AM, Strash N, Palpant N, Moon RT, Pabon L, Murry CE. ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2018;2:88-100. [PMID: 29888752 DOI: 10.1016/j.isci.2018.03.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
62 Huber BC, Ransohoff JD, Ransohoff KJ, Riegler J, Ebert A, Kodo K, Gong Y, Sanchez-Freire V, Dey D, Kooreman NG, Diecke S, Zhang WY, Odegaard J, Hu S, Gold JD, Robbins RC, Wu JC. Costimulation-adhesion blockade is superior to cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation. Stem Cells 2013;31:2354-63. [PMID: 24038578 DOI: 10.1002/stem.1501] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
63 Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2017;11:1658-74. [PMID: 26777594 DOI: 10.1002/term.2117] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
64 Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human iPSCs in Cardiovascular Research: Current Approaches in Cardiac Differentiation, Maturation Strategies, and Scalable Production. Cardiovasc Res 2021:cvab115. [PMID: 33757124 DOI: 10.1093/cvr/cvab115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wang J, Hao J, Bai D, Gu Q, Han W, Wang L, Tan Y, Li X, Xue K, Han P, Liu Z, Jia Y, Wu J, Liu L, Wang L, Li W, Liu Z, Zhou Q. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Res Ther 2015;6:223. [PMID: 26564165 DOI: 10.1186/s13287-015-0206-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
66 Jarrell DK, Lennon ML, Jacot JG. Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases 2019;7:E52. [PMID: 31480510 DOI: 10.3390/diseases7030052] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
67 Masumoto H, Yamashita JK. Human iPS Cell-Derived Cardiac Tissue Sheets: a Platform for Cardiac Regeneration. Curr Treat Options Cardiovasc Med 2016;18:65. [PMID: 27637492 DOI: 10.1007/s11936-016-0489-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
68 Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021;14:dmm047522. [PMID: 33787508 DOI: 10.1242/dmm.047522] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Myers FB, Silver JS, Zhuge Y, Beygui RE, Zarins CK, Lee LP, Abilez OJ. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning. Integr Biol (Camb) 2013;5:1495-506. [PMID: 24141327 DOI: 10.1039/c2ib20191g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
70 Anderson DJ, Kaplan DI, Bell KM, Koutsis K, Haynes JM, Mills RJ, Phelan DG, Qian EL, Leitoguinho AR, Arasaratnam D, Labonne T, Ng ES, Davis RP, Casini S, Passier R, Hudson JE, Porrello ER, Costa MW, Rafii A, Curl CL, Delbridge LM, Harvey RP, Oshlack A, Cheung MM, Mummery CL, Petrou S, Elefanty AG, Stanley EG, Elliott DA. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun 2018;9:1373. [PMID: 29636455 DOI: 10.1038/s41467-018-03714-x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 13.3] [Reference Citation Analysis]
71 Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. Curr Treat Options Cardiovasc Med. 2014;16:319. [PMID: 24838687 DOI: 10.1007/s11936-014-0319-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
72 Takemoto Y, Kadota S, Minami I, Otsuka S, Okuda S, Abo M, Punzalan LL, Shen Y, Shiba Y, Uesugi M. Chemical Genetics Reveals a Role of Squalene Synthase in TGFβ Signaling and Cardiomyogenesis. Angew Chem Int Ed Engl 2021. [PMID: 34374184 DOI: 10.1002/anie.202100523] [Reference Citation Analysis]
73 De D, Halder D, Shin I, Kim KK. Small molecule-induced cellular conversion. Chem Soc Rev 2017;46:6241-54. [DOI: 10.1039/c7cs00330g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]
74 Yechikov S, Kao HKJ, Chang CW, Pretto D, Zhang XD, Sun YH, Smithers R, Sirish P, Nolta JA, Chan JW, Chiamvimonvat N, Lieu DK. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res 2020;49:102043. [PMID: 33128951 DOI: 10.1016/j.scr.2020.102043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
75 Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2017;9:513-27. [PMID: 28793247 DOI: 10.1016/j.stemcr.2017.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
76 Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev. 2020;72:320-342. [PMID: 31871214 DOI: 10.1124/pr.116.013003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 50.0] [Reference Citation Analysis]
77 Miklas JW, Nunes SS, Zhang B, Radisic M. Design and fabrication of biological wires. Methods Mol Biol 2014;1181:157-65. [PMID: 25070335 DOI: 10.1007/978-1-4939-1047-2_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
78 Lian X, Bao X, Zilberter M, Westman M, Fisahn A, Hsiao C, Hazeltine LB, Dunn KK, Kamp TJ, Palecek SP. Chemically defined, albumin-free human cardiomyocyte generation. Nat Methods 2015;12:595-6. [PMID: 26125590 DOI: 10.1038/nmeth.3448] [Cited by in Crossref: 90] [Cited by in F6Publishing: 69] [Article Influence: 15.0] [Reference Citation Analysis]
79 Gintant G, Burridge P, Gepstein L, Harding S, Herron T, Hong C, Jalife J, Wu JC. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circ Res 2019;125:e75-92. [PMID: 31533542 DOI: 10.1161/RES.0000000000000291] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
80 Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med. 2017;23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
81 Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E, George AL Jr, Deschênes I. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J Clin Invest 2018;128:1043-56. [PMID: 29431731 DOI: 10.1172/JCI94996] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 11.3] [Reference Citation Analysis]
82 Lam AT, Chen AK, Li J, Birch WR, Reuveny S, Oh SK. Conjoint propagation and differentiation of human embryonic stem cells to cardiomyocytes in a defined microcarrier spinner culture. Stem Cell Res Ther 2014;5:110. [PMID: 25223792 DOI: 10.1186/scrt498] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.1] [Reference Citation Analysis]
83 Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 2015;15:365-75. [PMID: 26318718 DOI: 10.1016/j.scr.2015.08.002] [Cited by in Crossref: 102] [Cited by in F6Publishing: 82] [Article Influence: 17.0] [Reference Citation Analysis]
84 Munarin F, Kant RJ, Rupert CE, Khoo A, Coulombe KLK. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 2020;251:120033. [PMID: 32388033 DOI: 10.1016/j.biomaterials.2020.120033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
85 de Jaime-Soguero A, Abreu de Oliveira WA, Lluis F. The Pleiotropic Effects of the Canonical Wnt Pathway in Early Development and Pluripotency. Genes (Basel) 2018;9:E93. [PMID: 29443926 DOI: 10.3390/genes9020093] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
86 Ebert AD, Kodo K, Liang P, Wu H, Huber BC, Riegler J, Churko J, Lee J, de Almeida P, Lan F, Diecke S, Burridge PW, Gold JD, Mochly-Rosen D, Wu JC. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci Transl Med 2014;6:255ra130. [PMID: 25253673 DOI: 10.1126/scitranslmed.3009027] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 13.2] [Reference Citation Analysis]
87 Fattahi P, Haque A, Son KJ, Guild J, Revzin A. Microfluidic devices, accumulation of endogenous signals and stem cell fate selection. Differentiation 2020;112:39-46. [PMID: 31884176 DOI: 10.1016/j.diff.2019.10.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
88 Kay M, Soltani BM, Aghdaei FH, Ansari H, Baharvand H. Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation. Stem Cell Res Ther 2019;10:191. [PMID: 31248450 DOI: 10.1186/s13287-019-1249-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
89 Gong W, Kwak IY, Koyano-Nakagawa N, Pan W, Garry DJ. TCM visualizes trajectories and cell populations from single cell data. Nat Commun 2018;9:2749. [PMID: 30013097 DOI: 10.1038/s41467-018-05112-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
90 Liu X, Wang S, Guo X, Li Y, Ogurlu R, Lu F, Prondzynski M, de la Serna Buzon S, Ma Q, Zhang D, Wang G, Cotton J, Guo Y, Xiao L, Milan DJ, Xu Y, Schlame M, Bezzerides VJ, Pu WT. Increased Reactive Oxygen Species-Mediated Ca2+/Calmodulin-Dependent Protein Kinase II Activation Contributes to Calcium Handling Abnormalities and Impaired Contraction in Barth Syndrome. Circulation 2021;143:1894-911. [PMID: 33793303 DOI: 10.1161/CIRCULATIONAHA.120.048698] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
91 Bernstein D. Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Platform for Testing For Drug Cardiotoxicity. Prog Pediatr Cardiol 2017;46:2-6. [PMID: 29200805 DOI: 10.1016/j.ppedcard.2017.07.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Guo Y, Dorn T, Kühl SJ, Linnemann A, Rothe M, Pfister AS, Vainio S, Laugwitz KL, Moretti A, Kühl M. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. Dev Biol 2019;449:1-13. [PMID: 30797757 DOI: 10.1016/j.ydbio.2019.02.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
93 Almeida SO, Skelton RJ, Adigopula S, Ardehali R. Arrhythmia in stem cell transplantation. Card Electrophysiol Clin 2015;7:357-70. [PMID: 26002399 DOI: 10.1016/j.ccep.2015.03.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
94 Wolling H, Konze SA, Höfer A, Erdmann J, Pich A, Zweigerdt R, Buettner FFR. Quantitative Secretomics Reveals Extrinsic Signals Involved in Human Pluripotent Stem Cell Cardiomyogenesis. Proteomics 2018;18:1800102. [DOI: 10.1002/pmic.201800102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
95 Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2019;9:920-34. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
96 Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:1216-1220. [PMID: 27127239 DOI: 10.1126/science.aaf1502] [Cited by in Crossref: 216] [Cited by in F6Publishing: 162] [Article Influence: 43.2] [Reference Citation Analysis]
97 Farber G, Qian L. Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities. Curr Cardiol Rep 2020;22:54. [PMID: 32562156 DOI: 10.1007/s11886-020-01322-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
98 Ting S, Lam A, Tong G, Chen A, Wei H, Wu J, Lam YN, Reuveny S, Oh S. Meticulous optimization of cardiomyocyte yields in a 3-stage continuous integrated agitation bioprocess. Stem Cell Research 2018;31:161-73. [DOI: 10.1016/j.scr.2018.07.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
99 Skylar-Scott MA, Uzel SGM, Nam LL, Ahrens JH, Truby RL, Damaraju S, Lewis JA. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv 2019;5:eaaw2459. [PMID: 31523707 DOI: 10.1126/sciadv.aaw2459] [Cited by in Crossref: 208] [Cited by in F6Publishing: 147] [Article Influence: 104.0] [Reference Citation Analysis]
100 Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020;21:E7662. [PMID: 33081233 DOI: 10.3390/ijms21207662] [Reference Citation Analysis]
101 Mills RJ, Hudson JE. Bioengineering adult human heart tissue: How close are we? APL Bioeng 2019;3:010901. [PMID: 31069330 DOI: 10.1063/1.5070106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
102 Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021;10:641. [PMID: 33805763 DOI: 10.3390/cells10030641] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
103 Grancharova T, Gerbin KA, Rosenberg AB, Roco CM, Arakaki JE, DeLizo CM, Dinh SQ, Donovan-Maiye RM, Hirano M, Nelson AM, Tang J, Theriot JA, Yan C, Menon V, Palecek SP, Seelig G, Gunawardane RN. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep 2021;11:15845. [PMID: 34349150 DOI: 10.1038/s41598-021-94732-1] [Reference Citation Analysis]
104 Jiang B, Xiang Z, Ai Z, Wang H, Li Y, Ji W, Li T. Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials 2015;65:103-14. [DOI: 10.1016/j.biomaterials.2015.06.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
105 Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020;11:384. [PMID: 32390874 DOI: 10.3389/fphys.2020.00384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2018;10:eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
107 Guo F, Sun Y, Wang X, Wang H, Wang J, Gong T, Chen X, Zhang P, Su L, Fu G, Su J, Yang S, Lai R, Jiang C, Liang P. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Circ Res. 2019;124:66-78. [PMID: 30582453 DOI: 10.1161/circresaha.118.313518] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
108 Selvakumar D, Clayton ZE, Chong JJH. Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clin Ther 2020;42:1857-79. [PMID: 32943195 DOI: 10.1016/j.clinthera.2020.08.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
109 Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019;40:159-67. [PMID: 31147888 DOI: 10.1007/s10974-019-09518-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
110 Malecki M, Putzer E, Sabo C, Foorohar A, Quach C, Stampe C, Beauchaine M, Malecki R, Tombokan X, Anderson M. Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. Mol Cell Ther 2014;2:13. [PMID: 25132967 DOI: 10.1186/2052-8426-2-13] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
111 Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol 2021;12:607364. [PMID: 33679396 DOI: 10.3389/fphar.2021.607364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
112 Rodrigues GM, Rodrigues CA, Fernandes TG, Diogo MM, Cabral JM. Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies. Biotechnol J 2015;10:1103-14. [PMID: 25851544 DOI: 10.1002/biot.201400535] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
113 Zhang X, Cao H, Bai S, Huo W, Ma Y. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells. Stem Cell Res. 2017;20:21-29. [PMID: 28249229 DOI: 10.1016/j.scr.2017.02.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
114 Später D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development 2014;141:4418-31. [PMID: 25406392 DOI: 10.1242/dev.091538] [Cited by in Crossref: 87] [Cited by in F6Publishing: 72] [Article Influence: 12.4] [Reference Citation Analysis]
115 Yu JK, Liang JA, Franceschi WH, Huang Q, Pashakhanloo F, Sung E, Boyle PM, Trayanova NA. Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovasc Res 2021:cvab140. [PMID: 33881518 DOI: 10.1093/cvr/cvab140] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D. Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 2015;8:81-101. [PMID: 25999743 DOI: 10.2147/SCCAA.S54204] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
117 Qian T, Heaster TM, Houghtaling AR, Sun K, Samimi K, Skala MC. Label-free imaging for quality control of cardiomyocyte differentiation. Nat Commun 2021;12:4580. [PMID: 34321477 DOI: 10.1038/s41467-021-24868-1] [Reference Citation Analysis]
118 Carlson-Stevermer J, Das A, Abdeen AA, Fiflis D, Grindel BI, Saxena S, Akcan T, Alam T, Kletzien H, Kohlenberg L, Goedland M, Dombroe MJ, Saha K. Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nat Commun 2020;11:6277. [PMID: 33293555 DOI: 10.1038/s41467-020-20065-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
119 Glaser DE, Turner WS, Madfis N, Wong L, Zamora J, White N, Reyes S, Burns AB, Gopinathan A, McCloskey KE. Multifactorial Optimizations for Directing Endothelial Fate from Stem Cells. PLoS One 2016;11:e0166663. [PMID: 27907001 DOI: 10.1371/journal.pone.0166663] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
120 Kurokawa YK, Shang MR, Yin RT, George SC. Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicology Letters 2018;285:74-80. [DOI: 10.1016/j.toxlet.2018.01.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
121 Lin Y, Zou J. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells in Fully Chemically Defined Conditions. STAR Protoc 2020;1:100015. [PMID: 32734277 DOI: 10.1016/j.xpro.2020.100015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Shafa M, Panchalingam KM, Walsh T, Richardson T, Baghbaderani BA. Computational fluid dynamics modeling, a novel, and effective approach for developing scalable cell therapy manufacturing processes. Biotechnol Bioeng 2019;116:3228-41. [PMID: 31483482 DOI: 10.1002/bit.27159] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
123 Jacobson EF, Chen Z, Stoukides DM, Nair GG, Hebrok M, Tzanakakis ES. Non-xenogeneic expansion and definitive endoderm differentiation of human pluripotent stem cells in an automated bioreactor. Biotechnol Bioeng 2021;118:979-91. [PMID: 33205831 DOI: 10.1002/bit.27629] [Reference Citation Analysis]
124 Sung TC, Su HC, Ling QD, Kumar SS, Chang Y, Hsu ST, Higuchi A. Efficient differentiation of human pluripotent stem cells into cardiomyocytes on cell sorting thermoresponsive surface. Biomaterials 2020;253:120060. [PMID: 32450407 DOI: 10.1016/j.biomaterials.2020.120060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
125 Siller R, Greenhough S, Naumovska E, Sullivan Gareth J. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports. 2015;4:939-952. [PMID: 25937370 DOI: 10.1016/j.stemcr.2015.04.001] [Cited by in Crossref: 118] [Cited by in F6Publishing: 90] [Article Influence: 19.7] [Reference Citation Analysis]
126 Ma Z, Wang J, Loskill P, Huebsch N, Koo S, Svedlund FL, Marks NC, Hua EW, Grigoropoulos CP, Conklin BR, Healy KE. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 2015;6:7413. [PMID: 26172574 DOI: 10.1038/ncomms8413] [Cited by in Crossref: 96] [Cited by in F6Publishing: 80] [Article Influence: 16.0] [Reference Citation Analysis]
127 Jiang Y, Lian XL. Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioact Mater 2020;5:74-81. [PMID: 31989061 DOI: 10.1016/j.bioactmat.2020.01.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
128 Chong JJ, Murry CE. Cardiac regeneration using pluripotent stem cells--progression to large animal models. Stem Cell Res 2014;13:654-65. [PMID: 25087896 DOI: 10.1016/j.scr.2014.06.005] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
129 Jung JP, Bhuiyan DB, Ogle BM. Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res 2016;20:27. [PMID: 27583168 DOI: 10.1186/s40824-016-0074-2] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 10.0] [Reference Citation Analysis]
130 Rodriguez A, Crespo I, Androsova G, del Sol A. Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET. PLoS One 2015;10:e0127216. [PMID: 26058016 DOI: 10.1371/journal.pone.0127216] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
131 Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, Dräger G, Zweigerdt R, Martin U, Gruh I. The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 2013;34:2463-71. [PMID: 23332176 DOI: 10.1016/j.biomaterials.2012.12.024] [Cited by in Crossref: 94] [Cited by in F6Publishing: 77] [Article Influence: 11.8] [Reference Citation Analysis]
132 Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM, Cabral JMS, Diogo MM. Transcriptomic analysis of 3D Cardiac Differentiation of Human Induced Pluripotent Stem Cells Reveals Faster Cardiomyocyte Maturation Compared to 2D Culture. Sci Rep 2019;9:9229. [PMID: 31239450 DOI: 10.1038/s41598-019-45047-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
133 Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. Annu Rev Pathol 2019;14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
134 Sirish P, Thai PN, Lee JH, Yang J, Zhang XD, Ren L, Li N, Timofeyev V, Lee KSS, Nader CE, Rowland DJ, Yechikov S, Ganaga S, Young N, Lieu DK, Yamoah EN, Hammock BD, Chiamvimonvat N. Suppression of inflammation and fibrosis using soluble epoxide hydrolase inhibitors enhances cardiac stem cell-based therapy. Stem Cells Transl Med 2020;9:1570-84. [PMID: 32790136 DOI: 10.1002/sctm.20-0143] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
135 Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JM. Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochemical and Biophysical Research Communications 2018;499:611-7. [DOI: 10.1016/j.bbrc.2018.03.198] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
136 Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, Yang HT. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23:1119-1132. [PMID: 23896987 DOI: 10.1038/cr.2013.102] [Cited by in Crossref: 93] [Cited by in F6Publishing: 84] [Article Influence: 11.6] [Reference Citation Analysis]
137 Murphy JF, Mayourian J, Stillitano F, Munawar S, Broughton KM, Agullo-Pascual E, Sussman MA, Hajjar RJ, Costa KD, Turnbull IC. Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues. Stem Cell Res Ther 2019;10:373. [PMID: 31801634 DOI: 10.1186/s13287-019-1486-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
138 Kikuchi C, Bienengraeber M, Canfield S, Koopmeiner A, Schäfer R, Bosnjak ZJ, Bai X. Comparison of Cardiomyocyte Differentiation Potential Between Type 1 Diabetic Donor- and Nondiabetic Donor-Derived Induced Pluripotent Stem Cells. Cell Transplant 2015;24:2491-504. [PMID: 25562386 DOI: 10.3727/096368914X685762] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
139 Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, Palecek SP. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv 2017;3:e1701679. [PMID: 29134197 DOI: 10.1126/sciadv.1701679] [Cited by in Crossref: 89] [Cited by in F6Publishing: 74] [Article Influence: 22.3] [Reference Citation Analysis]
140 Salick MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 2014;35:4454-64. [PMID: 24582552 DOI: 10.1016/j.biomaterials.2014.02.001] [Cited by in Crossref: 99] [Cited by in F6Publishing: 79] [Article Influence: 14.1] [Reference Citation Analysis]
141 Dorsey TB, Kim D, Grath A, James D, Dai G. Multivalent biomaterial platform to control the distinct arterial venous differentiation of pluripotent stem cells. Biomaterials 2018;185:1-12. [PMID: 30216805 DOI: 10.1016/j.biomaterials.2018.09.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
142 Nijak A, Saenen J, Labro AJ, Schepers D, Loeys BL, Alaerts M. iPSC-Cardiomyocyte Models of Brugada Syndrome-Achievements, Challenges and Future Perspectives. Int J Mol Sci 2021;22:2825. [PMID: 33802229 DOI: 10.3390/ijms22062825] [Reference Citation Analysis]
143 Ban K, Wile B, Cho KW, Kim S, Song MK, Kim SY, Singer J, Syed A, Yu SP, Wagner M, Bao G, Yoon YS. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports 2015;5:1239-49. [PMID: 26651608 DOI: 10.1016/j.stemcr.2015.10.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
144 Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021;152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Reference Citation Analysis]
145 Bhar A, Haubrock M, Mukhopadhyay A, Wingender E. Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes. BMC Bioinformatics 2015;16:200. [PMID: 26108437 DOI: 10.1186/s12859-015-0635-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
146 Sung JH, Wang YI, Kim JH, Lee JM, Shuler ML. Application of chemical reaction engineering principles to 'body-on-a-chip' systems. AIChE J 2018;64:4351-60. [PMID: 31402795 DOI: 10.1002/aic.16448] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
147 Ryan AJ, Brougham CM, Garciarena CD, Kerrigan SW, O'Brien FJ. Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discov Today 2016;21:1437-45. [PMID: 27117348 DOI: 10.1016/j.drudis.2016.04.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
148 Zanella F, Lyon RC, Sheikh F. Modeling heart disease in a dish: from somatic cells to disease-relevant cardiomyocytes. Trends Cardiovasc Med 2014;24:32-44. [PMID: 24054750 DOI: 10.1016/j.tcm.2013.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
149 Sriram G, Tan JY, Islam I, Rufaihah AJ, Cao T. Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions. Stem Cell Res Ther 2015;6:261. [PMID: 26718617 DOI: 10.1186/s13287-015-0260-5] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 10.7] [Reference Citation Analysis]
150 Fujimori K, Matsumoto T, Kisa F, Hattori N, Okano H, Akamatsu W. Escape from Pluripotency via Inhibition of TGF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells. Stem Cell Reports 2017;9:1675-91. [PMID: 29107593 DOI: 10.1016/j.stemcr.2017.09.024] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
151 Pettinato AM, Yoo D, VanOudenhove J, Chen YS, Cohn R, Ladha FA, Yang X, Thakar K, Romano R, Legere N, Meredith E, Robson P, Regnier M, Cotney JL, Murry CE, Hinson JT. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep 2021;35:109088. [PMID: 33951429 DOI: 10.1016/j.celrep.2021.109088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34:5813-5820. [PMID: 23642535 DOI: 10.1016/j.biomaterials.2013.04.026] [Cited by in Crossref: 370] [Cited by in F6Publishing: 314] [Article Influence: 46.3] [Reference Citation Analysis]
153 Quaranta R, Fell J, Rühle F, Rao J, Piccini I, Araúzo-Bravo MJ, Verkerk AO, Stoll M, Greber B. Revised roles of ISL1 in a hES cell-based model of human heart chamber specification. Elife 2018;7:e31706. [PMID: 29337667 DOI: 10.7554/eLife.31706] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
154 Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254-264. [PMID: 23347562 DOI: 10.1016/j.ceb.2013.01.004] [Cited by in Crossref: 320] [Cited by in F6Publishing: 293] [Article Influence: 40.0] [Reference Citation Analysis]
155 Den Hartogh SC, Schreurs C, Monshouwer-kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R. Dual Reporter MESP1 mCherry/w -NKX2-5 eGFP/w hESCs Enable Studying Early Human Cardiac Differentiation: A Dual Cardiac Reporter hESC Line. Stem Cells 2015;33:56-67. [DOI: 10.1002/stem.1842] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 7.6] [Reference Citation Analysis]
156 Kreutzer J, Viehrig M, Pölönen RP, Zhao F, Ojala M, Aalto-Setälä K, Kallio P. Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes. Biomech Model Mechanobiol 2020;19:291-303. [PMID: 31444593 DOI: 10.1007/s10237-019-01211-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
157 Li XL, Zeng D, Chen Y, Ding L, Li WJ, Wei T, Ou DB, Yan S, Wang B, Zheng QS. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells. Cell Prolif 2017;50. [PMID: 27790820 DOI: 10.1111/cpr.12310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
158 Tzatzalos E, Abilez OJ, Shukla P, Wu JC. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev 2016;96:234-44. [PMID: 26428619 DOI: 10.1016/j.addr.2015.09.010] [Cited by in Crossref: 93] [Cited by in F6Publishing: 77] [Article Influence: 15.5] [Reference Citation Analysis]
159 Chiang MY, Lin YZ, Chang SJ, Shyu WC, Lu HE, Chen SY. Direct Reprogramming of Human Suspension Cells into Mesodermal Cell Lineages via Combined Magnetic Targeting and Photothermal Stimulation by Magnetic Graphene Oxide Complexes. Small 2017;13. [PMID: 28665509 DOI: 10.1002/smll.201700703] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
160 Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, Buettner FFR. Quantitative Assessment of Sialo-Glycoproteins and N-Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. Chembiochem 2017;18:1317-31. [PMID: 28509371 DOI: 10.1002/cbic.201700100] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
161 Rampoldi A, Singh M, Wu Q, Duan M, Jha R, Maxwell JT, Bradner JM, Zhang X, Saraf A, Miller GW, Gibson G, Brown LA, Xu C. Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol Sci 2019;169:280-92. [PMID: 31059573 DOI: 10.1093/toxsci/kfz038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
162 Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, Robles-Diaz D, Coffee M, Göhring G, Dräger G, Pötz O, Joos T, Martinez-Hackert E, Haverich A, Buettner FFR, Martin U, Zweigerdt R. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun 2016;7:13602. [PMID: 27934856 DOI: 10.1038/ncomms13602] [Cited by in Crossref: 65] [Cited by in F6Publishing: 49] [Article Influence: 13.0] [Reference Citation Analysis]
163 Radisic M. From Engineered Tissues and Microfludics to Human Eyes-On-A-Chip. J Ocul Pharmacol Ther 2020;36:4-6. [PMID: 31697576 DOI: 10.1089/jop.2019.0064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
164 Pretorius D, Kahn-Krell AM, LaBarge WC, Lou X, Kannappan R, Pollard AE, Fast VG, Berry JL, Eberhardt AW, Zhang J. Fabrication and characterization of a thick, viable bi-layered stem cell-derived surrogate for future myocardial tissue regeneration. Biomed Mater 2020. [PMID: 33053512 DOI: 10.1088/1748-605X/abc107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
165 Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2021;117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
166 Lin H, Li Q, Lei Y. Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks. Biofabrication 2017;9:025007. [PMID: 28287080 DOI: 10.1088/1758-5090/aa663b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
167 Wang YI, Carmona C, Hickman JJ, Shuler ML. Multiorgan Microphysiological Systems for Drug Development: Strategies, Advances, and Challenges. Adv Healthc Mater 2018;7. [PMID: 29205920 DOI: 10.1002/adhm.201701000] [Cited by in Crossref: 61] [Cited by in F6Publishing: 34] [Article Influence: 15.3] [Reference Citation Analysis]
168 Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. Micromachines (Basel) 2021;12:386. [PMID: 33916254 DOI: 10.3390/mi12040386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Nunes SS, Feric N, Pahnke A, Miklas JW, Li M, Coles J, Gagliardi M, Keller G, Radisic M. Human Stem Cell-Derived Cardiac Model of Chronic Drug Exposure. ACS Biomater Sci Eng 2017;3:1911-21. [DOI: 10.1021/acsbiomaterials.5b00496] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
170 Jha R, Wile B, Wu Q, Morris AH, Maher KO, Wagner MB, Bao G, Xu C. Molecular beacon-based detection and isolation of working-type cardiomyocytes derived from human pluripotent stem cells. Biomaterials 2015;50:176-85. [PMID: 25736507 DOI: 10.1016/j.biomaterials.2015.01.043] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
171 Perry TR, Roberts ML, Sunkara B, Maddula R, McLeish T, Gomez J, Lucas J, Rayan D, Patel S, Liang M, Bosnjak ZJ, Brown SA. Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Curr Oncol Rep 2021;23:77. [PMID: 33937943 DOI: 10.1007/s11912-021-01066-2] [Reference Citation Analysis]
172 Acun A, Nguyen TD, Zorlutuna P. In vitro aged, hiPSC-origin engineered heart tissue models with age-dependent functional deterioration to study myocardial infarction. Acta Biomater 2019;94:372-91. [PMID: 31146032 DOI: 10.1016/j.actbio.2019.05.064] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
173 Xu J, Gruber PJ, Chien KR. SMAD4 Is Essential for Human Cardiac Mesodermal Precursor Cell Formation. Stem Cells 2019;37:216-25. [PMID: 30376214 DOI: 10.1002/stem.2943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
174 Tu C, Cunningham NJ, Zhang M, Wu JC. Human Induced Pluripotent Stem Cells as a Screening Platform for Drug-Induced Vascular Toxicity. Front Pharmacol 2021;12:613837. [PMID: 33790786 DOI: 10.3389/fphar.2021.613837] [Reference Citation Analysis]
175 Wang Z, Huang J. Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines. Appl Biochem Biotechnol 2019;189:396-410. [PMID: 31025171 DOI: 10.1007/s12010-019-03012-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
176 Low LA, Tagle DA. Organs-on-chips: Progress, challenges, and future directions. Exp Biol Med (Maywood) 2017;242:1573-8. [PMID: 28343437 DOI: 10.1177/1535370217700523] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
177 Huang NF, Serpooshan V, Morris VB, Sayed N, Pardon G, Abilez OJ, Nakayama KH, Pruitt BL, Wu SM, Yoon YS, Zhang J, Wu JC. Big bottlenecks in cardiovascular tissue engineering. Commun Biol. 2018;1:199. [PMID: 30480100 DOI: 10.1038/s42003-018-0202-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
178 Acimovic I, Vilotic A, Pesl M, Lacampagne A, Dvorak P, Rotrekl V, Meli AC. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomed Res Int 2014;2014:512831. [PMID: 24800237 DOI: 10.1155/2014/512831] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
179 Kuroda T, Yasuda S, Tachi S, Matsuyama S, Kusakawa S, Tano K, Miura T, Matsuyama A, Sato Y. SALL3 expression balance underlies lineage biases in human induced pluripotent stem cell differentiation. Nat Commun. 2019;10:2175. [PMID: 31092818 DOI: 10.1038/s41467-019-09511-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
180 Lee JA, An J, Kang TM, De D, Kim KK. Discovery of Natural Compounds Promoting Cardiomyocyte Differentiation. Stem Cells Dev 2019;28:13-27. [PMID: 30358491 DOI: 10.1089/scd.2018.0153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
181 Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, Aggarwal P, Zhang B, Conant G, Ronaldson-Bouchard K, Pahnke A, Protze S, Lee JH, Davenport Huyer L, Jekic D, Wickeler A, Naguib HE, Keller GM, Vunjak-Novakovic G, Broeckel U, Backx PH, Radisic M. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell. 2019;176:913-927.e18. [PMID: 30686581 DOI: 10.1016/j.cell.2018.11.042] [Cited by in Crossref: 168] [Cited by in F6Publishing: 129] [Article Influence: 84.0] [Reference Citation Analysis]
182 Li T, He Z, Zhang X, Tian M, Jiang K, Cheng G, Wang Y. The status of MAPK cascades contributes to the induction and activation of Gata4 and Nkx2.5 during the stepwise process of cardiac differentiation. Cell Signal 2019;54:17-26. [PMID: 30471465 DOI: 10.1016/j.cellsig.2018.11.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
183 Lu Q, Liu Y, Wang Y, Wang W, Yang Z, Li T, Tian Y, Chen P, Ma K, Jia Z, Zhou C. Rapamycin efficiently promotes cardiac differentiation of mouse embryonic stem cells. Biosci Rep 2017;37:BSR20160552. [PMID: 28396518 DOI: 10.1042/BSR20160552] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
184 Xu XQ, Sun W. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes. J Cell Biochem 2013;114:39-46. [PMID: 22903726 DOI: 10.1002/jcb.24359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
185 Talkhabi M, Pahlavan S, Aghdami N, Baharvand H. Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochem Biophys Res Commun 2015;463:699-705. [PMID: 26047705 DOI: 10.1016/j.bbrc.2015.05.127] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
186 Schade D, Plowright AT. Medicinal Chemistry Approaches to Heart Regeneration. J Med Chem 2015;58:9451-79. [DOI: 10.1021/acs.jmedchem.5b00446] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
187 Besser RR, Ishahak M, Mayo V, Carbonero D, Claure I, Agarwal A. Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes. Theranostics 2018;8:124-40. [PMID: 29290797 DOI: 10.7150/thno.19441] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
188 Lantigua D, Kelly YN, Unal B, Camci-Unal G. Engineered Paper-Based Cell Culture Platforms. Adv Healthc Mater 2017;6. [PMID: 29076283 DOI: 10.1002/adhm.201700619] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
189 Luo Y, Liu C, Cerbini T, San H, Lin Y, Chen G, Rao MS, Zou J. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med 2014;3:821-35. [PMID: 24833591 DOI: 10.5966/sctm.2013-0212] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
190 Judd J, Lovas J, Huang GN. Isolation, Culture and Transduction of Adult Mouse Cardiomyocytes. J Vis Exp 2016. [PMID: 27685811 DOI: 10.3791/54012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
191 Qiu XX, Liu Y, Zhang YF, Guan YN, Jia QQ, Wang C, Liang H, Li YQ, Yang HT, Qin YW, Huang S, Zhao XX, Jing Q. Rapamycin and CHIR99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53-Dependent Apoptosis. J Am Heart Assoc 2017;6:e005295. [PMID: 28971953 DOI: 10.1161/JAHA.116.005295] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
192 He J, Rong Z, Fu X, Xu Y. A Safety Checkpoint to Eliminate Cancer Risk of the Immune Evasive Cells Derived from Human Embryonic Stem Cells. Stem Cells 2017;35:1154-61. [PMID: 28090751 DOI: 10.1002/stem.2568] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
193 Jackman CP, Carlson AL, Bursac N. Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 2016;111:66-79. [PMID: 27723557 DOI: 10.1016/j.biomaterials.2016.09.024] [Cited by in Crossref: 111] [Cited by in F6Publishing: 95] [Article Influence: 22.2] [Reference Citation Analysis]
194 Jiang Y, Zhou Y, Bao X, Chen C, Randolph LN, Du J, Lian XL. An Ultrasensitive Calcium Reporter System via CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. iScience 2018;9:27-35. [PMID: 30368079 DOI: 10.1016/j.isci.2018.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
195 Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016;5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
196 Maillet A, Tan K, Chai X, Sadananda SN, Mehta A, Ooi J, Hayden MR, Pouladi MA, Ghosh S, Shim W, Brunham LR. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Sci Rep 2016;6:25333. [PMID: 27142468 DOI: 10.1038/srep25333] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 15.8] [Reference Citation Analysis]
197 Li WY, Song YL, Xiong CJ, Lu PQ, Xue LX, Yao CX, Wang WP, Zhang SF, Zhang SF, Wei QX, Zhang YY, Zhao JM, Zang MX. Insulin induces proliferation and cardiac differentiation of P19CL6 cells in a dose-dependent manner. Dev Growth Differ 2013;55:676-86. [PMID: 24020834 DOI: 10.1111/dgd.12075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
198 Wu C, Arora P, Agha O, Hurst LA, Allen K, Nathan DI, Hu D, Jiramongkolchai P, Smith JG, Melander O, Trenson S, Janssens SP, Domian I, Wang TJ, Bloch KD, Buys ES, Bloch DB, Newton-Cheh C. Novel MicroRNA Regulators of Atrial Natriuretic Peptide Production. Mol Cell Biol 2016;36:1977-87. [PMID: 27185878 DOI: 10.1128/MCB.01114-15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
199 Martinez-Fernandez A, Nelson TJ, Reyes S, Alekseev AE, Secreto F, Perez-Terzic C, Beraldi R, Sung HK, Nagy A, Terzic A. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes. Circ Cardiovasc Genet 2014;7:667-76. [PMID: 25077947 DOI: 10.1161/CIRCGENETICS.113.000298] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
200 Hermsen J, Brown ME. Humanized Mouse Models for Evaluation of PSC Immunogenicity. Curr Protoc Stem Cell Biol. 2020;54:e113. [PMID: 32588980 DOI: 10.1002/cpsc.113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 Yu MS, Spiering S, Colas AR. Generation of First Heart Field-like Cardiac Progenitors and Ventricular-like Cardiomyocytes from Human Pluripotent Stem Cells. J Vis Exp 2018. [PMID: 29985326 DOI: 10.3791/57688] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
202 Korolj A, Wang EY, Civitarese RA, Radisic M. Biophysical stimulation for in vitro engineering of functional cardiac tissues. Clin Sci (Lond) 2017;131:1393-404. [PMID: 28645929 DOI: 10.1042/CS20170055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
203 Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek SP. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS One 2013;8:e60016. [PMID: 23527294 DOI: 10.1371/journal.pone.0060016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
204 den Hartogh SC, Wolstencroft K, Mummery CL, Passier R. A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors. Sci Rep 2016;6:19386. [PMID: 26783251 DOI: 10.1038/srep19386] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
205 Xie Y, Wang Q, Gao N, Wu F, Lan F, Zhang F, Jin L, Huang Z, Ge J, Wang H, Wang Y. MircroRNA-10b Promotes Human Embryonic Stem Cell-Derived Cardiomyocyte Proliferation via Novel Target Gene LATS1. Mol Ther Nucleic Acids 2020;19:437-45. [PMID: 31902743 DOI: 10.1016/j.omtn.2019.11.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
206 Mandrycky CJ, Williams NP, Batalov I, El-Nachef D, de Bakker BS, Davis J, Kim DH, DeForest CA, Zheng Y, Stevens KR, Sniadecki NJ. Engineering Heart Morphogenesis. Trends Biotechnol 2020;38:835-45. [PMID: 32673587 DOI: 10.1016/j.tibtech.2020.01.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
207 Zhao Y, Feric NT, Thavandiran N, Nunes SS, Radisic M. The role of tissue engineering and biomaterials in cardiac regenerative medicine. Can J Cardiol 2014;30:1307-22. [PMID: 25442432 DOI: 10.1016/j.cjca.2014.08.027] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
208 Negro A, Boehm M. Cardiomyocyte maturation: It takes a village to raise a kid. J Mol Cell Cardiol 2014;74:193-5. [PMID: 24874422 DOI: 10.1016/j.yjmcc.2014.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
209 Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 2015;290:3121-36. [PMID: 25488666 DOI: 10.1074/jbc.M114.628628] [Cited by in Crossref: 60] [Cited by in F6Publishing: 32] [Article Influence: 8.6] [Reference Citation Analysis]
210 Ye L, Zhang S, Greder L, Dutton J, Keirstead SA, Lepley M, Zhang L, Kaufman D, Zhang J. Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS One 2013;8:e53764. [PMID: 23326500 DOI: 10.1371/journal.pone.0053764] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 5.5] [Reference Citation Analysis]
211 Hoang P, Wang J, Conklin BR, Healy KE, Ma Z. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat Protoc. 2018;13:723-737. [PMID: 29543795 DOI: 10.1038/nprot.2018.006] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 19.7] [Reference Citation Analysis]
212 Petkov S, Hyttel P, Niemann H. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells. Cell Reprogram. 2014;16:235-240. [PMID: 24960205 DOI: 10.1089/cell.2014.0010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
213 Lin H, Li Q, Lei Y. An Integrated Miniature Bioprocessing for Personalized Human Induced Pluripotent Stem Cell Expansion and Differentiation into Neural Stem Cells. Sci Rep 2017;7:40191. [PMID: 28057917 DOI: 10.1038/srep40191] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
214 Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021;9:658088. [PMID: 34055788 DOI: 10.3389/fcell.2021.658088] [Reference Citation Analysis]
215 Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci Rep 2017;7:4566. [PMID: 28676704 DOI: 10.1038/s41598-017-05018-4] [Cited by in Crossref: 118] [Cited by in F6Publishing: 92] [Article Influence: 29.5] [Reference Citation Analysis]
216 Bayzigitov DR, Medvedev SP, Dementyeva EV, Bayramova SA, Pokushalov EA, Karaskov AM, Zakian SM. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling. Cardiol Res Pract 2016;2016:3582380. [PMID: 27110425 DOI: 10.1155/2016/3582380] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
217 Ebrahimi B. Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen 2015;4:10. [PMID: 26566431 DOI: 10.1186/s13619-015-0024-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
218 Wu H, Lee J, Vincent LG, Wang Q, Gu M, Lan F, Churko JM, Sallam KI, Matsa E, Sharma A, Gold JD, Engler AJ, Xiang YK, Bers DM, Wu JC. Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell 2015;17:89-100. [PMID: 26095046 DOI: 10.1016/j.stem.2015.04.020] [Cited by in Crossref: 110] [Cited by in F6Publishing: 97] [Article Influence: 18.3] [Reference Citation Analysis]
219 McMinn P, Guckenberger DJ, Beebe DJ. Induced Pluripotent Stem Cells on a Chip: A Self-Contained, Accessible, Pipette-less iPSC Culturing and Differentiation Kit. SLAS Technol 2021;26:80-91. [PMID: 32552316 DOI: 10.1177/2472630320921173] [Reference Citation Analysis]
220 Zhan Y, Sun X, Li B, Cai H, Xu C, Liang Q, Lu C, Qian R, Chen S, Yin L, Sheng W, Huang G, Sun A, Ge J, Sun N. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology 2018;117:49-61. [DOI: 10.1016/j.yjmcc.2018.02.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
221 Budniatzky I, Gepstein L. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med. 2014;3:448-457. [PMID: 24591731 DOI: 10.5966/sctm.2013-0163] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
222 Orlova VV, van den Hil FE, Petrus-Reurer S, Drabsch Y, Ten Dijke P, Mummery CL. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc 2014;9:1514-31. [PMID: 24874816 DOI: 10.1038/nprot.2014.102] [Cited by in Crossref: 191] [Cited by in F6Publishing: 163] [Article Influence: 27.3] [Reference Citation Analysis]
223 Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. Tissue Eng Part B Rev 2015;21:377-92. [PMID: 25813860 DOI: 10.1089/ten.TEB.2014.0662] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
224 Raphael R, Purushotham D, Gastonguay C, Chesnik MA, Kwok WM, Wu HE, Shah SJ, Mirza SP, Strande JL. Combining patient proteomics and in vitro cardiomyocyte phenotype testing to identify potential mediators of heart failure with preserved ejection fraction. J Transl Med 2016;14:18. [PMID: 26792056 DOI: 10.1186/s12967-016-0774-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
225 Mo B, Wu X, Wang X, Xie J, Ye Z, Li L. miR-30e-5p Mitigates Hypoxia-Induced Apoptosis in Human Stem Cell-Derived Cardiomyocytes by Suppressing Bim. Int J Biol Sci 2019;15:1042-51. [PMID: 31182924 DOI: 10.7150/ijbs.31099] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
226 Csöbönyeiová M, Polák Š, Danišovič L. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration. Exp Biol Med (Maywood) 2015;240:549-56. [PMID: 25595188 DOI: 10.1177/1535370214565976] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
227 Nandal A, Mallon B, Telugu BP. Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System. J Vis Exp 2017. [PMID: 29155789 DOI: 10.3791/56260] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
228 Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci Adv 2017;3:e1602883. [PMID: 28580421 DOI: 10.1126/sciadv.1602883] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
229 Jha R, Li D, Wu Q, Ferguson KE, Forghani P, Gibson GC, Xu C. A long non-coding RNA GATA6-AS1 adjacent to GATA6 is required for cardiomyocyte differentiation from human pluripotent stem cells. FASEB J 2020;34:14336-52. [PMID: 32888237 DOI: 10.1096/fj.202000206R] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
230 Taniguchi J, Pandian GN, Hidaka T, Hashiya K, Bando T, Kim KK, Sugiyama H. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res 2017;45:9219-28. [PMID: 28934500 DOI: 10.1093/nar/gkx693] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
231 Melby JA, de Lange WJ, Zhang J, Roberts DS, Mitchell SD, Tucholski T, Kim G, Kyrvasilis A, McIlwain SJ, Kamp TJ, Ralphe JC, Ge Y. Functionally Integrated Top-Down Proteomics for Standardized Assessment of Human Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues. J Proteome Res 2021;20:1424-33. [PMID: 33395532 DOI: 10.1021/acs.jproteome.0c00830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
232 Numaga-Tomita T, Kitajima N, Kuroda T, Nishimura A, Miyano K, Yasuda S, Kuwahara K, Sato Y, Ide T, Birnbaumer L, Sumimoto H, Mori Y, Nishida M. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Sci Rep 2016;6:39383. [PMID: 27991560 DOI: 10.1038/srep39383] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
233 Hulot JS, Stillitano F, Salem JE, Kovacic JC, Fuster V, Hajjar RJ. Considerations for pre-clinical models and clinical trials of pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2014;5:1. [PMID: 24405778 DOI: 10.1186/scrt390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
234 Bastakoty D, Saraswati S, Joshi P, Atkinson J, Feoktistov I, Liu J, Harris JL, Young PP. Temporary, Systemic Inhibition of the WNT/β-Catenin Pathway promotes Regenerative Cardiac Repair following Myocardial Infarct. Cell Stem Cells Regen Med 2016;2. [PMID: 28042617 DOI: 10.16966/2472-6990.111] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
235 Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, Bernstein I, Zheng Y, Murry CE. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 2017;12:15-31. [PMID: 27906170 DOI: 10.1038/nprot.2016.153] [Cited by in Crossref: 92] [Cited by in F6Publishing: 72] [Article Influence: 18.4] [Reference Citation Analysis]
236 Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Roa Lara A, Kensah G, Gruh I, Haverich A, Martin U, Zweigerdt R. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 2014;3:1132-46. [PMID: 25454631 DOI: 10.1016/j.stemcr.2014.09.017] [Cited by in Crossref: 148] [Cited by in F6Publishing: 119] [Article Influence: 21.1] [Reference Citation Analysis]
237 Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2021;117:712-26. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
238 Giobbe GG, Michielin F, Luni C, Giulitti S, Martewicz S, Dupont S, Floreani A, Elvassore N. Functional differentiation of human pluripotent stem cells on a chip. Nat Methods 2015;12:637-40. [DOI: 10.1038/nmeth.3411] [Cited by in Crossref: 89] [Cited by in F6Publishing: 71] [Article Influence: 14.8] [Reference Citation Analysis]
239 Tao Z, Loo S, Su L, Tan S, Tee G, Gan SU, Zhang J, Chen X, Ye L. Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction. Cardiovasc Res 2021;117:1578-91. [PMID: 32666104 DOI: 10.1093/cvr/cvaa215] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
240 Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015;10:139-46. [PMID: 26379417 DOI: 10.4137/BMI.S20058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
241 Strober BJ, Elorbany R, Rhodes K, Krishnan N, Tayeb K, Battle A, Gilad Y. Dynamic genetic regulation of gene expression during cellular differentiation. Science 2019;364:1287-90. [PMID: 31249060 DOI: 10.1126/science.aaw0040] [Cited by in Crossref: 54] [Cited by in F6Publishing: 24] [Article Influence: 54.0] [Reference Citation Analysis]
242 Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017;74:1969-83. [PMID: 28050627 DOI: 10.1007/s00018-016-2448-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
243 Sun H, Wang X, Liu K, Guo M, Zhang Y, Ying QL, Ye S. β-catenin coordinates with Jup and the TCF1/GATA6 axis to regulate human embryonic stem cell fate. Dev Biol 2017;431:272-81. [PMID: 28943339 DOI: 10.1016/j.ydbio.2017.09.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
244 Miller DC, Genehr C, Telugu NS, Kurths S, Diecke S. Simple Workflow and Comparison of Media for hPSC‐Cardiomyocyte Cryopreservation and Recovery. Current Protocols in Stem Cell Biology 2020;55. [DOI: 10.1002/cpsc.125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
245 Bejoy J, Bijonowski B, Marzano M, Jeske R, Ma T, Li Y. Wnt-Notch Signaling Interactions During Neural and Astroglial Patterning of Human Stem Cells. Tissue Eng Part A 2020;26:419-31. [PMID: 31686622 DOI: 10.1089/ten.TEA.2019.0202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
246 Pretorius D, Kahn-Krell AM, Lou X, Fast VG, Berry JL, Kamp TJ, Zhang J. Layer-By-Layer Fabrication of Large and Thick Human Cardiac Muscle Patch Constructs With Superior Electrophysiological Properties. Front Cell Dev Biol 2021;9:670504. [PMID: 33937272 DOI: 10.3389/fcell.2021.670504] [Reference Citation Analysis]
247 Liu Y, Chen L, Diaz AD, Benham A, Xu X, Wijaya CS, Fa'ak F, Luo W, Soibam B, Azares A, Yu W, Lyu Q, Stewart MD, Gunaratne P, Cooney A, McConnell BK, Schwartz RJ. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Sci Rep. 2016;6:31457. [PMID: 27538477 DOI: 10.1038/srep31457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
248 Wang W, Lu G, Liu HB, Xiong Z, Leung HD, Cao R, Pang AL, Su X, Law PWN, Zhao Z, Chen ZJ, Chan WY. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh) 2021;:e2100849. [PMID: 34247447 DOI: 10.1002/advs.202100849] [Reference Citation Analysis]
249 Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019;10:934. [PMID: 31555128 DOI: 10.3389/fphar.2019.00934] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
250 Kijlstra JD, Hu D, Mittal N, Kausel E, van der Meer P, Garakani A, Domian IJ. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2015;5:1226-38. [PMID: 26626178 DOI: 10.1016/j.stemcr.2015.10.017] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 6.7] [Reference Citation Analysis]
251 Safaeinejad Z, Kazeminasab F, Kiani-esfahani A, Ghaedi K, Nasr-esfahani MH. Multi-effects of Resveratrol on stem cell characteristics: Effective dose, time, cell culture conditions and cell type-specific responses of stem cells to Resveratrol. European Journal of Medicinal Chemistry 2018;155:651-7. [DOI: 10.1016/j.ejmech.2018.06.037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
252 Jiang Y, Bao X, Lian XL. A dual cardiomyocyte reporter model derived from human pluripotent stem cells. Stem Cell Res Ther 2021;12:305. [PMID: 34051863 DOI: 10.1186/s13287-021-02341-6] [Reference Citation Analysis]
253 Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S, Maier LS, Krause A, Dräger G, Ochs M, Haverich A, Gruh I, Martin U. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 2013;34:1134-46. [PMID: 23103664 DOI: 10.1093/eurheartj/ehs349] [Cited by in Crossref: 133] [Cited by in F6Publishing: 115] [Article Influence: 14.8] [Reference Citation Analysis]
254 Gaspari E, Franke A, Robles-Diaz D, Zweigerdt R, Roeder I, Zerjatke T, Kempf H. Paracrine mechanisms in early differentiation of human pluripotent stem cells: Insights from a mathematical model. Stem Cell Res 2018;32:1-7. [PMID: 30145492 DOI: 10.1016/j.scr.2018.07.025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
255 Mei Y. Microarrayed Materials for Stem Cells. Mater Today (Kidlington) 2012;15. [PMID: 24311967 DOI: 10.1016/S1369-7021(12)70196-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
256 Pandey PR, Tomney A, Woon MT, Uth N, Shafighi F, Ngabo I, Vallabhaneni H, Levinson Y, Abraham E, Friedrich Ben-Nun I. End-to-End Platform for Human Pluripotent Stem Cell Manufacturing. Int J Mol Sci 2019;21:E89. [PMID: 31877727 DOI: 10.3390/ijms21010089] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
257 Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015;10:77-90. [PMID: 26052226 DOI: 10.4137/BMI.S20313] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
258 Gnecchi M, Sala L, Schwartz PJ. Precision Medicine and cardiac channelopathies: when dreams meet reality. Eur Heart J 2021;42:1661-75. [PMID: 33686390 DOI: 10.1093/eurheartj/ehab007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
259 Puig-Sanvicens VA, Semino CE, Zur Nieden NI. Cardiac differentiation potential of human induced pluripotent stem cells in a 3D self-assembling peptide scaffold. Differentiation 2015;90:101-10. [PMID: 26707885 DOI: 10.1016/j.diff.2015.11.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
260 Casini S, Verkerk AO, Remme CA. Human iPSC-Derived Cardiomyocytes for Investigation of Disease Mechanisms and Therapeutic Strategies in Inherited Arrhythmia Syndromes: Strengths and Limitations. Cardiovasc Drugs Ther 2017;31:325-44. [PMID: 28721524 DOI: 10.1007/s10557-017-6735-0] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 13.3] [Reference Citation Analysis]
261 Fan C, Oduk Y, Zhao M, Lou X, Tang Y, Pretorius D, Valarmathi MT, Walcott GP, Yang J, Menasche P, Krishnamurthy P, Zhu W, Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight 2020;5:132796. [PMID: 32453715 DOI: 10.1172/jci.insight.132796] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
262 Geng Y, Zhao Y, Schuster LC, Feng B, Lynn DA, Austin KM, Stoklosa JD, Morrison JD. A Chemical Biology Study of Human Pluripotent Stem Cells Unveils HSPA8 as a Key Regulator of Pluripotency. Stem Cell Reports 2015;5:1143-54. [PMID: 26549849 DOI: 10.1016/j.stemcr.2015.09.023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
263 Heiderscheit EA, Eguchi A, Spurgat MC, Ansari AZ. Reprogramming cell fate with artificial transcription factors. FEBS Lett 2018;592:888-900. [PMID: 29389011 DOI: 10.1002/1873-3468.12993] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
264 An SM, Ding QP, Li LS. Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and Hedgehog pathways. Acta Pharmacol Sin 2013;34:777-83. [PMID: 23708555 DOI: 10.1038/aps.2013.64] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
265 Whiffin N, Armean IM, Kleinman A, Marshall JL, Minikel EV, Goodrich JK, Quaife NM, Cole JB, Wang Q, Karczewski KJ, Cummings BB, Francioli L, Laricchia K, Guan A, Alipanahi B, Morrison P, Baptista MAS, Merchant KM, Ware JS, Havulinna AS, Iliadou B, Lee JJ, Nadkarni GN, Whiteman C, Daly M, Esko T, Hultman C, Loos RJF, Milani L, Palotie A, Pato C, Pato M, Saleheen D, Sullivan PF, Alföldi J, Cannon P, MacArthur DG; Genome Aggregation Database Production Team., Genome Aggregation Database Consortium., 23andMe Research Team. The effect of LRRK2 loss-of-function variants in humans. Nat Med 2020;26:869-77. [PMID: 32461697 DOI: 10.1038/s41591-020-0893-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 36.0] [Reference Citation Analysis]
266 Thavandiran N, Dubois N, Mikryukov A, Massé S, Beca B, Simmons CA, Deshpande VS, McGarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 2013;110:E4698-707. [PMID: 24255110 DOI: 10.1073/pnas.1311120110] [Cited by in Crossref: 190] [Cited by in F6Publishing: 161] [Article Influence: 23.8] [Reference Citation Analysis]
267 Ma R, Liang J, Huang W, Guo L, Cai W, Wang L, Paul C, Yang HT, Kim HW, Wang Y. Electrical Stimulation Enhances Cardiac Differentiation of Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy. Antioxid Redox Signal 2018;28:371-84. [PMID: 27903111 DOI: 10.1089/ars.2016.6766] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
268 Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 2014;6:951-960. [PMID: 24561253 DOI: 10.1016/j.celrep.2014.01.038] [Cited by in Crossref: 123] [Cited by in F6Publishing: 105] [Article Influence: 17.6] [Reference Citation Analysis]
269 Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021;153:e202012787. [PMID: 33856419 DOI: 10.1085/jgp.202012787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
270 Vagnozzi RJ, Molkentin JD, Houser SR. New Myocyte Formation in the Adult Heart: Endogenous Sources and Therapeutic Implications. Circ Res. 2018;123:159-176. [PMID: 29976685 DOI: 10.1161/circresaha.118.311208] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
271 Bektik E, Dennis A, Prasanna P, Madabhushi A, Fu JD. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes. PLoS One 2017;12:e0183000. [PMID: 28796841 DOI: 10.1371/journal.pone.0183000] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
272 Aigha I, Raynaud C. Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge. Glob Cardiol Sci Pract 2016;2016:e201606. [PMID: 29043256 DOI: 10.21542/gcsp.2016.6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
273 Reichman DE, Park L, Man L, Redmond D, Chao K, Harvey RP, Taketo MM, Rosenwaks Z, James D. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development 2018;145:dev159905. [PMID: 29217753 DOI: 10.1242/dev.159905] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
274 Lin H, Du Q, Li Q, Wang O, Wang Z, Liu K, Akert L, Zhang C, Chung S, Duan B, Lei Y. Differentiating human pluripotent stem cells into vascular smooth muscle cells in three dimensional thermoreversible hydrogels. Biomater Sci 2018;7:347-61. [PMID: 30483691 DOI: 10.1039/c8bm01128a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
275 Prajapati C, Ojala M, Lappi H, Aalto-Setälä K, Pekkanen-Mattila M. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods. Stem Cell Res 2021;51:102176. [PMID: 33485184 DOI: 10.1016/j.scr.2021.102176] [Reference Citation Analysis]
276 Rupert CE, Coulombe KL. The roles of neuregulin-1 in cardiac development, homeostasis, and disease. Biomark Insights 2015;10:1-9. [PMID: 25922571 DOI: 10.4137/BMI.S20061] [Cited by in Crossref: 6] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
277 Connell JP, Ruano R, Jacot JG. Amniotic fluid-derived stem cells demonstrate limited cardiac differentiation following small molecule-based modulation of Wnt signaling pathway. Biomed Mater 2015;10:034103. [PMID: 25784677 DOI: 10.1088/1748-6041/10/3/034103] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
278 Zanella F, Sheikh F. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells. Methods Mol Biol 2016;1353:147-62. [PMID: 25520292 DOI: 10.1007/7651_2014_172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
279 Liu J, He J, Liu J, Ma X, Chen Q, Lawrence N, Zhu W, Xu Y, Chen S. Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting 2019;13:e00040. [PMID: 31572807 DOI: 10.1016/j.bprint.2019.e00040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
280 Bao X, Lian X, Dunn KK, Shi M, Han T, Qian T, Bhute VJ, Canfield SG, Palecek SP. Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells. Stem Cell Res 2015;15:122-9. [PMID: 26042795 DOI: 10.1016/j.scr.2015.05.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 8.5] [Reference Citation Analysis]
281 Przybyla L, Lakins JN, Weaver VM. Tissue Mechanics Orchestrate Wnt-Dependent Human Embryonic Stem Cell Differentiation. Cell Stem Cell 2016;19:462-75. [PMID: 27452175 DOI: 10.1016/j.stem.2016.06.018] [Cited by in Crossref: 94] [Cited by in F6Publishing: 79] [Article Influence: 18.8] [Reference Citation Analysis]
282 Chow M, Boheler KR, Li RA. Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther 2013;4:97. [PMID: 23953772 DOI: 10.1186/scrt308] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
283 Turaga D, Matthys OB, Hookway TA, Joy DA, Calvert M, McDevitt TC. Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. Tissue Eng Part C Methods 2020;26:207-15. [PMID: 32111148 DOI: 10.1089/ten.TEC.2020.0020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
284 Chour T, Tian L, Lau E, Thomas D, Itzhaki I, Malak O, Zhang JZ, Qin X, Wardak M, Liu Y, Chandy M, Black KE, Lam MP, Neofytou E, Wu JC. Method for selective ablation of undifferentiated human pluripotent stem cell populations for cell-based therapies. JCI Insight 2021;6:142000. [PMID: 33830086 DOI: 10.1172/jci.insight.142000] [Reference Citation Analysis]
285 Rao J, Pfeiffer MJ, Frank S, Adachi K, Piccini I, Quaranta R, Araúzo-Bravo M, Schwarz J, Schade D, Leidel S, Schöler HR, Seebohm G, Greber B. Stepwise Clearance of Repressive Roadblocks Drives Cardiac Induction in Human ESCs. Cell Stem Cell 2016;18:341-53. [PMID: 26748419 DOI: 10.1016/j.stem.2015.11.019] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
286 Li M, Izpisua Belmonte JC. Mending a Faltering Heart. Circ Res 2016;118:344-51. [DOI: 10.1161/circresaha.115.306820] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
287 Yamoah MA, Moshref M, Sharma J, Chen WC, Ledford HA, Lee JH, Chavez KS, Wang W, López JE, Lieu DK, Sirish P, Zhang XD. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. Int J Nanomedicine 2018;13:6073-8. [PMID: 30323594 DOI: 10.2147/IJN.S172254] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
288 Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021;157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
289 Qasim M, Haq F, Kang MH, Kim JH. 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomedicine 2019;14:1311-33. [PMID: 30863063 DOI: 10.2147/IJN.S189587] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 14.5] [Reference Citation Analysis]
290 Netsrithong R, Suwanpitak S, Boonkaew B, Trakarnsanga K, Chang LJ, Tipgomut C, Vatanashevanopakorn C, Pattanapanyasat K, Wattanapanitch M. Multilineage differentiation potential of hematoendothelial progenitors derived from human induced pluripotent stem cells. Stem Cell Res Ther 2020;11:481. [PMID: 33176890 DOI: 10.1186/s13287-020-01997-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
291 Li B, Yang H, Wang X, Zhan Y, Sheng W, Cai H, Xin H, Liang Q, Zhou P, Lu C, Qian R, Chen S, Yang P, Zhang J, Shou W, Huang G, Liang P, Sun N. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 2017;8:202. [PMID: 28962583 DOI: 10.1186/s13287-017-0651-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
292 Truskey GA. Advancing cardiovascular tissue engineering. F1000Res 2016;5:F1000 Faculty Rev-1045. [PMID: 27303643 DOI: 10.12688/f1000research.8237.1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
293 Canfield SG, Zaja I, Godshaw B, Twaroski D, Bai X, Bosnjak ZJ. High Glucose Attenuates Anesthetic Cardioprotection in Stem-Cell-Derived Cardiomyocytes: The Role of Reactive Oxygen Species and Mitochondrial Fission. Anesth Analg 2016;122:1269-79. [PMID: 26991754 DOI: 10.1213/ANE.0000000000001254] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
294 Yechikov S, Copaciu R, Gluck JM, Deng W, Chiamvimonvat N, Chan JW, Lieu DK. Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology. Stem Cells. 2016;34:2670-2680. [PMID: 27434649 DOI: 10.1002/stem.2466] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
295 Plowright AT, Engkvist O, Gill A, Knerr L, Wang QD. Heart regeneration: opportunities and challenges for drug discovery with novel chemical and therapeutic methods or agents. Angew Chem Int Ed Engl. 2014;53:4056-4075. [PMID: 24470316 DOI: 10.1002/anie.201307034] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
296 Khudiakov A, Kostina D, Zlotina A, Nikulina T, Sergushichev A, Gudkova A, Tomilin A, Malashicheva A, Kostareva A. Generation of iPSC line from desmin-related cardiomyopathy patient carrying splice site mutation of DES gene. Stem Cell Research 2017;24:77-80. [DOI: 10.1016/j.scr.2017.08.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
297 Gharanei M, Shafaattalab S, Sangha S, Gunawan M, Laksman Z, Hove-Madsen L, Tibbits GF. Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods 2021:S1046-2023(21)00161-4. [PMID: 34144175 DOI: 10.1016/j.ymeth.2021.06.009] [Reference Citation Analysis]
298 Rupert CE, Chang HH, Coulombe KL. Hypertrophy changes 3D shape of hiPSC-cardiomyocytes: Implications for cellular maturation in regenerative medicine. Cell Mol Bioeng 2017;10:54-62. [PMID: 28163790 DOI: 10.1007/s12195-016-0462-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
299 Gartz M, Strande JL. Examining the Paracrine Effects of Exosomes in Cardiovascular Disease and Repair. J Am Heart Assoc 2018;7:e007954. [PMID: 29858362 DOI: 10.1161/JAHA.117.007954] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
300 Martewicz S, Serena E, Zatti S, Keller G, Elvassore N. Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Res 2017;25:107-14. [PMID: 29125993 DOI: 10.1016/j.scr.2017.10.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
301 Zhang J, Zhu W, Radisic M, Vunjak-Novakovic G. Can We Engineer a Human Cardiac Patch for Therapy? Circ Res 2018;123:244-65. [PMID: 29976691 DOI: 10.1161/CIRCRESAHA.118.311213] [Cited by in Crossref: 69] [Cited by in F6Publishing: 30] [Article Influence: 34.5] [Reference Citation Analysis]
302 Xie Y, Ma A, Wang B, Peng R, Jing Y, Wang D, Finnell RH, Qiao B, Wang Y, Wang H, Zheng Y. Rare mutations of ADAM17 from TOFs induce hypertrophy in human embryonic stem cell-derived cardiomyocytes via HB-EGF signaling. Clin Sci (Lond) 2019;133:225-38. [PMID: 30610007 DOI: 10.1042/CS20180842] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
303 Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019;37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
304 Kim C. iPSC technology--Powerful hand for disease modeling and therapeutic screen. BMB Rep 2015;48:256-65. [PMID: 25104399 DOI: 10.5483/bmbrep.2015.48.5.100] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 5.4] [Reference Citation Analysis]
305 Filippo Buono M, von Boehmer L, Strang J, Hoerstrup SP, Emmert MY, Nugraha B. Human Cardiac Organoids for Modeling Genetic Cardiomyopathy. Cells 2020;9:E1733. [PMID: 32698471 DOI: 10.3390/cells9071733] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
306 Zhang F, Qiu H, Dong X, Wang C, Na J, Zhou J, Wang C. Transferrin improved the generation of cardiomyocyte from human pluripotent stem cells for myocardial infarction repair. J Mol Histol 2021;52:87-99. [PMID: 33179120 DOI: 10.1007/s10735-020-09926-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
307 Kamps JA, Krenning G. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 2016;8:163-79. [PMID: 26981212 DOI: 10.4330/wjc.v8.i2.163] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
308 Ye D, Bao Z, Yu Y, Han Z, Yu Y, Xu Z, Ma W, Yuan Y, Zhang L, Xu Y, Ma T, Liu S, Gao X, Yan G, Huang Q, Wang X, Hua B, Yang F, Li Y, Cai B. Inhibition of cardiomyocyte differentiation of human induced pluripotent stem cells by Ribavirin: Implication for its cardiac developmental toxicity. Toxicology 2020;435:152422. [PMID: 32112805 DOI: 10.1016/j.tox.2020.152422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
309 Bathe-Peters M, Gmach P, Boltz HH, Einsiedel J, Gotthardt M, Hübner H, Gmeiner P, Lohse MJ, Annibale P. Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. Proc Natl Acad Sci U S A 2021;118:e2101119118. [PMID: 34088840 DOI: 10.1073/pnas.2101119118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
310 Pettinato G, Wen X, Zhang N. Engineering Strategies for the Formation of Embryoid Bodies from Human Pluripotent Stem Cells. Stem Cells Dev. 2015;24:1595-1609. [PMID: 25900308 DOI: 10.1089/scd.2014.0427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
311 Guo C, Morris SA. Engineering cell identity: establishing new gene regulatory and chromatin landscapes. Curr Opin Genet Dev 2017;46:50-7. [PMID: 28667865 DOI: 10.1016/j.gde.2017.06.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
312 Palpant NJ, Pabon L, Rabinowitz JS, Hadland BK, Stoick-Cooper CL, Paige SL, Bernstein ID, Moon RT, Murry CE. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 2013;140:3799-808. [PMID: 23924634 DOI: 10.1242/dev.094789] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
313 Moreau A, Boutjdir M, Chahine M. Induced pluripotent stem-cell-derived cardiomyocytes: cardiac applications, opportunities, and challenges. Can J Physiol Pharmacol 2017;95:1108-16. [DOI: 10.1139/cjpp-2016-0726] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
314 Mnatsakanyan H, Salmeron-Sanchez M, Rico P. Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblast-Like Cells. Adv Biol (Weinh) 2021;5:e2000569. [PMID: 33969645 DOI: 10.1002/adbi.202000569] [Reference Citation Analysis]
315 Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends in Cell Biology 2019;29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 15.5] [Reference Citation Analysis]
316 Liu X, Qi J, Xu X, Zeisberg M, Guan K, Zeisberg EM. Differentiation of functional endothelial cells from human induced pluripotent stem cells: A novel, highly efficient and cost effective method. Differentiation 2016;92:225-36. [PMID: 27266810 DOI: 10.1016/j.diff.2016.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
317 Shinnawi R, Gepstein L. iPCS Cell Modeling of Inherited Cardiac Arrhythmias. Curr Treat Options Cardiovasc Med 2014;16:331. [PMID: 25080030 DOI: 10.1007/s11936-014-0331-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
318 Palpant NJ, Pabon L, Roberts M, Hadland B, Jones D, Jones C, Moon RT, Ruzzo WL, Bernstein I, Zheng Y, Murry CE. Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 2015;142:3198-209. [PMID: 26153229 DOI: 10.1242/dev.117010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
319 Sun X, Nunes SS. Maturation of Human Stem Cell-derived Cardiomyocytes in Biowires Using Electrical Stimulation. J Vis Exp. 2017;123. [PMID: 28518082 DOI: 10.3791/55373] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
320 Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-860. [PMID: 24930130 DOI: 10.1038/nmeth.2999] [Cited by in Crossref: 824] [Cited by in F6Publishing: 668] [Article Influence: 117.7] [Reference Citation Analysis]
321 Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015;24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
322 Farzaneh Z, Najarasl M, Abbasalizadeh S, Vosough M, Baharvand H. Developing a Cost-Effective and Scalable Production of Human Hepatic Competent Endoderm from Size-Controlled Pluripotent Stem Cell Aggregates. Stem Cells Dev 2018;27:262-74. [PMID: 29298619 DOI: 10.1089/scd.2017.0074] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
323 Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM, Jun HW, Yoon YS, Bursac N, Prabhu SD, Dorn GW 2nd, Bolli R, Kitsis RN, Zhang J. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. J Am Coll Cardiol 2017;70:766-75. [PMID: 28774384 DOI: 10.1016/j.jacc.2017.06.012] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 14.8] [Reference Citation Analysis]
324 Kuroda T, Yasuda S, Nakashima H, Takada N, Matsuyama S, Kusakawa S, Umezawa A, Matsuyama A, Kawamata S, Sato Y. Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells. Sci Rep 2017;7:8163. [PMID: 28811571 DOI: 10.1038/s41598-017-08014-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
325 Radisic M, Christman KL. Materials science and tissue engineering: repairing the heart. Mayo Clin Proc. 2013;88:884-898. [PMID: 23910415 DOI: 10.1016/j.mayocp.2013.05.003] [Cited by in Crossref: 76] [Cited by in F6Publishing: 56] [Article Influence: 9.5] [Reference Citation Analysis]
326 Guo C, Deng Y, Liu J, Qian L. Cardiomyocyte-specific role of miR-24 in promoting cell survival. J Cell Mol Med 2015;19:103-12. [PMID: 25352422 DOI: 10.1111/jcmm.12393] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
327 Wheelwright M, Win Z, Mikkila JL, Amen KY, Alford PW, Metzger JM. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS One 2018;13:e0194909. [PMID: 29617427 DOI: 10.1371/journal.pone.0194909] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
328 Erwin GS, Grieshop MP, Ali A, Qi J, Lawlor M, Kumar D, Ahmad I, McNally A, Teider N, Worringer K, Sivasankaran R, Syed DN, Eguchi A, Ashraf M, Jeffery J, Xu M, Park PMC, Mukhtar H, Srivastava AK, Faruq M, Bradner JE, Ansari AZ. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 2017;358:1617-22. [PMID: 29192133 DOI: 10.1126/science.aan6414] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 14.5] [Reference Citation Analysis]
329 Ma Z, Koo S, Finnegan MA, Loskill P, Huebsch N, Marks NC, Conklin BR, Grigoropoulos CP, Healy KE. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 2014;35:1367-77. [PMID: 24268663 DOI: 10.1016/j.biomaterials.2013.10.052] [Cited by in Crossref: 74] [Cited by in F6Publishing: 61] [Article Influence: 9.3] [Reference Citation Analysis]
330 Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 2014;:52010. [PMID: 25286293 DOI: 10.3791/52010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
331 Gorabi AM, Hajighasemi S, Tafti HA, Atashi A, Soleimani M, Aghdami N, Saeid AK, Khori V, Panahi Y, Sahebkar A. TBX18 transcription factor overexpression in human-induced pluripotent stem cells increases their differentiation into pacemaker-like cells. J Cell Physiol 2019;234:1534-46. [PMID: 30078203 DOI: 10.1002/jcp.27018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
332 Hidalgo A, Glass N, Ovchinnikov D, Yang SK, Zhang X, Mazzone S, Chen C, Wolvetang E, Cooper-White J. Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes. APL Bioeng 2018;2:026102. [PMID: 31069299 DOI: 10.1063/1.5000746] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
333 Hayoun‐neeman D, Korover N, Etzion S, Ofir R, Lichtenstein RG, Cohen S. Exploring peptide‐functionalized alginate scaffolds for engineering cardiac tissue from human embryonic stem cell‐derived cardiomyocytes in serum‐free medium. Polym Adv Technol 2019;30:2493-505. [DOI: 10.1002/pat.4602] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
334 Knight WE, Cao Y, Lin YH, Chi C, Bai B, Sparagna GC, Zhao Y, Du Y, Londono P, Reisz JA, Brown BC, Taylor MRG, Ambardekar AV, Cleveland JC Jr, McKinsey TA, Jeong MY, Walker LA, Woulfe KC, D'Alessandro A, Chatfield KC, Xu H, Bristow MR, Buttrick PM, Song K. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Enables Modeling of Human Hypertrophic Cardiomyopathy. Stem Cell Reports 2021;16:519-33. [PMID: 33636116 DOI: 10.1016/j.stemcr.2021.01.018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
335 Wang EY, Rafatian N, Zhao Y, Lee A, Lai BFL, Lu RX, Jekic D, Davenport Huyer L, Knee-Walden EJ, Bhattacharya S, Backx PH, Radisic M. Biowire Model of Interstitial and Focal Cardiac Fibrosis. ACS Cent Sci 2019;5:1146-58. [PMID: 31403068 DOI: 10.1021/acscentsci.9b00052] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 13.0] [Reference Citation Analysis]
336 Kwon JB, Vankara A, Ettyreddy AR, Bohning JD, Gersbach CA. Myogenic Progenitor Cell Lineage Specification by CRISPR/Cas9-Based Transcriptional Activators. Stem Cell Reports 2020;14:755-69. [PMID: 32330446 DOI: 10.1016/j.stemcr.2020.03.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
337 Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019;25:775-90. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
338 Kempf H, Zweigerdt R. Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. Adv Biochem Eng Biotechnol 2018;163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
339 Jara-Avaca M, Kempf H, Rückert M, Robles-Diaz D, Franke A, de la Roche J, Fischer M, Malan D, Sasse P, Solodenko W, Dräger G, Kirschning A, Martin U, Zweigerdt R. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports 2017;8:305-17. [PMID: 28089668 DOI: 10.1016/j.stemcr.2016.12.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
340 Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, Dong W, Dunn KK, Shusta EV, Palecek SP. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports 2014;3:804-16. [PMID: 25418725 DOI: 10.1016/j.stemcr.2014.09.005] [Cited by in Crossref: 191] [Cited by in F6Publishing: 161] [Article Influence: 27.3] [Reference Citation Analysis]
341 Sharma A, Zhang Y, Wu SM. Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine. Curr Treat Options Cardiovasc Med 2015;17:404. [PMID: 26324824 DOI: 10.1007/s11936-015-0404-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
342 Feyen DAM, Perea-Gil I, Maas RGC, Harakalova M, Gavidia AA, Arthur Ataam J, Wu TH, Vink A, Pei J, Vadgama N, Suurmeijer AJ, Te Rijdt WP, Vu M, Amatya PL, Prado M, Zhang Y, Dunkenberger L, Sluijter JPG, Sallam K, Asselbergs FW, Mercola M, Karakikes I. Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation 2021;144:382-92. [PMID: 33928785 DOI: 10.1161/CIRCULATIONAHA.120.049844] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
343 Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim. 2019;68:35-47. [PMID: 30089733 DOI: 10.1538/expanim.18-0074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
344 Naujok O, Diekmann U, Lenzen S. The generation of definitive endoderm from human embryonic stem cells is initially independent from activin A but requires canonical Wnt-signaling. Stem Cell Rev Rep 2014;10:480-93. [PMID: 24913278 DOI: 10.1007/s12015-014-9509-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
345 Ang YS, Rivas RN, Ribeiro AJS, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TMA, Fu JD, Spencer CI, Tippens ND, Li M, Narasimha A, Radzinsky E, Moon-Grady AJ, Yu H, Pruitt BL, Snyder MP, Srivastava D. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell 2016; 167: 1734-1749. e22. [PMID: 27984724 DOI: 10.1016/j.cell.2016.11.033] [Cited by in Crossref: 124] [Cited by in F6Publishing: 87] [Article Influence: 31.0] [Reference Citation Analysis]
346 Choy MK, Javierre BM, Williams SG, Baross SL, Liu Y, Wingett SW, Akbarov A, Wallace C, Freire-Pritchett P, Rugg-Gunn PJ, Spivakov M, Fraser P, Keavney BD. Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nat Commun 2018;9:2526. [PMID: 29955040 DOI: 10.1038/s41467-018-04931-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
347 Tsang JM, Gritton HJ, Das SL, Weber TD, Chen CS, Han X, Mertz J. Fast, multiplane line-scan confocal microscopy using axially distributed slits. Biomed Opt Express 2021;12:1339-50. [PMID: 33796357 DOI: 10.1364/BOE.417286] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
348 Kahn-Krell A, Pretorius D, Ou J, Fast VG, Litovsky S, Berry J, Liu XM, Zhang J. Bioreactor Suspension Culture: Differentiation and Production of Cardiomyocyte Spheroids From Human Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2021;9:674260. [PMID: 34178964 DOI: 10.3389/fbioe.2021.674260] [Reference Citation Analysis]
349 Ma D, Liu Z, Loh LJ, Zhao Y, Li G, Liew R, Islam O, Wu J, Chung YY, Teo WS, Ching CK, Tan BY, Chong D, Ho KL, Lim P, Yong RYY, Panama BK, Kaplan AD, Bett GCL, Ware J, Bezzina CR, Verkerk AO, Cook SA, Rasmusson RL, Wei H. Identification of an INa-dependent and Ito-mediated proarrhythmic mechanism in cardiomyocytes derived from pluripotent stem cells of a Brugada syndrome patient. Sci Rep. 2018;8:11246. [PMID: 30050137 DOI: 10.1038/s41598-018-29574-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
350 Sharma A, Li G, Rajarajan K, Hamaguchi R, Burridge PW, Wu SM. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J Vis Exp 2015. [PMID: 25867738 DOI: 10.3791/52628] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
351 Park S, Choe M, Yeo H, Han H, Kim J, Chang W, Yun S, Lee H, Lee M. Yes-associated protein mediates human embryonic stem cell-derived cardiomyocyte proliferation: Involvement of epidermal growth factor receptor signaling. J Cell Physiol 2018;233:7016-25. [PMID: 29693249 DOI: 10.1002/jcp.26625] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
352 Xiang Q, Yang B, Li L, Qiu B, Qiu C, Gao XB, Zhou HJ, Min W. Critical role of Lin28-TNFR2 signalling in cardiac stem cell activation and differentiation. J Cell Mol Med 2019;23:0. [PMID: 30734494 DOI: 10.1111/jcmm.14202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
353 Martewicz S, Gabrel G, Campesan M, Canton M, Di Lisa F, Elvassore N. Live Cell Imaging in Microfluidic Device Proves Resistance to Oxygen/Glucose Deprivation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Anal Chem 2018;90:5687-95. [PMID: 29595056 DOI: 10.1021/acs.analchem.7b05347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
354 Gong R, Jiang Z, Zagidullin N, Liu T, Cai B. Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduct Target Ther 2021;6:31. [PMID: 33500391 DOI: 10.1038/s41392-020-00413-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
355 Rami F, Beni SN, Kahnamooi MM, Rahimmanesh I, Salehi AR, Salehi R. Recent Advances in Therapeutic Applications of Induced Pluripotent Stem Cells. Cellular Reprogramming 2017;19:65-74. [DOI: 10.1089/cell.2016.0034] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
356 Li Q, Lin H, Du Q, Liu K, Wang O, Evans C, Christian H, Zhang C, Lei Y. Scalable and physiologically relevant microenvironments for human pluripotent stem cell expansion and differentiation. Biofabrication 2018;10:025006. [PMID: 29319535 DOI: 10.1088/1758-5090/aaa6b5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
357 Xiao Y, Gao M, Gao L, Zhao Y, Hong Q, Li Z, Yao J, Cheng H, Zhou R. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports 2016;7:370-82. [PMID: 27569061 DOI: 10.1016/j.stemcr.2016.07.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
358 Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC;  American Heart Association Council on Functional Genomics and Translational Biology;  Council on Cardiovascular Disease in the Young;  and Council on Cardiovascular and Stroke Nursing. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2018;11:e000043. [PMID: 29874173 DOI: 10.1161/hcg.0000000000000043] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 18.0] [Reference Citation Analysis]
359 Munawar S, Turnbull IC. Cardiac Tissue Engineering: Inclusion of Non-cardiomyocytes for Enhanced Features. Front Cell Dev Biol 2021;9:653127. [PMID: 34113613 DOI: 10.3389/fcell.2021.653127] [Reference Citation Analysis]
360 Jha R, Xu RH, Xu C. Efficient differentiation of cardiomyocytes from human pluripotent stem cells with growth factors. Methods Mol Biol 2015;1299:115-31. [PMID: 25836579 DOI: 10.1007/978-1-4939-2572-8_9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
361 Mesquita FCP, Arantes PC, Kasai-Brunswick TH, Araujo DS, Gubert F, Monnerat G, Silva Dos Santos D, Neiman G, Leitão IC, Barbosa RAQ, Coutinho JL, Vaz IM, Dos Santos MN, Borgonovo T, Cruz FES, Miriuka S, Medei EH, Campos de Carvalho AC, Carvalho AB. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep 2019;9:19203. [PMID: 31844156 DOI: 10.1038/s41598-019-55837-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
362 Sharma A, Zhang Y, Buikema JW, Serpooshan V, Chirikian O, Kosaric N, Churko JM, Dzilic E, Shieh A, Burridge PW, Wu JC, Wu SM. Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Sci Rep 2018;8:6618. [PMID: 29700394 DOI: 10.1038/s41598-018-24954-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
363 Rodgers K, Papinska A, Mordwinkin N. Regulatory aspects of small molecule drugs for heart regeneration. Adv Drug Deliv Rev 2016;96:245-52. [PMID: 26150343 DOI: 10.1016/j.addr.2015.06.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
364 Wanjare M, Huang NF. Regulation of the microenvironment for cardiac tissue engineering. Regen Med 2017;12:187-201. [PMID: 28244821 DOI: 10.2217/rme-2016-0132] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
365 Lei I, Tian S, Chen V, Zhao Y, Wang Z. SWI/SNF Component BAF250a Coordinates OCT4 and WNT Signaling Pathway to Control Cardiac Lineage Differentiation. Front Cell Dev Biol 2019;7:358. [PMID: 32039194 DOI: 10.3389/fcell.2019.00358] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
366 Jimenez-Tellez N, Greenway SC. Cellular models for human cardiomyopathy: What is the best option? World J Cardiol 2019;11:221-35. [PMID: 31754410 DOI: 10.4330/wjc.v11.i10.221] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
367 Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. Prog Biomed Eng 2020;2:042003. [DOI: 10.1088/2516-1091/abb211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
368 Lu J, Kaestle K, Huang J, Liu Q, Zhang P, Gao L, Gardiner J, Thissen H, Yang HT. Interactions of human embryonic stem cell-derived cardiovascular progenitor cells with immobilized extracellular matrix proteins. J Biomed Mater Res A 2017;105:1094-104. [PMID: 28085215 DOI: 10.1002/jbm.a.36005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
369 Adepu S, Oosterwerff EFJ, Christoffels VM, Boink GJJ. Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System. Medicines (Basel) 2018;5:E48. [PMID: 29867004 DOI: 10.3390/medicines5020048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
370 Daily NJ, Santos R, Vecchi J, Kemanli P, Wakatsuki T. Calcium Transient Assays for Compound Screening with Human iPSC-derived Cardiomyocytes: Evaluating New Tools. J Evol Stem Cell Res 2017;1:1-11. [PMID: 28966998 DOI: 10.14302/issn.2574-4372.jesr-16-1395] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
371 Wilson HK, Canfield SG, Shusta EV, Palecek SP. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells 2014;32:3037-45. [PMID: 25070152 DOI: 10.1002/stem.1797] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
372 Guo J, Simmons DW, Ramahdita G, Munsell MK, Oguntuyo K, Kandalaft B, Rios B, Pear M, Schuftan D, Jiang H, Lake SP, Genin GM, Huebsch N. Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomater Sci Eng 2021;7:2973-89. [PMID: 34275296 DOI: 10.1021/acsbiomaterials.0c00318] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
373 Romagnuolo R, Laflamme MA. Programming cells for cardiac repair. Curr Opin Biotechnol 2017;47:43-50. [PMID: 28633074 DOI: 10.1016/j.copbio.2017.05.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
374 Notbohm J, Napiwocki BN, deLange WJ, Stempien A, Saraswathibhatla A, Craven RJ, Salick MR, Ralphe JC, Crone WC. Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes. Exp Mech 2019;59:1235-48. [PMID: 31680699 DOI: 10.1007/s11340-019-00473-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
375 Nakahama H, Di Pasquale E. Generation of Cardiomyocytes from Pluripotent Stem Cells. Methods Mol Biol 2016;1353:181-90. [PMID: 25523811 DOI: 10.1007/7651_2014_173] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
376 Li J, Rozwadowska N, Clark A, Fil D, Napierala JS, Napierala M. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Stem Cell Res 2019;40:101529. [PMID: 31446150 DOI: 10.1016/j.scr.2019.101529] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
377 Zhang M, Schulte JS, Heinick A, Piccini I, Rao J, Quaranta R, Zeuschner D, Malan D, Kim KP, Röpke A, Sasse P, Araúzo-Bravo M, Seebohm G, Schöler H, Fabritz L, Kirchhof P, Müller FU, Greber B. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells 2015;33:1456-69. [PMID: 25639979 DOI: 10.1002/stem.1964] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 11.4] [Reference Citation Analysis]
378 Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, Levy S, Suo S, Han JJ, Osteil P, Peng G, Jing N, Baillie GJ, Senabouth A, Christ AN, Bruxner TJ, Murry CE, Wong ES, Ding J, Wang Y, Hudson J, Ruohola-Baker H, Bar-Joseph Z, Tam PPL, Powell JE, Palpant NJ. Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell 2018;23:586-598.e8. [PMID: 30290179 DOI: 10.1016/j.stem.2018.09.009] [Cited by in Crossref: 106] [Cited by in F6Publishing: 76] [Article Influence: 53.0] [Reference Citation Analysis]
379 Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li RK, Kattman SJ, Keller G. Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 2014;32:1026-1035. [PMID: 25240927 DOI: 10.1038/nbt.3002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 92] [Article Influence: 15.7] [Reference Citation Analysis]
380 Awe JP, Gschweng EH, Vega-Crespo A, Voutila J, Williamson MH, Truong B, Kohn DB, Kasahara N, Byrne JA. Putative immunogenicity expression profiling using human pluripotent stem cells and derivatives. Stem Cells Transl Med 2015;4:136-45. [PMID: 25575527 DOI: 10.5966/sctm.2014-0117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
381 Finklea FB, Tian Y, Kerscher P, Seeto WJ, Ellis ME, Lipke EA. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021;274:120818. [PMID: 34023620 DOI: 10.1016/j.biomaterials.2021.120818] [Reference Citation Analysis]
382 Salick MR, Napiwocki BN, Kruepke RA, Knight GT, Ashton RS, Crone WC. The scanning gradient Fourier transform (SGFT) method for assessing sarcomere organization and alignment. Journal of Applied Physics 2020;127:194701. [DOI: 10.1063/1.5129347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
383 Grafton F, Ho J, Ranjbarvaziri S, Farshidfar F, Budan A, Steltzer S, Maddah M, Loewke KE, Green K, Patel S, Hoey T, Mandegar MA. Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. Elife 2021;10:e68714. [PMID: 34338636 DOI: 10.7554/eLife.68714] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
384 Khalil AS, Xie AW, Murphy WL. Context clues: the importance of stem cell-material interactions. ACS Chem Biol 2014;9:45-56. [PMID: 24369691 DOI: 10.1021/cb400801m] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
385 Higuchi A, Suresh Kumar S, Ling Q, Alarfaj AA, Munusamy MA, Murugan K, Hsu S, Benelli G, Umezawa A. Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science 2017;65:83-126. [DOI: 10.1016/j.progpolymsci.2016.09.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
386 Perdomini M, Hick A, Puccio H, Pook MA. Animal and cellular models of Friedreich ataxia. J Neurochem 2013;126:65-79. [DOI: 10.1111/jnc.12219] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
387 Regier MC, Tokar JJ, Warrick JW, Pabon L, Berthier E, Beebe DJ, Stevens KR. User-defined morphogen patterning for directing human cell fate stratification. Sci Rep 2019;9:6433. [PMID: 31015521 DOI: 10.1038/s41598-019-42874-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
388 Bao X, Lian X, Qian T, Bhute VJ, Han T, Palecek SP. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nat Protoc 2017;12:1890-900. [PMID: 28817124 DOI: 10.1038/nprot.2017.080] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
389 Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater. 2015;10:034006. [PMID: 26065674 DOI: 10.1088/1748-6041/10/3/034006] [Cited by in Crossref: 79] [Cited by in F6Publishing: 63] [Article Influence: 13.2] [Reference Citation Analysis]
390 Lin Y, Liu H, Klein M, Ostrominski J, Hong SG, Yada RC, Chen G, Navarengom K, Schwartzbeck R, San H, Yu ZX, Liu C, Linask K, Beers J, Qiu L, Dunbar CE, Boehm M, Zou J. Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Sci Rep 2018;8:5907. [PMID: 29651156 DOI: 10.1038/s41598-018-24074-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
391 Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126. [PMID: 26076956 DOI: 10.1186/s13059-015-0690-5] [Cited by in Crossref: 325] [Cited by in F6Publishing: 289] [Article Influence: 54.2] [Reference Citation Analysis]
392 Ding S, Kingshott P, Thissen H, Pera M, Wang P. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review: Modulation of Human Stem Cell Behavior: A Review. Biotechnol Bioeng 2017;114:260-80. [DOI: 10.1002/bit.26075] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
393 Hazeltine LB, Selekman JA, Palecek SP. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 2013;31:1002-19. [PMID: 23510904 DOI: 10.1016/j.biotechadv.2013.03.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
394 Sachinidis A, Albrecht W, Nell P, Cherianidou A, Hewitt NJ, Edlund K, Hengstler JG. Road Map for Development of Stem Cell-Based Alternative Test Methods. Trends Mol Med 2019;25:470-81. [PMID: 31130451 DOI: 10.1016/j.molmed.2019.04.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
395 Chen K, Huang Y, Singh R, Wang ZZ. Arrhythmogenic risks of stem cell replacement therapy for cardiovascular diseases. J Cell Physiol 2020;235:6257-67. [PMID: 31994198 DOI: 10.1002/jcp.29554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
396 Batalov I, Feinberg AW. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture. Biomark Insights 2015;10:71-6. [PMID: 26052225 DOI: 10.4137/BMI.S20050] [Cited by in Crossref: 11] [Cited by in F6Publishing: 33] [Article Influence: 1.8] [Reference Citation Analysis]
397 Kinney MA, Sargent CY, McDevitt TC. Temporal modulation of β-catenin signaling by multicellular aggregation kinetics impacts embryonic stem cell cardiomyogenesis. Stem Cells Dev 2013;22:2665-77. [PMID: 23767804 DOI: 10.1089/scd.2013.0007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
398 Repina NA, McClave T, Johnson HJ, Bao X, Kane RS, Schaffer DV. Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics. Cell Rep 2020;31:107737. [PMID: 32521262 DOI: 10.1016/j.celrep.2020.107737] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
399 Kane C, Terracciano CMN. Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells 2017;35:1881-97. [PMID: 28577296 DOI: 10.1002/stem.2649] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
400 Zhu X, Ding S, Li H, Zhang Z, Xu L, Wu J, Wang X, Zou Y, Yang X, Ge J. Disruption of histamine/H1R signaling pathway represses cardiac differentiation and maturation of human induced pluripotent stem cells. Stem Cell Res Ther 2020;11:27. [PMID: 32127042 DOI: 10.1186/s13287-020-1551-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
401 Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016;96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Cited by in Crossref: 86] [Cited by in F6Publishing: 63] [Article Influence: 14.3] [Reference Citation Analysis]
402 Ebert AD, Diecke S, Chen IY, Wu JC. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol Med 2015;7:1090-103. [PMID: 26183451 DOI: 10.15252/emmm.201504395] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
403 Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip 2017;17:2395-420. [PMID: 28617487 DOI: 10.1039/c6lc01554a] [Cited by in Crossref: 183] [Cited by in F6Publishing: 67] [Article Influence: 61.0] [Reference Citation Analysis]
404 van den Berg CW, Elliott DA, Braam SR, Mummery CL, Davis RP. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. In: Nagy A, Turksen K, editors. Patient-Specific Induced Pluripotent Stem Cell Models. New York: Springer; 2016. pp. 163-80. [DOI: 10.1007/7651_2014_178] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
405 Kadari A, Mekala S, Wagner N, Malan D, Köth J, Doll K, Stappert L, Eckert D, Peitz M, Matthes J, Sasse P, Herzig S, Brüstle O, Ergün S, Edenhofer F. Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. Stem Cell Rev Rep 2015;11:560-9. [PMID: 25392050 DOI: 10.1007/s12015-014-9564-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
406 Malkovskiy AV, Ignatyeva N, Dai Y, Hasenfuss G, Rajadas J, Ebert A. Integrated Ca2+ flux and AFM force analysis in human iPSC-derived cardiomyocytes. Biol Chem 2020;402:113-21. [PMID: 33544492 DOI: 10.1515/hsz-2020-0212] [Reference Citation Analysis]
407 Crestani T, Steichen C, Neri E, Rodrigues M, Fonseca-Alaniz MH, Ormrod B, Holt MR, Pandey P, Harding S, Ehler E, Krieger JE. Electrical stimulation applied during differentiation drives the hiPSC-CMs towards a mature cardiac conduction-like cells. Biochem Biophys Res Commun 2020;533:376-82. [PMID: 32962862 DOI: 10.1016/j.bbrc.2020.09.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
408 Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019;116:17831-40. [PMID: 31427533 DOI: 10.1073/pnas.1910962116] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
409 Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020;38:741-55. [PMID: 32129551 DOI: 10.1002/stem.3168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
410 Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed Differentiation of Human Pluripotent Stem Cells to Podocytes under Defined Conditions. Sci Rep 2019;9:2765. [PMID: 30808965 DOI: 10.1038/s41598-019-39504-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
411 Roberts EG, Kleptsyn VF, Roberts GD, Mossburg KJ, Feng B, Domian IJ, Emani SM, Wong JY. Development of a bio-MEMS device for electrical and mechanical conditioning and characterization of cell sheets for myocardial repair. Biotechnol Bioeng 2019;116:3098-111. [PMID: 31317531 DOI: 10.1002/bit.27123] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
412 Hoang P, Huebsch N, Bang SH, Siemons BA, Conklin BR, Healy KE, Ma Z, Jacquir S. Quantitatively characterizing drug-induced arrhythmic contractile motions of human stem cell-derived cardiomyocytes. Biotechnol Bioeng 2018;115:1958-70. [PMID: 29663322 DOI: 10.1002/bit.26709] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
413 Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S, Perry M, Orr Y, Mayorchak Y, Vandenberg J, Talkhabi M, Winlaw DS, Harvey RP, Aghdami N, Baharvand H. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Transl Med. 2015;4:1482-1494. [PMID: 26511653 DOI: 10.5966/sctm.2014-0275] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 12.8] [Reference Citation Analysis]
414 Yeo HC, Ting S, Brena RM, Koh G, Chen A, Toh SQ, Lim YM, Oh SK, Lee DY. Genome-Wide Transcriptome and Binding Sites Analyses Identify Early FOX Expressions for Enhancing Cardiomyogenesis Efficiency of hESC Cultures. Sci Rep 2016;6:31068. [PMID: 27501774 DOI: 10.1038/srep31068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
415 Matsumura Y, Zhu Y, Jiang H, D'amore A, Luketich SK, Charwat V, Yoshizumi T, Sato H, Yang B, Uchibori T, Healy KE, Wagner WR. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials 2019;217:119289. [DOI: 10.1016/j.biomaterials.2019.119289] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
416 Rong Z, Wang M, Hu Z, Stradner M, Zhu S, Kong H, Yi H, Goldrath A, Yang YG, Xu Y, Fu X. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 2014;14:121-30. [PMID: 24388175 DOI: 10.1016/j.stem.2013.11.014] [Cited by in Crossref: 146] [Cited by in F6Publishing: 113] [Article Influence: 20.9] [Reference Citation Analysis]
417 da Rocha AM, Campbell K, Mironov S, Jiang J, Mundada L, Guerrero-Serna G, Jalife J, Herron TJ. hiPSC-CM Monolayer Maturation State Determines Drug Responsiveness in High Throughput Pro-Arrhythmia Screen. Sci Rep 2017;7:13834. [PMID: 29061979 DOI: 10.1038/s41598-017-13590-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
418 Hoang P, Kowalczewski A, Sun S, Winston TS, Archilla AM, Lemus SM, Ercan-Sencicek AG, Gupta AR, Liu W, Kontaridis MI, Amack JD, Ma Z. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports 2021;16:1228-44. [PMID: 33891865 DOI: 10.1016/j.stemcr.2021.03.013] [Reference Citation Analysis]
419 Broadwell LJ, Smallegan MJ, Rigby KM, Navarro-Arriola JS, Montgomery RL, Rinn JL, Leinwand LA. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J Biol Chem 2021;296:100694. [PMID: 33895132 DOI: 10.1016/j.jbc.2021.100694] [Reference Citation Analysis]
420 Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, Chai CLL, Reuveny S, Chen A, Oh S. Unraveling the Inconsistencies of Cardiac Differentiation Efficiency Induced by the GSK3β Inhibitor CHIR99021 in Human Pluripotent Stem Cells. Stem Cell Reports 2018;10:1851-66. [PMID: 29706502 DOI: 10.1016/j.stemcr.2018.03.023] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 13.3] [Reference Citation Analysis]
421 Wang BX, Kit-Anan W, Terracciano CMN. Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018;19:E3361. [PMID: 30373227 DOI: 10.3390/ijms19113361] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
422 Tani H, Sadahiro T, Ieda M. Direct Cardiac Reprogramming: A Novel Approach for Heart Regeneration. Int J Mol Sci 2018;19:E2629. [PMID: 30189626 DOI: 10.3390/ijms19092629] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
423 Nogueira DES, Rodrigues CAV, Carvalho MS, Miranda CC, Hashimura Y, Jung S, Lee B, Cabral JMS. Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheel™ bioreactors. J Biol Eng 2019;13:74. [PMID: 31534477 DOI: 10.1186/s13036-019-0204-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
424 Li Q, Wang J, Wu Q, Cao N, Yang HT. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Stem Cells Transl Med 2020;9:1121-8. [PMID: 32725800 DOI: 10.1002/sctm.19-0340] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
425 Marzano M, Bejoy J, Cheerathodi MR, Sun L, York SB, Zhao J, Kanekiyo T, Bu G, Meckes DG Jr, Li Y. Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells 2019;8:E993. [PMID: 31466320 DOI: 10.3390/cells8090993] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
426 Foo KS, Lehtinen ML, Leung CY, Lian X, Xu J, Keung W, Geng L, Kolstad TRS, Thams S, Wong AO, Wong N, Bylund K, Zhou C, He X, Jin SB, Clarke J, Lendahl U, Li RA, Louch WE, Chien KR. Human ISL1+ Ventricular Progenitors Self-Assemble into an In Vivo Functional Heart Patch and Preserve Cardiac Function Post Infarction. Mol Ther 2018;26:1644-59. [PMID: 29606507 DOI: 10.1016/j.ymthe.2018.02.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
427 Jabart E, Molho J, Sin K, Stansfield B, Kazmouz SG, Ventro D, Gardner K, Wu JC, Churko JM. Single-cell protein expression of hiPSC-derived cardiomyocytes using Single-Cell Westerns. J Mol Cell Cardiol 2020;149:115-22. [PMID: 33010256 DOI: 10.1016/j.yjmcc.2020.09.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
428 Di Baldassarre A, D'Amico MA, Izzicupo P, Gaggi G, Guarnieri S, Mariggiò MA, Antonucci I, Corneo B, Sirabella D, Stuppia L, Ghinassi B. Cardiomyocytes Derived from Human CardiopoieticAmniotic Fluids. Sci Rep 2018;8:12028. [PMID: 30104705 DOI: 10.1038/s41598-018-30537-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
429 Lee JJ, Cheng SJ, Huang CY, Chen CY, Feng L, Hwang DY, Kamp TJ, Chen HC, Hsieh PCH. Primary cardiac manifestation of autosomal dominant polycystic kidney disease revealed by patient induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine 2019;40:675-84. [PMID: 30639418 DOI: 10.1016/j.ebiom.2019.01.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
430 Li T, Zhang X, Jiang K, Liu J, Liu Z. Dural effects of oxidative stress on cardiomyogenesis via Gata4 transcription and protein ubiquitination. Cell Death Dis 2018;9:246. [PMID: 29445146 DOI: 10.1038/s41419-018-0281-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
431 Zhao Y, Rafatian N, Wang EY, Feric NT, Lai BFL, Knee-Walden EJ, Backx PH, Radisic M. Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biol 2020;85-86:189-204. [PMID: 30981898 DOI: 10.1016/j.matbio.2019.04.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
432 Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015;3:76. [PMID: 26697426 DOI: 10.3389/fcell.2015.00076] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
433 Momtahan N, Crosby CO, Zoldan J. The Role of Reactive Oxygen Species in In Vitro Cardiac Maturation. Trends Mol Med 2019;25:482-93. [PMID: 31080142 DOI: 10.1016/j.molmed.2019.04.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
434 Yamoah MA, Thai PN, Zhang XD. Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals (Basel) 2021;14:334. [PMID: 33917388 DOI: 10.3390/ph14040334] [Reference Citation Analysis]
435 Leclair NK, Brugiolo M, Urbanski L, Lawson SC, Thakar K, Yurieva M, George J, Hinson JT, Cheng A, Graveley BR, Anczuków O. Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Mol Cell 2020;80:648-665.e9. [PMID: 33176162 DOI: 10.1016/j.molcel.2020.10.019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
436 Atmanli A, Hu D, Deiman FE, van de Vrugt AM, Cherbonneau F, Black LD 3rd, Domian IJ. Multiplex live single-cell transcriptional analysis demarcates cellular functional heterogeneity. Elife 2019;8:e49599. [PMID: 31591966 DOI: 10.7554/eLife.49599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
437 Yang L, Gong Y, Tan Y, Wu L, Witman N, Zheng J, Zhang J, Fu W, Wang W. Dexmedetomidine exhibits antiarrhythmic effects on human-induced pluripotent stem cell-derived cardiomyocytes through a Na/Ca channel-mediated mechanism. Ann Transl Med 2021;9:399. [PMID: 33842620 DOI: 10.21037/atm-20-5898] [Reference Citation Analysis]
438 Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, Judge LM, Gordon DE, Eskildsen TV, Villalta JE, Horlbeck MA, Gilbert LA, Krogan NJ, Sheikh SP, Weissman JS, Qi LS, So PL, Conklin BR. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell 2016;18:541-53. [PMID: 26971820 DOI: 10.1016/j.stem.2016.01.022] [Cited by in Crossref: 248] [Cited by in F6Publishing: 182] [Article Influence: 49.6] [Reference Citation Analysis]
439 Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015;9:289. [PMID: 26300727 DOI: 10.3389/fncel.2015.00289] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
440 Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther 2013;4:150. [PMID: 24476344 DOI: 10.1186/scrt380] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
441 Wheelwright M, Mikkila J, Bedada FB, Mandegar MA, Thompson BR, Metzger JM. Advancing physiological maturation in human induced pluripotent stem cell-derived cardiac muscle by gene editing an inducible adult troponin isoform switch. Stem Cells 2020;38:1254-66. [PMID: 32497296 DOI: 10.1002/stem.3235] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
442 Anderson CW, Boardman N, Luo J, Park J, Qyang Y. Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies. Curr Cardiol Rep 2017;19:34. [PMID: 28324469 DOI: 10.1007/s11886-017-0841-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
443 Rhee S, Chung JI, King DA, D'amato G, Paik DT, Duan A, Chang A, Nagelberg D, Sharma B, Jeong Y, Diehn M, Wu JC, Morrison AJ, Red-Horse K. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat Commun 2018;9:368. [PMID: 29371594 DOI: 10.1038/s41467-017-02796-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
444 Plowright AT, Engkvist O, Gill A, Knerr L, Wang Q. Herzregeneration: Chancen und Aufgaben für die Wirkstoff-Forschung mit neuartigen chemischen und therapeutischen Methoden oder Agentien. Angew Chem 2014;126:4138-59. [DOI: 10.1002/ange.201307034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
445 Nemade H, Acharya A, Chaudhari U, Nembo E, Nguemo F, Riet N, Abken H, Hescheler J, Papadopoulos S, Sachinidis A. Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells. Cells 2020;9:E554. [PMID: 32120775 DOI: 10.3390/cells9030554] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
446 Jara Avaca M, Gruh I. Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. Adv Biochem Eng Biotechnol. 2018;163:117-146. [PMID: 29218360 DOI: 10.1007/10_2017_24] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
447 Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD, Weissman JS. Pervasive functional translation of noncanonical human open reading frames. Science 2020;367:1140-6. [PMID: 32139545 DOI: 10.1126/science.aay0262] [Cited by in Crossref: 139] [Cited by in F6Publishing: 102] [Article Influence: 139.0] [Reference Citation Analysis]
448 Skelton RJ, Costa M, Anderson DJ, Bruveris F, Finnin BW, Koutsis K, Arasaratnam D, White AJ, Rafii A, Ng ES, Elefanty AG, Stanley EG, Pouton CW, Haynes JM, Ardehali R, Davis RP, Mummery CL, Elliott DA. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Res 2014;13:172-9. [PMID: 24968096 DOI: 10.1016/j.scr.2014.04.016] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
449 Liu T, Huang C, Li H, Wu F, Luo J, Lu W, Lan F. A net-shaped multicellular formation facilitates the maturation of hPSC-derived cardiomyocytes through mechanical and electrophysiological stimuli. Aging (Albany NY) 2018;10:532-48. [PMID: 29661985 DOI: 10.18632/aging.101411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
450 Konze SA, Werneburg S, Oberbeck A, Olmer R, Kempf H, Jara-avaca M, Pich A, Zweigerdt R, Buettner FFR. Proteomic Analysis of Human Pluripotent Stem Cell Cardiomyogenesis Revealed Altered Expression of Metabolic Enzymes and PDLIM5 Isoforms. J Proteome Res 2017;16:1133-49. [DOI: 10.1021/acs.jproteome.6b00534] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
451 Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F, de la Roche J, Polten F, Christoph Wollert K, Kraft T, Fischer M, Martin U, Gruh I, Kempf H, Zweigerdt R. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports 2019;13:366-79. [PMID: 31353227 DOI: 10.1016/j.stemcr.2019.06.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
452 Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014;5:12. [PMID: 24444355 DOI: 10.1186/scrt401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
453 Brand S, Roy S, Schröder P, Rathmer B, Roos J, Kapoor S, Patil S, Pommerenke C, Maier T, Janning P, Eberth S, Steinhilber D, Schade D, Schneider G, Kumar K, Ziegler S, Waldmann H. Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways. Cell Chem Biol 2018;25:1095-1106.e23. [PMID: 30251630 DOI: 10.1016/j.chembiol.2018.05.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
454 Månsson-Broberg A, Rodin S, Bulatovic I, Ibarra C, Löfling M, Genead R, Wärdell E, Felldin U, Granath C, Alici E, Le Blanc K, Smith CIE, Salašová A, Westgren M, Sundström E, Uhlén P, Arenas E, Sylvén C, Tryggvason K, Corbascio M, Simonson OE, Österholm C, Grinnemo KH. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells. Stem Cell Reports 2016;6:607-17. [PMID: 27052314 DOI: 10.1016/j.stemcr.2016.02.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
455 Lin Y, Linask KL, Mallon B, Johnson K, Klein M, Beers J, Xie W, Du Y, Liu C, Lai Y, Zou J, Haigney M, Yang H, Rao M, Chen G. Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med 2017;6:527-38. [PMID: 28191759 DOI: 10.5966/sctm.2015-0428] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
456 Sadahiro T. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming. Regen Ther 2019;11:95-100. [PMID: 31304202 DOI: 10.1016/j.reth.2019.06.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
457 Siede D, Rapti K, Gorska A, Katus H, Altmüller J, Boeckel J, Meder B, Maack C, Völkers M, Müller O, Backs J, Dieterich C. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. Journal of Molecular and Cellular Cardiology 2017;109:48-56. [DOI: 10.1016/j.yjmcc.2017.06.015] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 14.3] [Reference Citation Analysis]
458 Coyle RC, Barrs RW, Richards DJ, Ladd EP, Menick DR, Mei Y. Targeting HIF-α for robust prevascularization of human cardiac organoids. J Tissue Eng Regen Med 2021;15:189-202. [PMID: 33868541 DOI: 10.1002/term.3165] [Reference Citation Analysis]
459 Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2012;2:1448-1460. [PMID: 23103164 DOI: 10.1016/j.celrep.2012.09.015] [Cited by in Crossref: 182] [Cited by in F6Publishing: 145] [Article Influence: 20.2] [Reference Citation Analysis]
460 Bulatovic I, Månsson-Broberg A, Sylvén C, Grinnemo KH. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart. Best Pract Res Clin Obstet Gynaecol 2016;31:58-68. [PMID: 26421632 DOI: 10.1016/j.bpobgyn.2015.08.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
461 Kujala VJ, Pasqualini FS, Goss JA, Nawroth JC, Parker KK. Laminar ventricular myocardium on a microelectrode array-based chip. J Mater Chem B 2016;4:3534-43. [PMID: 32263387 DOI: 10.1039/c6tb00324a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
462 Kim J, Magli A, Chan SSK, Oliveira VKP, Wu J, Darabi R, Kyba M, Perlingeiro RCR. Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports 2017;9:12-22. [PMID: 28528701 DOI: 10.1016/j.stemcr.2017.04.022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
463 Dawson K, Aflaki M, Nattel S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol 2013;591:1409-32. [PMID: 23207593 DOI: 10.1113/jphysiol.2012.235382] [Cited by in Crossref: 83] [Cited by in F6Publishing: 68] [Article Influence: 9.2] [Reference Citation Analysis]
464 Lu TY, Lin B, Li Y, Arora A, Han L, Cui C, Coronnello C, Sheng Y, Benos PV, Yang L. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways. J Mol Cell Cardiol. 2013;63:146-154. [PMID: 23939491 DOI: 10.1016/j.yjmcc.2013.07.019] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
465 Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2015;49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
466 Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, Chit UW, Shimizu T, Iba H. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep 2016;6:21117. [PMID: 26887353 DOI: 10.1038/srep21117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
467 Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017;13:170-91. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
468 Weng KC, Kurokawa YK, Hajek BS, Paladin JA, Shirure VS, George SC. Human Induced Pluripotent Stem-Cardiac-Endothelial-Tumor-on-a-Chip to Assess Anticancer Efficacy and Cardiotoxicity. Tissue Eng Part C Methods 2020;26:44-55. [PMID: 31797733 DOI: 10.1089/ten.TEC.2019.0248] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 19.0] [Reference Citation Analysis]
469 Zhang H, Hanson A, de Almeida TS, Emfinger C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC, Mecham RP, Kovacs A, Halabi CM, Schwappach B, Remedi MS, Nichols CG. Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice. JCI Insight 2021;6:145934. [PMID: 33529173 DOI: 10.1172/jci.insight.145934] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
470 Kolanowski TJ, Antos CL, Guan K. Making human cardiomyocytes up to date: Derivation, maturation state and perspectives. International Journal of Cardiology 2017;241:379-86. [DOI: 10.1016/j.ijcard.2017.03.099] [Cited by in Crossref: 64] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
471 Gal I, Edri R, Noor N, Rotenberg M, Namestnikov M, Cabilly I, Shapira A, Dvir T. Injectable Cardiac Cell Microdroplets for Tissue Regeneration. Small 2020;16:e1904806. [PMID: 32003928 DOI: 10.1002/smll.201904806] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
472 Song SW, Kim SD, Oh DY, Lee Y, Lee AC, Jeong Y, Bae HJ, Lee D, Lee S, Kim J, Kwon S. One-Step Generation of a Drug-Releasing Hydrogel Microarray-On-A-Chip for Large-Scale Sequential Drug Combination Screening. Adv Sci (Weinh) 2019;6:1801380. [PMID: 30775230 DOI: 10.1002/advs.201801380] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
473 Mercer EJ, Lin YF, Cohen-Gould L, Evans T. Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 2018;435:41-55. [PMID: 29331499 DOI: 10.1016/j.ydbio.2018.01.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
474 Bizy A, Klos M. Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020;10:E1561. [PMID: 32887495 DOI: 10.3390/ani10091561] [Reference Citation Analysis]
475 Randolph LN, Lian XL. Beyond Purple Hearts: A Colorful Approach to Isolate Distinct Heart Cells from Human iPSCs. Cell Stem Cell 2019;24:675-7. [PMID: 31051127 DOI: 10.1016/j.stem.2019.04.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
476 Dokanehiifard S, Soltani BM, Ghiasi P, Baharvand H, Reza Ganjali M, Hosseinkhani S. hsa-miR-766-5p as a new regulator of mitochondrial apoptosis pathway for discriminating of cell death from cardiac differentiation. Gene 2020;736:144448. [DOI: 10.1016/j.gene.2020.144448] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
477 Liang W, Han P, Kim EH, Mak J, Zhang R, Torrente AG, Goldhaber JI, Marbán E, Cho HC. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells 2020;38:352-68. [PMID: 31648393 DOI: 10.1002/stem.3106] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
478 Maddah M, Heidmann JD, Mandegar MA, Walker CD, Bolouki S, Conklin BR, Loewke KE. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Reports 2015;4:621-31. [PMID: 25801505 DOI: 10.1016/j.stemcr.2015.02.007] [Cited by in Crossref: 77] [Cited by in F6Publishing: 57] [Article Influence: 12.8] [Reference Citation Analysis]
479 Xu T, Zhang M, Laurent T, Xie M, Ding S. Concise review: chemical approaches for modulating lineage-specific stem cells and progenitors. Stem Cells Transl Med 2013;2:355-61. [PMID: 23580542 DOI: 10.5966/sctm.2012-0172] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
480 Burridge PW, Holmström A, Wu JC. Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Curr Protoc Hum Genet 2015;87:21.3.1-21.3.15. [PMID: 26439715 DOI: 10.1002/0471142905.hg2103s87] [Cited by in Crossref: 51] [Cited by in F6Publishing: 58] [Article Influence: 8.5] [Reference Citation Analysis]
481 Park M, Yoon YS. Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korean Circ J 2018;48:974-88. [PMID: 30334384 DOI: 10.4070/kcj.2018.0312] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
482 Kurotsu S, Suzuki T, Ieda M. Direct Reprogramming, Epigenetics, and Cardiac Regeneration. J Card Fail 2017;23:552-7. [PMID: 28529134 DOI: 10.1016/j.cardfail.2017.05.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
483 Chen X, Liu Y, Xu C, Ba L, Liu Z, Li X, Huang J, Simpson E, Gao H, Cao D, Sheng W, Qi H, Ji H, Sanderson M, Cai CL, Li X, Yang L, Na J, Yamamura K, Liu Y, Huang G, Shou W, Sun N. QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nat Commun 2021;12:89. [PMID: 33397958 DOI: 10.1038/s41467-020-20327-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
484 Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020;8:692. [PMID: 32671050 DOI: 10.3389/fbioe.2020.00692] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
485 Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol. 2018;58:83-103. [PMID: 28992430 DOI: 10.1146/annurev-pharmtox-010617-053110] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
486 Jung G, Fajardo G, Ribeiro AJ, Kooiker KB, Coronado M, Zhao M, Hu DQ, Reddy S, Kodo K, Sriram K, Insel PA, Wu JC, Pruitt BL, Bernstein D. Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB J 2016;30:1464-79. [PMID: 26675706 DOI: 10.1096/fj.15-280982] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
487 Bedada FB, Chan SS, Metzger SK, Zhang L, Zhang J, Garry DJ, Kamp TJ, Kyba M, Metzger JM. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Reports 2014;3:594-605. [PMID: 25358788 DOI: 10.1016/j.stemcr.2014.07.012] [Cited by in Crossref: 114] [Cited by in F6Publishing: 99] [Article Influence: 16.3] [Reference Citation Analysis]
488 Kumar N, Richter J, Cutts J, Bush KT, Trujillo C, Nigam SK, Gaasterland T, Brafman D, Willert K. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. Elife 2015;4:e08413. [PMID: 26554899 DOI: 10.7554/eLife.08413] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
489 Chen Y, Zeng D, Ding L, Li XL, Liu XT, Li WJ, Wei T, Yan S, Xie JH, Wei L, Zheng QS. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. BMC Cell Biol 2015;16:22. [PMID: 26335746 DOI: 10.1186/s12860-015-0067-3] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
490 Kerscher P, Kaczmarek JA, Head SE, Ellis ME, Seeto WJ, Kim J, Bhattacharya S, Suppiramaniam V, Lipke EA. Direct Production of Human Cardiac Tissues by Pluripotent Stem Cell Encapsulation in Gelatin Methacryloyl. ACS Biomater Sci Eng 2017;3:1499-509. [PMID: 33429637 DOI: 10.1021/acsbiomaterials.6b00226] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 5.4] [Reference Citation Analysis]
491 Chai RJ, Werner H, Li PY, Lee YL, Nyein KT, Solovei I, Luu TDA, Sharma B, Navasankari R, Maric M, Sim LYE, Loh YJ, Aliwarga E, Cheong JWL, Chojnowski A, Autio MI, Haiyang Y, Boon Tan KK, Keng CT, Ng SL, Chew WL, Ferenczi M, Burke B, Foo RSY, Stewart CL. Disrupting the LINC complex by AAV mediated gene transduction prevents progression of Lamin induced cardiomyopathy. Nat Commun 2021;12:4722. [PMID: 34354059 DOI: 10.1038/s41467-021-24849-4] [Reference Citation Analysis]
492 Cashman TJ, Josowitz R, Gelb BD, Li RA, Dubois NC, Costa KD. Construction of Defined Human Engineered Cardiac Tissues to Study Mechanisms of Cardiac Cell Therapy. J Vis Exp 2016;:e53447. [PMID: 26967678 DOI: 10.3791/53447] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
493 Hrstka SC, Li X, Nelson TJ; Wanek Program Genetics Pipeline Group. NOTCH1-Dependent Nitric Oxide Signaling Deficiency in Hypoplastic Left Heart Syndrome Revealed Through Patient-Specific Phenotypes Detected in Bioengineered Cardiogenesis. Stem Cells 2017;35:1106-19. [PMID: 28142228 DOI: 10.1002/stem.2582] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
494 Aalders J, Léger L, Van der Meeren L, Van den Vreken N, Skirtach AG, Sinha S, De Backer J, van Hengel J. Effects of fibrillin mutations on the behavior of heart muscle cells in Marfan syndrome. Sci Rep 2020;10:16756. [PMID: 33028885 DOI: 10.1038/s41598-020-73802-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
495 el-Fiky SM, Kolkaila AM, Dawd DS, Wahab RM. Histochemical aspects of hydatidiform mole and choriocarcinoma. Acta Histochem. 1973;47:115-123. [PMID: 4134946 DOI: 10.1016/j.jacc.2014.04.056] [Cited by in Crossref: 83] [Cited by in F6Publishing: 61] [Article Influence: 1.8] [Reference Citation Analysis]
496 Horikoshi Y, Yan Y, Terashvili M, Wells C, Horikoshi H, Fujita S, Bosnjak ZJ, Bai X. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes. Cells 2019;8:E1095. [PMID: 31533262 DOI: 10.3390/cells8091095] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 18.0] [Reference Citation Analysis]
497 Gerbin KA, Grancharova T, Donovan-Maiye RM, Hendershott MC, Anderson HG, Brown JM, Chen J, Dinh SQ, Gehring JL, Johnson GR, Lee H, Nath A, Nelson AM, Sluzewski MF, Viana MP, Yan C, Zaunbrecher RJ, Cordes Metzler KR, Gaudreault N, Knijnenburg TA, Rafelski SM, Theriot JA, Gunawardane RN. Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Syst 2021;12:670-687.e10. [PMID: 34043964 DOI: 10.1016/j.cels.2021.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
498 Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, Sun X, Delmar M, Bu L. Culture in Glucose-Depleted Medium Supplemented with Fatty Acid and 3,3',5-Triiodo-l-Thyronine Facilitates Purification and Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Endocrinol (Lausanne) 2017;8:253. [PMID: 29067001 DOI: 10.3389/fendo.2017.00253] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
499 Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, Li J, Zhang Y, Song B, Sun X, Ding Q, Song Y, Chang X. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Molecular Cell 2018;72:380-394.e7. [DOI: 10.1016/j.molcel.2018.09.002] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 18.0] [Reference Citation Analysis]
500 Fu J, Quek KY, Chuah YJ, Lim CS, Fan C, Wang D. The effects of gelatin–dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells. J Mater Chem B 2016;4:7961-73. [DOI: 10.1039/c6tb02631a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
501 Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M. Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 2015;10:034004. [PMID: 25989939 DOI: 10.1088/1748-6041/10/3/034004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
502 Cho HM, Lee KH, Shen YM, Shin TJ, Ryu PD, Choi MC, Kang KS, Cho JY. Transplantation of hMSCs Genome Edited with LEF1 Improves Cardio-Protective Effects in Myocardial Infarction. Mol Ther Nucleic Acids. 2020;19:1186-1197. [PMID: 32069701 DOI: 10.1016/j.omtn.2020.01.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
503 Lalit PA, Hei DJ, Raval AN, Kamp TJ. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ Res 2014;114:1328-45. [PMID: 24723658 DOI: 10.1161/CIRCRESAHA.114.300556] [Cited by in Crossref: 84] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
504 Hong SP, Song S, Cho SW, Lee S, Koh BI, Bae H, Kim KH, Park JS, Do HS, Im I, Heo HJ, Ko TH, Park JH, Youm JB, Kim SJ, Kim I, Han J, Han YM, Koh GY. Generation of PDGFRα+ Cardioblasts from Pluripotent Stem Cells. Sci Rep 2017;7:41840. [PMID: 28165490 DOI: 10.1038/srep41840] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
505 Kasai-brunswick TH, Carvalho AB, Campos de Carvalho AC. Stem cell therapies in cardiac diseases: Current status and future possibilities. WJSC 2021;13:1231-47. [DOI: 10.4252/wjsc.v13.i9.1231] [Reference Citation Analysis]
506 Hookway TA, Matthys OB, Mendoza-Camacho FN, Rains S, Sepulveda JE, Joy DA, McDevitt TC. Phenotypic Variation Between Stromal Cells Differentially Impacts Engineered Cardiac Tissue Function. Tissue Eng Part A 2019;25:773-85. [PMID: 30968748 DOI: 10.1089/ten.TEA.2018.0362] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
507 Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Chan HYS, Webb SE, Keung W, Chow H, Miller AL, Leung AY, Hajjar RJ, Li RA, Chan CW. A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 2014;23:1704-16. [PMID: 24564569 DOI: 10.1089/scd.2013.0509] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 11.3] [Reference Citation Analysis]
508 Biermann M, Cai W, Lang D, Hermsen J, Profio L, Zhou Y, Czirok A, Isai DG, Napiwocki BN, Rodriguez AM, Brown ME, Woon MT, Shao A, Han T, Park D, Hacker TA, Crone WC, Burlingham WJ, Glukhov AV, Ge Y, Kamp TJ. Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells 2019;37:910-23. [PMID: 31087611 DOI: 10.1002/stem.3021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
509 Sun X, Nunes SS. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods 2016;101:21-6. [PMID: 26546730 DOI: 10.1016/j.ymeth.2015.11.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 5.7] [Reference Citation Analysis]
510 Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2018;123:224-43. [PMID: 29976690 DOI: 10.1161/CIRCRESAHA.118.311209] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 18.5] [Reference Citation Analysis]
511 Konze SA, van Diepen L, Schröder A, Olmer R, Möller H, Pich A, Weißmann R, Kuss AW, Zweigerdt R, Buettner FF. Cleavage of E-cadherin and β-catenin by calpain affects Wnt signaling and spheroid formation in suspension cultures of human pluripotent stem cells. Mol Cell Proteomics 2014;13:990-1007. [PMID: 24482122 DOI: 10.1074/mcp.M113.033423] [Cited by in Crossref: 40] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
512 Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME, Bursac N. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 2017;8:1825. [PMID: 29184059 DOI: 10.1038/s41467-017-01946-x] [Cited by in Crossref: 182] [Cited by in F6Publishing: 153] [Article Influence: 45.5] [Reference Citation Analysis]
513 Hookway TA, Butts JC, Lee E, Tang H, Mcdevitt TC. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny. Methods 2016;101:11-20. [DOI: 10.1016/j.ymeth.2015.11.027] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 8.8] [Reference Citation Analysis]
514 Wang T, Warren ST, Jin P. Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 2013;4:820-32. [PMID: 24078387 DOI: 10.1007/s13238-013-3074-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
515 Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, Barkal AA, Shen KY, Jain R, Morganti RM, Shyh-Chang N, Fernhoff NB, George BM, Wernig G, Salomon REA, Chen Z, Vogel H, Epstein JA, Kundaje A, Talbot WS, Beachy PA, Ang LT, Weissman IL. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell 2016;166:451-67. [PMID: 27419872 DOI: 10.1016/j.cell.2016.06.011] [Cited by in Crossref: 209] [Cited by in F6Publishing: 145] [Article Influence: 52.3] [Reference Citation Analysis]
516 Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021;5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Reference Citation Analysis]
517 Simon LR, Masters KS. Disease-inspired tissue engineering: Investigation of cardiovascular pathologies. ACS Biomater Sci Eng 2020;6:2518-32. [PMID: 32974421 DOI: 10.1021/acsbiomaterials.9b01067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
518 Tan SH, Loo SJ, Gao Y, Tao ZH, Su LP, Wang CX, Zhang SL, Mu YH, Cui YH, Abdurrachim D, Wang WH, Lalic J, Lim KC, Bu J, Tan RS, Lee TH, Zhang J, Ye L. Thymosin β4 increases cardiac cell proliferation, cell engraftment, and the reparative potency of human induced-pluripotent stem cell-derived cardiomyocytes in a porcine model of acute myocardial infarction. Theranostics 2021;11:7879-95. [PMID: 34335970 DOI: 10.7150/thno.56757] [Reference Citation Analysis]
519 Han Z, Yu Y, Cai B, Xu Z, Bao Z, Zhang Y, Bamba D, Ma W, Gao X, Yuan Y, Zhang L, Yu M, Liu S, Yan G, Jin M, Huang Q, Wang X, Hua B, Yang F, Pan Z, Liang H, Liu Y. YAP/TEAD3 signal mediates cardiac lineage commitment of human-induced pluripotent stem cells. J Cell Physiol 2020;235:2753-60. [PMID: 31541452 DOI: 10.1002/jcp.29179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
520 Ieda M. Heart regeneration using reprogramming technology. Proc Jpn Acad Ser B Phys Biol Sci 2013;89:118-28. [PMID: 23474887 DOI: 10.2183/pjab.89.118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
521 Boggess SC, Gandhi SS, Siemons BA, Huebsch N, Healy KE, Miller EW. New Molecular Scaffolds for Fluorescent Voltage Indicators. ACS Chem Biol 2019;14:390-6. [PMID: 30735344 DOI: 10.1021/acschembio.8b00978] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
522 Loskill P, Marcus SG, Mathur A, Reese WM, Healy KE. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips. PLoS One 2015;10:e0139587. [PMID: 26440672 DOI: 10.1371/journal.pone.0139587] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 11.2] [Reference Citation Analysis]
523 Xuan W, Wang Y, Tang Y, Ali A, Hu H, Maienschein-Cline M, Ashraf M. Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis. Shock 2018;50:627-39. [PMID: 29485473 DOI: 10.1097/SHK.0000000000001133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
524 Hamad S, Derichsweiler D, Papadopoulos S, Nguemo F, Šarić T, Sachinidis A, Brockmeier K, Hescheler J, Boukens BJ, Pfannkuche K. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 2019;9:7222-38. [PMID: 31695764 DOI: 10.7150/thno.32058] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
525 Zeng Z, Lin X, Tan L, Liu Y, Qu K, Wang Z. MicroRNAs: Important Regulators of Induced Pluripotent Stem Cell Generation and Differentiation. Stem Cell Rev and Rep 2018;14:71-81. [DOI: 10.1007/s12015-017-9785-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
526 Wei H, Beeson GC, Ye Z, Zhang J, Yao H, Damon B, Morad M. Activation of Wnt/β-catenin signalling and HIF1α stabilisation alters pluripotency and differentiation/proliferation properties of human-induced pluripotent stem cells. Biol Cell 2021;113:133-45. [PMID: 33275284 DOI: 10.1111/boc.202000055] [Reference Citation Analysis]
527 Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2019;25:311-27. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 45.0] [Reference Citation Analysis]
528 Dai DF, Danoviz ME, Wiczer B, Laflamme MA, Tian R. Mitochondrial Maturation in Human Pluripotent Stem Cell Derived Cardiomyocytes. Stem Cells Int 2017;2017:5153625. [PMID: 28421116 DOI: 10.1155/2017/5153625] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
529 Sun YH, Kao HKJ, Chang CW, Merleev A, Overton JL, Pretto D, Yechikov S, Maverakis E, Chiamvimonvat N, Chan JW, Lieu DK. Human induced pluripotent stem cell line with genetically encoded fluorescent voltage indicator generated via CRISPR for action potential assessment post-cardiogenesis. Stem Cells 2020;38:90-101. [PMID: 31566285 DOI: 10.1002/stem.3085] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
530 Lu HF, Leong MF, Lim TC, Chua YP, Lim JK, Du C, Wan ACA. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening. Biofabrication 2017;9:025011. [DOI: 10.1088/1758-5090/aa6c3a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
531 Gu Y, Liu GH, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban CR, Zhang K, Izpisua Belmonte JC. Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell 2014;5:59-68. [PMID: 24474197 DOI: 10.1007/s13238-013-0016-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
532 Kreutzer J, Ikonen L, Hirvonen J, Pekkanen-mattila M, Aalto-setälä K, Kallio P. Pneumatic cell stretching system for cardiac differentiation and culture. Medical Engineering & Physics 2014;36:496-501. [DOI: 10.1016/j.medengphy.2013.09.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
533 James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021;22:3005. [PMID: 33809429 DOI: 10.3390/ijms22063005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
534 Churko JM, Garg P, Treutlein B, Venkatasubramanian M, Wu H, Lee J, Wessells QN, Chen SY, Chen WY, Chetal K, Mantalas G, Neff N, Jabart E, Sharma A, Nolan GP, Salomonis N, Wu JC. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018;9:4906. [PMID: 30464173 DOI: 10.1038/s41467-018-07333-4] [Cited by in Crossref: 69] [Cited by in F6Publishing: 57] [Article Influence: 23.0] [Reference Citation Analysis]
535 Frampton JP, Shi H, Kao A, Parent JM, Takayama S. Delivery of proteases in aqueous two-phase systems enables direct purification of stem cell colonies from feeder cell co-cultures for differentiation into functional cardiomyocytes. Adv Healthc Mater 2013;2:1440-4. [PMID: 23592706 DOI: 10.1002/adhm.201300049] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
536 Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. Adv Ther (Weinh) 2020;3:1900182. [PMID: 33665356 DOI: 10.1002/adtp.201900182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
537 Jin G, Mizutani A, Fukuda T, Otani T, Yan T, Prieto Vila M, Murakami H, Kudoh T, Hirohata S, Kasai T, Salomon DS, Seno M. Eosinophil cationic protein enhances stabilization of β-catenin during cardiomyocyte differentiation in P19CL6 embryonal carcinoma cells. Mol Biol Rep 2013;40:3165-71. [PMID: 23271121 DOI: 10.1007/s11033-012-2390-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
538 Pekkanen-Mattila M, Häkli M, Pölönen RP, Mansikkala T, Junnila A, Talvitie E, Koivisto JT, Kellomäki M, Aalto-Setälä K. Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Materials (Basel) 2019;12:E1805. [PMID: 31163704 DOI: 10.3390/ma12111805] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
539 Ye L, Zhang X, Zhou Q, Tan B, Xu H, Yi Q, Yan L, Xie M, Zhang Y, Tian J, Zhu J. Activation of AMPK Promotes Maturation of Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021;9:644667. [PMID: 33768096 DOI: 10.3389/fcell.2021.644667] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
540 Han J, Wu Q, Xia Y, Wagner MB, Xu C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 2016;16:740-50. [PMID: 27131761 DOI: 10.1016/j.scr.2016.04.014] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 9.4] [Reference Citation Analysis]
541 Nazareth EJP, Rahman N, Yin T, Zandstra PW. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production. Stem Cell Reports 2016;6:679-91. [PMID: 27132889 DOI: 10.1016/j.stemcr.2016.04.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
542 Conway MK, Gerger MJ, Balay EE, O'Connell R, Hanson S, Daily NJ, Wakatsuki T. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System. J Vis Exp 2015;:e52755. [PMID: 26068617 DOI: 10.3791/52755] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
543 Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, Ginistrelli LC, Ctortecka C, Šalic Š, Novatchkova M, Mendjan S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 2021;184:3299-3317.e22. [PMID: 34019794 DOI: 10.1016/j.cell.2021.04.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
544 Shen J, Wang X, Zhou D, Li T, Tang L, Gong T, Su J, Liang P. Modelling cadmium-induced cardiotoxicity using human pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med 2018;22:4221-35. [PMID: 29993192 DOI: 10.1111/jcmm.13702] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
545 Mononen MM, Leung CY, Xu J, Chien KR. Trajectory mapping of human embryonic stem cell cardiogenesis reveals lineage branch points and an ISL1 progenitor-derived cardiac fibroblast lineage. Stem Cells 2020;38:1267-78. [PMID: 32497389 DOI: 10.1002/stem.3236] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
546 Chamberland S, Yang HH, Pan MM, Evans SW, Guan S, Chavarha M, Yang Y, Salesse C, Wu H, Wu JC, Clandinin TR, Toth K, Lin MZ, St-Pierre F. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife 2017;6:e25690. [PMID: 28749338 DOI: 10.7554/eLife.25690] [Cited by in Crossref: 99] [Cited by in F6Publishing: 51] [Article Influence: 24.8] [Reference Citation Analysis]
547 Ieda M. Key Regulators of Cardiovascular Differentiation and Regeneration: Harnessing the Potential of Direct Reprogramming to Treat Heart Failure. J Card Fail 2020;26:80-4. [PMID: 31541743 DOI: 10.1016/j.cardfail.2019.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
548 Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019;6:E48. [PMID: 31137703 DOI: 10.3390/bioengineering6020048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
549 Grespan E, Martewicz S, Serena E, Le Houerou V, Rühe J, Elvassore N. Analysis of Calcium Transients and Uniaxial Contraction Force in Single Human Embryonic Stem Cell-Derived Cardiomyocytes on Microstructured Elastic Substrate with Spatially Controlled Surface Chemistries. Langmuir 2016;32:12190-201. [PMID: 27643958 DOI: 10.1021/acs.langmuir.6b03138] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
550 Zhang P, Huang JJ, Ou-Yang KF, Liang H, Li ML, Wang YJ, Yang HT. Minimal contribution of IP3R2 in cardiac differentiation and derived ventricular-like myocytes from human embryonic stem cells. Acta Pharmacol Sin 2020;41:1576-86. [PMID: 33037404 DOI: 10.1038/s41401-020-00528-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
551 Bruyneel AAN, Mckeithan WL, Feyen DAM, Mercola M. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Curr Cardiol Rep 2018;20. [DOI: 10.1007/s11886-018-1000-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
552 Rojas SV, Kensah G, Rotaermel A, Baraki H, Kutschka I, Zweigerdt R, Martin U, Haverich A, Gruh I, Martens A. Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One. 2017;12:e0173222. [PMID: 28493867 DOI: 10.1371/journal.pone.0173222] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
553 Cesselli D, Aleksova A, Mazzega E, Caragnano A, Beltrami AP. Cardiac stem cell aging and heart failure. Pharmacological Research 2018;127:26-32. [DOI: 10.1016/j.phrs.2017.01.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
554 Li E, Li X, Huang J, Xu C, Liang Q, Ren K, Bai A, Lu C, Qian R, Sun N. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein Cell 2020;11:661-79. [PMID: 32277346 DOI: 10.1007/s13238-020-00713-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
555 Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020;165-166:60-76. [PMID: 31917972 DOI: 10.1016/j.addr.2019.12.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
556 Thiesler CT, Cajic S, Hoffmann D, Thiel C, van Diepen L, Hennig R, Sgodda M, Weiβmann R, Reichl U, Steinemann D, Diekmann U, Huber NM, Oberbeck A, Cantz T, Kuss AW, Körner C, Schambach A, Rapp E, Buettner FF. Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Mol Cell Proteomics 2016;15:1435-52. [PMID: 26785728 DOI: 10.1074/mcp.M115.054122] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 5.6] [Reference Citation Analysis]
557 Winkler T, Mahoney EJ, Sinner D, Wylie CC, Dahia CL. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse. PLoS One 2014;9:e98444. [PMID: 24892825 DOI: 10.1371/journal.pone.0098444] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
558 Busser BW, Lin Y, Yang Y, Zhu J, Chen G, Michelson AM. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis. PLoS One 2015;10:e0141066. [PMID: 26485529 DOI: 10.1371/journal.pone.0141066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
559 Ifkovits JL, Addis RC, Epstein JA, Gearhart JD. Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS One. 2014;9:e89678. [PMID: 24586958 DOI: 10.1371/journal.pone.0089678] [Cited by in Crossref: 123] [Cited by in F6Publishing: 103] [Article Influence: 17.6] [Reference Citation Analysis]
560 Hasan A, Mohammadi N, Nawaz A, Kodagoda T, Diakonov I, Harding SE, Gorelik J. Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β2AR-cAMP Signalling. Cells 2020;9:E2275. [PMID: 33053822 DOI: 10.3390/cells9102275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
561 Kitajima K, Nakajima M, Kanokoda M, Kyba M, Dandapat A, Tolar J, Saito MK, Toyoda M, Umezawa A, Hara T. GSK3β inhibition activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells. Exp Hematol 2016;44:68-74.e1-10. [PMID: 26477526 DOI: 10.1016/j.exphem.2015.09.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
562 Zhang J, Tao R, Campbell KF, Carvalho JL, Ruiz EC, Kim GC, Schmuck EG, Raval AN, da Rocha AM, Herron TJ, Jalife J, Thomson JA, Kamp TJ. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 2019;10:2238. [PMID: 31110246 DOI: 10.1038/s41467-019-09831-5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 25.0] [Reference Citation Analysis]
563 Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res. 2014;13:202-213. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 43] [Article Influence: 8.3] [Reference Citation Analysis]
564 López-Muneta L, Miranda-Arrubla J, Carvajal-Vergara X. The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020;21:E7950. [PMID: 33114756 DOI: 10.3390/ijms21217950] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
565 Omidi M, Niknahad H, Noorafshan A, Fardid R, Nadimi E, Naderi S, Bakhtari A, Mohammadi-bardbori A. Co-exposure to an Aryl Hydrocarbon Receptor Endogenous Ligand, 6-Formylindolo[3,2-b]carbazole (FICZ), and Cadmium Induces Cardiovascular Developmental Abnormalities in Mice. Biol Trace Elem Res 2019;187:442-51. [DOI: 10.1007/s12011-018-1391-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
566 Chou SJ, Tseng WL, Chen CT, Lai YF, Chien CS, Chang YL, Lee HC, Wei YH, Chiou SH. Impaired ROS Scavenging System in Human Induced Pluripotent Stem Cells Generated from Patients with MERRF Syndrome. Sci Rep. 2016;6:23661. [PMID: 27025901 DOI: 10.1038/srep23661] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
567 Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marbán E, Cho HC. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2015;4:129-42. [PMID: 25533636 DOI: 10.1016/j.stemcr.2014.11.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 47] [Article Influence: 9.7] [Reference Citation Analysis]
568 Tsai SY, Ghazizadeh Z, Wang HJ, Amin S, Ortega FA, Badieyan ZS, Hsu ZT, Gordillo M, Kumar R, Christini DJ, Evans T, Chen S. A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity. Cardiovasc Res 2020;116:658-70. [PMID: 31173076 DOI: 10.1093/cvr/cvz148] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
569 Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020;21:E4354. [PMID: 32575374 DOI: 10.3390/ijms21124354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
570 Wegener M, Bader A, Giri S. How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration. Drug Discov Today 2015;20:667-85. [PMID: 25720353 DOI: 10.1016/j.drudis.2015.02.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
571 Zhong Q, Laco F, Liao MC, Woo TL, Oh SKW, Chai CLL. Influencing the Fate of Cardiac and Neural Stem Cell Differentiation Using Small Molecule Inhibitors of ALK5. Stem Cells Transl Med 2018;7:709-20. [PMID: 30063296 DOI: 10.1002/sctm.17-0246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
572 Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 2015;10:1345-61. [PMID: 26270394 DOI: 10.1038/nprot.2015.089] [Cited by in Crossref: 95] [Cited by in F6Publishing: 78] [Article Influence: 15.8] [Reference Citation Analysis]
573 Lippmann ES, Williams CE, Ruhl DA, Estevez-Silva MC, Chapman ER, Coon JJ, Ashton RS. Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 2015;4:632-44. [PMID: 25843047 DOI: 10.1016/j.stemcr.2015.02.018] [Cited by in Crossref: 110] [Cited by in F6Publishing: 90] [Article Influence: 18.3] [Reference Citation Analysis]
574 Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation: Materials Design for Cardiac Differentiation. Stem Cells 2015;33:1021-35. [DOI: 10.1002/stem.1929] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
575 Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 7.5] [Reference Citation Analysis]
576 Sass G, Madigan RT, Joubert LM, Bozzi A, Sayed N, Wu JC, Stevens DA. A Combination of Itraconazole and Amiodarone Is Highly Effective against Trypanosoma cruzi Infection of Human Stem Cell-Derived Cardiomyocytes. Am J Trop Med Hyg 2019;101:383-91. [PMID: 31219005 DOI: 10.4269/ajtmh.19-0023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
577 Li W, Li K, Wei W, Ding S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell. 2013;13:270-283. [PMID: 24012368 DOI: 10.1016/j.stem.2013.08.002] [Cited by in Crossref: 111] [Cited by in F6Publishing: 96] [Article Influence: 15.9] [Reference Citation Analysis]
578 Liu Y, Li P, Liu K, He Q, Han S, Sun X, Li T, Shen L. Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS One. 2014;9:e109588. [PMID: 25313563 DOI: 10.1371/journal.pone.0109588] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
579 Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res. 2015;117:80-88. [PMID: 26089365 DOI: 10.1161/circresaha.117.305365] [Cited by in Crossref: 236] [Cited by in F6Publishing: 137] [Article Influence: 39.3] [Reference Citation Analysis]
580 Lu RXZ, Radisic M. Organ-on-a-chip platforms for evaluation of environmental nanoparticle toxicity. Bioact Mater 2021;6:2801-19. [PMID: 33665510 DOI: 10.1016/j.bioactmat.2021.01.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
581 Rossdam C, Konze SA, Oberbeck A, Rapp E, Gerardy-Schahn R, von Itzstein M, Buettner FFR. Approach for Profiling of Glycosphingolipid Glycosylation by Multiplexed Capillary Gel Electrophoresis Coupled to Laser-Induced Fluorescence Detection To Identify Cell-Surface Markers of Human Pluripotent Stem Cells and Derived Cardiomyocytes. Anal Chem 2019;91:6413-8. [PMID: 31058489 DOI: 10.1021/acs.analchem.9b01114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
582 Diekmann U, Lenzen S, Naujok O. A Reliable and Efficient Protocol for Human Pluripotent Stem Cell Differentiation into the Definitive Endoderm Based on Dispersed Single Cells. Stem Cells and Development 2015;24:190-204. [DOI: 10.1089/scd.2014.0143] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
583 Rodriguez B, Carusi A, Abi-Gerges N, Ariga R, Britton O, Bub G, Bueno-Orovio A, Burton RA, Carapella V, Cardone-Noott L, Daniels MJ, Davies MR, Dutta S, Ghetti A, Grau V, Harmer S, Kopljar I, Lambiase P, Lu HR, Lyon A, Minchole A, Muszkiewicz A, Oster J, Paci M, Passini E, Severi S, Taggart P, Tinker A, Valentin JP, Varro A, Wallman M, Zhou X. Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop. Europace 2016;18:1287-98. [PMID: 26622055 DOI: 10.1093/europace/euv320] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
584 Ren X, Ott HC. On the road to bioartificial organs. Pflugers Arch 2014;466:1847-57. [PMID: 24691559 DOI: 10.1007/s00424-014-1504-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
585 Moreau A, Gosselin-Badaroudine P, Mercier A, Burger B, Keller DI, Chahine M. A leaky voltage sensor domain of cardiac sodium channels causes arrhythmias associated with dilated cardiomyopathy. Sci Rep 2018;8:13804. [PMID: 30218094 DOI: 10.1038/s41598-018-31772-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
586 Leyton-Mange JS, Milan DJ. Pluripotent stem cells as a platform for cardiac arrhythmia drug screening. Curr Treat Options Cardiovasc Med 2014;16:334. [PMID: 25074263 DOI: 10.1007/s11936-014-0334-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
587 Välimäki MJ, Tölli MA, Kinnunen SM, Aro J, Serpi R, Pohjolainen L, Talman V, Poso A, Ruskoaho HJ. Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. J Med Chem 2017;60:7781-98. [PMID: 28858485 DOI: 10.1021/acs.jmedchem.7b00816] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
588 Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111:344-358. [PMID: 22821908 DOI: 10.1161/CIRCRESAHA.110.227512] [Cited by in Crossref: 438] [Cited by in F6Publishing: 236] [Article Influence: 48.7] [Reference Citation Analysis]
589 Mathur A, Loskill P, Hong S, Lee J, Marcus SG, Dumont L, Conklin BR, Willenbring H, Lee LP, Healy KE. Human induced pluripotent stem cell-based microphysiological tissue models of myocardium and liver for drug development. Stem Cell Res Ther 2013;4 Suppl 1:S14. [PMID: 24565415 DOI: 10.1186/scrt375] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
590 Park SJ, Kim RY, Park BW, Lee S, Choi SW, Park JH, Choi JJ, Kim SW, Jang J, Cho DW, Chung HM, Moon SH, Ban K, Park HJ. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun. 2019;10:3123. [PMID: 31311935 DOI: 10.1038/s41467-019-11091-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 31.0] [Reference Citation Analysis]
591 Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 2019;198:3-26. [PMID: 30343824 DOI: 10.1016/j.biomaterials.2018.09.036] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 18.0] [Reference Citation Analysis]
592 Pan J, Lee Y, Lee HH, Sung T, Jen SH, Ban L, Su H, Chen D, Hsu S, Higuchi A, Chen H. Culture and differentiation of purified human adipose-derived stem cells by membrane filtration via nylon mesh filters. J Mater Chem B 2020;8:5204-14. [DOI: 10.1039/d0tb00947d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
593 Jarrige M, Frank E, Herardot E, Martineau S, Darle A, Benabides M, Domingues S, Chose O, Habeler W, Lorant J, Baldeschi C, Martinat C, Monville C, Morizur L, Ben M'Barek K. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021;10:240. [PMID: 33513719 DOI: 10.3390/cells10020240] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
594 Maas RGC, Lee S, Harakalova M, Snijders Blok CJB, Goodyer WR, Hjortnaes J, Doevendans PAFM, Van Laake LW, van der Velden J, Asselbergs FW, Wu JC, Sluijter JPG, Wu SM, Buikema JW. Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc 2021;2:100334. [PMID: 33615277 DOI: 10.1016/j.xpro.2021.100334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
595 Martin U. New Muscle for Old Hearts: Engineering Tissue from Pluripotent Stem Cells. Human Gene Therapy 2015;26:305-11. [DOI: 10.1089/hum.2015.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
596 Boheler KR, Poon EN. Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Arch 2021;473:1023-39. [PMID: 33928456 DOI: 10.1007/s00424-021-02549-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
597 Gu Y, Yi F, Liu G, Belmonte JCI. Beating in a dish: new hopes for cardiomyocyte regeneration. Cell Res 2013;23:314-6. [DOI: 10.1038/cr.2012.163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
598 Jung JP, Hu D, Domian IJ, Ogle BM. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci Rep 2015;5:18705. [PMID: 26687770 DOI: 10.1038/srep18705] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 5.7] [Reference Citation Analysis]
599 Velasquez-Mao AJ, Tsao CJM, Monroe MN, Legras X, Bissig-Choisat B, Bissig KD, Ruano R, Jacot JG. Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells. PLoS One 2017;12:e0177824. [PMID: 28545044 DOI: 10.1371/journal.pone.0177824] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
600 Tohyama S, Tanosaki S, Someya S, Fujita J, Fukuda K. Manipulation of Pluripotent Stem Cell Metabolism for Clinical Application. Curr Stem Cell Rep 2017;3:28-34. [PMID: 28261548 DOI: 10.1007/s40778-017-0073-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
601 Liang W, Gasparyan L, AlQarawi W, Davis DR. Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert Opin Biol Ther 2019;19:313-33. [PMID: 30682895 DOI: 10.1080/14712598.2019.1575359] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
602 Lopez CA, Al-Siddiqi HHAA, Purnama U, Iftekhar S, Bruyneel AAN, Kerr M, Nazir R, da Luz Sousa Fialho M, Malandraki-Miller S, Alonaizan R, Kermani F, Heather LC, Czernuszka J, Carr CA. Physiological and pharmacological stimulation for in vitro maturation of substrate metabolism in human induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2021;11:7802. [PMID: 33833285 DOI: 10.1038/s41598-021-87186-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
603 Hayes HB, Nicolini AM, Arrowood CA, Chvatal SA, Wolfson DW, Cho HC, Sullivan DD, Chal J, Fermini B, Clements M, Ross JD, Millard DC. Novel method for action potential measurements from intact cardiac monolayers with multiwell microelectrode array technology. Sci Rep 2019;9:11893. [PMID: 31417144 DOI: 10.1038/s41598-019-48174-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
604 Nguyen PK, Neofytou E, Rhee JW, Wu JC. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review. JAMA Cardiol 2016;1:953-62. [PMID: 27579998 DOI: 10.1001/jamacardio.2016.2750] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 20.7] [Reference Citation Analysis]
605 Kriegel AJ, Gartz M, Afzal MZ, de Lange WJ, Ralphe JC, Strande JL. Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes. J Cardiovasc Transl Res 2017;10:295-304. [PMID: 28032312 DOI: 10.1007/s12265-016-9723-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
606 Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD 3rd. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed Mater 2015;10:034105. [PMID: 25826196 DOI: 10.1088/1748-6041/10/3/034105] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 8.8] [Reference Citation Analysis]
607 Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 2013;8:162-75. [PMID: 23257984 DOI: 10.1038/nprot.2012.150] [Cited by in Crossref: 783] [Cited by in F6Publishing: 671] [Article Influence: 87.0] [Reference Citation Analysis]
608 Wills LR, Rajagopalan P. Advances in Human Induced Pluripotent Stem Cell-Derived Hepatocytes for Use in Toxicity Testing. Ann Biomed Eng 2020;48:1045-57. [PMID: 31372857 DOI: 10.1007/s10439-019-02331-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
609 Aguilar-Sanchez C, Michael M, Pennings S. Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018;2018:1247857. [PMID: 30034478 DOI: 10.1155/2018/1247857] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
610 DePalma SJ, Davidson CD, Stis AE, Helms AS, Baker BM. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomater Sci 2021;9:93-107. [PMID: 33325920 DOI: 10.1039/d0bm01247e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
611 Cui H, Schlesinger J, Schoenhals S, Tönjes M, Dunkel I, Meierhofer D, Cano E, Schulz K, Berger MF, Haack T, Abdelilah-Seyfried S, Bulyk ML, Sauer S, Sperling SR. Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res 2016;44:2538-53. [PMID: 26582913 DOI: 10.1093/nar/gkv1244] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
612 Puceat M. Could a pluripotent stem cell give rise to a high yield of a single cell lineage: a myocardial cell? Curr Opin Genet Dev 2013;23:498-9. [PMID: 23850377 DOI: 10.1016/j.gde.2013.06.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
613 Sayed N, Huang Y, Nguyen K, Krejciova-rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L, Kuznetsova T, Rosenberg-hasson Y, Ostan R, Monti D, Lehallier B, Shen-orr SS, Maecker HT, Dekker CL, Wyss-coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging 2021;1:598-615. [DOI: 10.1038/s43587-021-00082-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
614 Huang J, Liu Y, Chen JX, Lu XY, Zhu WJ, Qin L, Xun ZX, Zheng QY, Li EM, Sun N, Xu C, Chen HY. Harmine is an effective therapeutic small molecule for the treatment of cardiac hypertrophy. Acta Pharmacol Sin 2021. [PMID: 33785860 DOI: 10.1038/s41401-021-00639-y] [Reference Citation Analysis]
615 Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA. Changing Metabolism in Differentiating Cardiac Progenitor Cells-Can Stem Cells Become Metabolically Flexible Cardiomyocytes? Front Cardiovasc Med 2018;5:119. [PMID: 30283788 DOI: 10.3389/fcvm.2018.00119] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
616 Moser PT, Ott HC. Recellularization of organs: what is the future for solid organ transplantation? Curr Opin Organ Transplant 2014;19:603-9. [PMID: 25304814 DOI: 10.1097/MOT.0000000000000131] [Cited by in Crossref: 24] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
617 Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int. 2019;2019:4508470. [PMID: 31149014 DOI: 10.1155/2019/4508470] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
618 Williams B, Löbel W, Finklea F, Halloin C, Ritzenhoff K, Manstein F, Mohammadi S, Hashemi M, Zweigerdt R, Lipke E, Cremaschi S. Prediction of Human Induced Pluripotent Stem Cell Cardiac Differentiation Outcome by Multifactorial Process Modeling. Front Bioeng Biotechnol 2020;8:851. [PMID: 32793579 DOI: 10.3389/fbioe.2020.00851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
619 Yang Y, Ren Z, Xu F, Meng Y, Zhang Y, Ai N, Long Y, Fok HI, Deng C, Zhao X, Huang L, Zhao Q, Wang J, Liu W, Ge W, Chen G. Endogenous IGF Signaling Directs Heterogeneous Mesoderm Differentiation in Human Embryonic Stem Cells. Cell Rep 2019;29:3374-3384.e5. [PMID: 31825822 DOI: 10.1016/j.celrep.2019.11.047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
620 Jha R, Wu Q, Singh M, Preininger MK, Han P, Ding G, Cho HC, Jo H, Maher KO, Wagner MB, Xu C. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells. Sci Rep. 2016;6:30956. [PMID: 27492371 DOI: 10.1038/srep30956] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
621 Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017;35:77-94. [PMID: 28007615 DOI: 10.1016/j.biotechadv.2016.12.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
622 Gholami Derami H, Gupta P, Weng KC, Seth A, Gupta R, Silva JR, Raman B, Singamaneni S. Reversible Photothermal Modulation of Electrical Activity of Excitable Cells using Polydopamine Nanoparticles. Adv Mater 2021;33:e2008809. [PMID: 34216406 DOI: 10.1002/adma.202008809] [Reference Citation Analysis]
623 Pfeiffer MJ, Quaranta R, Piccini I, Fell J, Rao J, Röpke A, Seebohm G, Greber B. Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES. Nat Commun 2018;9:440. [PMID: 29382828 DOI: 10.1038/s41467-017-02812-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
624 An M, Kim M. Protective effects of kaempferol against cardiac sinus node dysfunction via CaMKII deoxidization. Anat Cell Biol 2015;48:235-43. [PMID: 26770873 DOI: 10.5115/acb.2015.48.4.235] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
625 Ge F, Wang Z, Xi JJ. Engineered Maturation Approaches of Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes. Cells 2019;9:E9. [PMID: 31861463 DOI: 10.3390/cells9010009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
626 Edri R, Gal I, Noor N, Harel T, Fleischer S, Adadi N, Green O, Shabat D, Heller L, Shapira A, Gat-Viks I, Peer D, Dvir T. Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants. Adv Mater 2019;31:e1803895. [PMID: 30406960 DOI: 10.1002/adma.201803895] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 17.7] [Reference Citation Analysis]
627 Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018;5:120. [PMID: 30283789 DOI: 10.3389/fcvm.2018.00120] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
628 Ong CS, Zhou X, Han J, Huang CY, Nashed A, Khatri S, Mattson G, Fukunishi T, Zhang H, Hibino N. In vivo therapeutic applications of cell spheroids. Biotechnology Advances 2018;36:494-505. [DOI: 10.1016/j.biotechadv.2018.02.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
629 Iglesias-garcía O, Pelacho B, Prósper F. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology 2013;62:43-50. [DOI: 10.1016/j.yjmcc.2013.04.022] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
630 Cossette SM, Gastonguay AJ, Bao X, Lerch-Gaggl A, Zhong L, Harmann LM, Koceja C, Miao RQ, Vakeel P, Chun C, Li K, Foeckler J, Bordas M, Weiler H, Strande J, Palecek SP, Ramchandran R. Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism. Biol Open 2014;4:48-61. [PMID: 25505152 DOI: 10.1242/bio.20149811] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
631 Helms AS, Tang VT, O'Leary TS, Friedline S, Wauchope M, Arora A, Wasserman AH, Smith ED, Lee LM, Wen XW, Shavit JA, Liu AP, Previs MJ, Day SM. Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy. JCI Insight 2020;5:133782. [PMID: 31877118 DOI: 10.1172/jci.insight.133782] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
632 Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development. Stem Cell Reports 2016;7:764-76. [PMID: 27641648 DOI: 10.1016/j.stemcr.2016.08.008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
633 Soh BS, Ng SY, Wu H, Buac K, Park JH, Lian X, Xu J, Foo KS, Felldin U, He X, Nichane M, Yang H, Bu L, Li RA, Lim B, Chien KR. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells. Nat Commun 2016;7:10774. [PMID: 26952167 DOI: 10.1038/ncomms10774] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
634 Eguchi A, Lee GO, Wan F, Erwin GS, Ansari AZ. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. Biochem J 2014;462:397-413. [PMID: 25145439 DOI: 10.1042/BJ20140400] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
635 Yoda K, Ohnuki Y, Kurosawa H. Optimization of the treatment conditions with glycogen synthase kinase-3 inhibitor towards enhancing the proliferation of human induced pluripotent stem cells while maintaining an undifferentiated state under feeder-free conditions. Journal of Bioscience and Bioengineering 2019;127:381-7. [DOI: 10.1016/j.jbiosc.2018.09.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
636 Thies RS, Murry CE. The advancement of human pluripotent stem cell-derived therapies into the clinic. Development. 2015;142:3077-3084. [PMID: 26395136 DOI: 10.1242/dev.126482] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
637 Tan Y, Han P, Gu Q, Chen G, Wang L, Ma R, Wu J, Feng C, Zhang Y, Wang L, Hu B, Li W, Hao J, Zhou Q. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. J Tissue Eng Regen Med 2018;12:153-63. [PMID: 27943600 DOI: 10.1002/term.2381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
638 Wang EY, Kuzmanov U, Smith JB, Dou W, Rafatian N, Lai BFL, Lu RXZ, Wu Q, Yazbeck J, Zhang XO, Sun Y, Gramolini A, Radisic M. An organ-on-a-chip model for pre-clinical drug evaluation in progressive non-genetic cardiomyopathy. J Mol Cell Cardiol 2021;160:97-110. [PMID: 34216608 DOI: 10.1016/j.yjmcc.2021.06.012] [Reference Citation Analysis]
639 Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. Biomed Res Int 2018;2018:6497242. [PMID: 29850546 DOI: 10.1155/2018/6497242] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 12.7] [Reference Citation Analysis]
640 Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell. EMBO J. 2015;34:710-738. [PMID: 25712211 DOI: 10.15252/embj.201490563] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
641 Inagawa K, Ieda M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2013;6:37-45. [PMID: 23054660 DOI: 10.1007/s12265-012-9412-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
642 Natividad-Diaz SL, Browne S, Jha AK, Ma Z, Hossainy S, Kurokawa YK, George SC, Healy KE. A combined hiPSC-derived endothelial cell and in vitro microfluidic platform for assessing biomaterial-based angiogenesis. Biomaterials 2019;194:73-83. [PMID: 30583150 DOI: 10.1016/j.biomaterials.2018.11.032] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
643 Galdos FX, Darsha AK, Paige SL, Wu SM. Purification of Pluripotent Stem Cell-Derived Cardiomyocytes Using CRISPR/Cas9-Mediated Integration of Fluorescent Reporters. In: Poss KD, Kühn B, editors. Cardiac Regeneration. New York: Springer US; 2021. pp. 223-40. [DOI: 10.1007/978-1-0716-0668-1_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
644 Prowse AB, Timmins NE, Yau TM, Li R, Weisel RD, Keller G, Zandstra PW. Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology 2014;30:1335-49. [DOI: 10.1016/j.cjca.2014.08.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
645 Wile BM, Ban K, Yoon YS, Bao G. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs. Nat Protoc 2014;9:2411-24. [PMID: 25232937 DOI: 10.1038/nprot.2014.154] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
646 Jabbour RJ, Owen TJ, Pandey P, Reinsch M, Wang B, King O, Couch LS, Pantou D, Pitcher DS, Chowdhury RA, Pitoulis FG, Handa BS, Kit-Anan W, Perbellini F, Myles RC, Stuckey DJ, Dunne M, Shanmuganathan M, Peters NS, Ng FS, Weinberger F, Terracciano CM, Smith GL, Eschenhagen T, Harding SE. In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight 2021;6:144068. [PMID: 34369384 DOI: 10.1172/jci.insight.144068] [Reference Citation Analysis]
647 Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Cited by in Crossref: 71] [Cited by in F6Publishing: 55] [Article Influence: 11.8] [Reference Citation Analysis]
648 Rampoldi A, Jha R, Fite J, Boland G, Xu C. Cryopreservation and CO2-independent culture of 3D cardiac progenitors for spaceflight experiments. Biomaterials 2021;269:120673. [PMID: 33493770 DOI: 10.1016/j.biomaterials.2021.120673] [Reference Citation Analysis]
649 Eldin AJ, Akinci B, da Rocha AM, Meral R, Simsir IY, Adiyaman SC, Ozpelit E, Bhave N, Gen R, Yurekli B, Ozdemir Kutbay N, Siklar Z, Neidert AH, Hench R, Tayeh MK, Innis JW, Jalife J, Oral H, Oral EA. Cardiac phenotype in familial partial lipodystrophy. Clin Endocrinol (Oxf) 2021;94:1043-53. [PMID: 33502018 DOI: 10.1111/cen.14426] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
650 Tan HK, Toh CX, Ma D, Yang B, Liu TM, Lu J, Wong CW, Tan TK, Li H, Syn C, Tan EL, Lim B, Lim YP, Cook SA, Loh YH. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking. Stem Cells Transl Med 2014;3:586-98. [PMID: 24646489 DOI: 10.5966/sctm.2013-0195] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
651 Sapp V, Aguirre A, Mainkar G, Ding J, Adler E, Liao R, Sharma S, Jain M. Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity. Sci Rep 2021;11:13866. [PMID: 34230586 DOI: 10.1038/s41598-021-92988-1] [Reference Citation Analysis]
652 Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019;124:1184-97. [PMID: 30744497 DOI: 10.1161/CIRCRESAHA.118.314063] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
653 Walsh KB. Targeting cardiac potassium channels for state-of-the-art drug discovery. Expert Opin Drug Discov 2015;10:157-69. [PMID: 25400064 DOI: 10.1517/17460441.2015.983471] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
654 Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev Rep 2015;11:710-27. [PMID: 26085192 DOI: 10.1007/s12015-015-9596-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
655 Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, Ou C, Chen M. Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS Appl Mater Interfaces 2018;10:24459-68. [PMID: 29974744 DOI: 10.1021/acsami.8b08659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 11.3] [Reference Citation Analysis]
656 Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA. 2013;110:E5039-E5048. [PMID: 24248365 DOI: 10.1073/pnas.1309408110] [Cited by in Crossref: 206] [Cited by in F6Publishing: 175] [Article Influence: 25.8] [Reference Citation Analysis]
657 Hwang GH, Park SM, Han HJ, Kim JS, Yun SP, Ryu JM, Lee HJ, Chang W, Lee SJ, Choi JH, Choi JS, Lee MY. Purification of small molecule-induced cardiomyocytes from human induced pluripotent stem cells using a reporter system. J Cell Physiol 2017;232:3384-95. [PMID: 28063225 DOI: 10.1002/jcp.25783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
658 Han L, Mich-Basso J, Kühn B. Generation of Human Induced Pluripotent Stem Cells and Differentiation into Cardiomyocytes. Methods Mol Biol 2021;2158:125-39. [PMID: 32857370 DOI: 10.1007/978-1-0716-0668-1_10] [Reference Citation Analysis]
659 Frasier CR, Zhang H, Offord J, Dang LT, Auerbach DS, Shi H, Chen C, Goldman AM, Eckhardt LL, Bezzerides VJ, Parent JM, Isom LL. Channelopathy as a SUDEP Biomarker in Dravet Syndrome Patient-Derived Cardiac Myocytes. Stem Cell Reports. 2018;11:626-634. [PMID: 30146492 DOI: 10.1016/j.stemcr.2018.07.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
660 Abilez OJ, Tzatzalos E, Yang H, Zhao MT, Jung G, Zöllner AM, Tiburcy M, Riegler J, Matsa E, Shukla P, Zhuge Y, Chour T, Chen VC, Burridge PW, Karakikes I, Kuhl E, Bernstein D, Couture LA, Gold JD, Zimmermann WH, Wu JC. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells 2018;36:265-77. [PMID: 29086457 DOI: 10.1002/stem.2732] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 14.5] [Reference Citation Analysis]
661 Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TD, Li PY, Richards AM, Foo RS. A landscape of circular RNA expression in the human heart. Cardiovasc Res 2017;113:298-309. [PMID: 28082450 DOI: 10.1093/cvr/cvw250] [Cited by in Crossref: 49] [Cited by in F6Publishing: 102] [Article Influence: 12.3] [Reference Citation Analysis]
662 Ozhan G, Weidinger G. Wnt/β-catenin signaling in heart regeneration. Cell Regen 2015;4:3. [PMID: 26157574 DOI: 10.1186/s13619-015-0017-8] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
663 Abreu de Oliveira WA, Moens S, El Laithy Y, van der Veer BK, Athanasouli P, Cortesi EE, Baietti MF, Koh KP, Ventura JJ, Amant F, Annibali D, Lluis F. Wnt/β-Catenin Inhibition Disrupts Carboplatin Resistance in Isogenic Models of Triple-Negative Breast Cancer. Front Oncol 2021;11:705384. [PMID: 34367990 DOI: 10.3389/fonc.2021.705384] [Reference Citation Analysis]
664 Vrbský J, Vinarský V, Perestrelo AR, De La Cruz JO, Martino F, Pompeiano A, Izzi V, Hlinomaz O, Rotrekl V, Sudol M, Pagliari S, Forte G. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 2021;113:1349-65. [PMID: 33713822 DOI: 10.1016/j.ygeno.2021.03.009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
665 Huebsch N, Loskill P, Mandegar MA, Marks NC, Sheehan AS, Ma Z, Mathur A, Nguyen TN, Yoo JC, Judge LM, Spencer CI, Chukka AC, Russell CR, So PL, Conklin BR, Healy KE. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales. Tissue Eng Part C Methods 2015;21:467-79. [PMID: 25333967 DOI: 10.1089/ten.TEC.2014.0283] [Cited by in Crossref: 149] [Cited by in F6Publishing: 117] [Article Influence: 24.8] [Reference Citation Analysis]
666 Kaushik G, Leijten J, Khademhosseini A. Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells 2017;35:51-60. [PMID: 27641724 DOI: 10.1002/stem.2502] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 7.4] [Reference Citation Analysis]
667 Tang L, Yao F, Wang H, Wang X, Shen J, Dai B, Wu H, Zhou D, Guo F, Wang J, Li T, Wang H, Gong T, Su J, Wang L, Liang P. Inhibition of TRPC1 prevents cardiac hypertrophy via NF-κB signaling pathway in human pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology 2019;126:143-54. [DOI: 10.1016/j.yjmcc.2018.10.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
668 Sharma A, Toepfer CN, Schmid M, Garfinkel AC, Seidman CE. Differentiation and Contractile Analysis of GFP-Sarcomere Reporter hiPSC-Cardiomyocytes. Curr Protoc Hum Genet 2018;96:21.12.1-21.12.12. [PMID: 29364522 DOI: 10.1002/cphg.53] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis