1
|
Deng X, Qiu P, Li X, Hu Y, Que Q, Zhang K, Deng T, Liu Y. Potential of Sivelestat for Pulmonary Arterial Hypertension Treatment: Network Pharmacology-Based Target Identification and Mechanistic Exploration. Drug Des Devel Ther 2025; 19:4123-4138. [PMID: 40416794 PMCID: PMC12103203 DOI: 10.2147/dddt.s507240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
Background Sivelestat is a specific neutrophil elastase inhibitor that is currently approved for the treatment of acute lung injury and acute respiratory distress syndrome. Given sivelestat's established anti-inflammatory and antioxidant properties, its efficacy in treating pulmonary arterial hypertension (PAH) remains uncertain. This study aims to investigate the potential of sivelestat as a treatment for PAH. Methods Sivelestat's effects on PAH were evaluated using hypoxia-induced rat models (10% O2, 4 weeks) and pulmonary arterial endothelial/smooth muscle cells (1% O2). Rats received sivelestat (20-100 mg/kg) for 2 weeks, with hemodynamic (RVSP) and vascular remodeling (%WT) assessments. In vitro, sivelestat (50-200 μM) suppressed hypoxia-driven proliferation (CCK-8, EdU), migration (Transwell), and angiogenesis. Molecular validation via qPCR/Western blot confirmed reduced expression of key targets (IGF1R, JAK1, JAK2, PDGFRB). Results Through predictive analysis, we identified 595 potential genes associated with sivelestat in the treatment of PAH. Notably, ERBB2, IGF1R, JAK1, JAK2, PDGFRB, and PTPN11 emerged as key hub genes. In vivo experiments demonstrated that administration of sivelestat at a dose of 100 mg/kg significantly reduced PAH and improved pulmonary vascular remodeling. In vitro experiments indicated that sivelestat effectively decreased the proliferation and migration of PAECs and PASMCs induced by hypoxia. Conclusion Sivelestat has the potential to treat PAH through various targets and pathways. We have initially elucidated the molecular mechanism by which sivelestat acts in the treatment of PAH and have conducted preliminary validation through molecular docking studies and experimental approaches.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| | - Pengcheng Qiu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Xin Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Yukun Hu
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| | - Qing Que
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| | - Kunchi Zhang
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| | - Tianlin Deng
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| | - Yi Liu
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| |
Collapse
|
2
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int J Mol Sci 2022; 23:9744. [PMID: 36077139 PMCID: PMC9456226 DOI: 10.3390/ijms23179744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.
Collapse
Affiliation(s)
| | | | | | | | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
4
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Cagirici HB, Akpinar BA, Sen TZ, Budak H. Multiple Variant Calling Pipelines in Wheat Whole Exome Sequencing. Int J Mol Sci 2021; 22:10400. [PMID: 34638743 PMCID: PMC8509018 DOI: 10.3390/ijms221910400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
The highly challenging hexaploid wheat (Triticum aestivum) genome is becoming ever more accessible due to the continued development of multiple reference genomes, a factor which aids in the plight to better understand variation in important traits. Although the process of variant calling is relatively straightforward, selection of the best combination of the computational tools for read alignment and variant calling stages of the analysis and efficient filtering of the false variant calls are not always easy tasks. Previous studies have analyzed the impact of methods on the quality metrics in diploid organisms. Given that variant identification in wheat largely relies on accurate mining of exome data, there is a critical need to better understand how different methods affect the analysis of whole exome sequencing (WES) data in polyploid species. This study aims to address this by performing whole exome sequencing of 48 wheat cultivars and assessing the performance of various variant calling pipelines at their suggested settings. The results show that all the pipelines require filtering to eliminate false-positive calls. The high consensus among the reference SNPs called by the best-performing pipelines suggests that filtering provides accurate and reproducible results. This study also provides detailed comparisons for high sensitivity and precision at individual and population levels for the raw and filtered SNP calls.
Collapse
Affiliation(s)
- H. Busra Cagirici
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA; (H.B.C.); (T.Z.S.)
| | - Bala Ani Akpinar
- Department of Genomics and Genome Editing, Montana BioAgriculture Inc., Missoula, MT 59802, USA;
| | - Taner Z. Sen
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA; (H.B.C.); (T.Z.S.)
| | - Hikmet Budak
- Department of Genomics and Genome Editing, Montana BioAgriculture Inc., Missoula, MT 59802, USA;
| |
Collapse
|
6
|
Species concepts of Dothideomycetes: classification, phylogenetic inconsistencies and taxonomic standardization. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00485-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide, and is caused by complex interactions of multiple risk factors such as environmental (Helicobacter pylori and Epstein–Barr Virus), hereditary (genetic alterations and epigenetic modifications), as well as dietary and lifestyle factors. GC is usually detected at an advanced stage, with a dismal prognosis. Even for patients with similar clinical or pathologic stage receiving similar treatment, the outcomes are still uneven and unpredictable. To better incorporate genetic and epigenetic profiles into GC prognostic predication, gene expression signatures have been developed to predict GC outcomes. More recently, the advancement of high-throughput sequencing technology, also known as next-generation sequencing (NGS) technology, and analysis has provided the basis for accurate molecular classification of GC tumors. Here, we summarized and updated the literature related to NGS studies of GC, including whole-genome sequencing, whole-exome sequencing, RNA sequencing, and targeted sequencing, and discussed current progresses. NGS has facilitated the identification of genetic/epigenetic targets for screening as well as development of targeted agent therapy, thus enabling individualized patient management and treatment.
Collapse
Affiliation(s)
- Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- PLA Marine Corps Hospital, Chaozhou, Guangdong 521000, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, P. R. China
| | - Zhongxing Fu
- Ningguo Bio-Leader Biotechnology Co., Ltd., Anhui, Hefei, P. R. China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-related Diseases, Shanghai, P. R. China
| | - Yan Du
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
8
|
Peña-Chilet M, Esteban-Medina M, Falco MM, Rian K, Hidalgo MR, Loucera C, Dopazo J. Using mechanistic models for the clinical interpretation of complex genomic variation. Sci Rep 2019; 9:18937. [PMID: 31831811 PMCID: PMC6908734 DOI: 10.1038/s41598-019-55454-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
The sustained generation of genomic data in the last decade has increased the knowledge on the causal mutations of a large number of diseases, especially for highly penetrant Mendelian diseases, typically caused by a unique or a few genes. However, the discovery of causal genes in complex diseases has been far less successful. Many complex diseases are actually a consequence of the failure of complex biological modules, composed by interrelated proteins, which can happen in many different ways, which conferring a multigenic nature to the condition that can hardly be attributed to one or a few genes. We present a mechanistic model, Hipathia, implemented in a web server that allows estimating the effect that mutations, or changes in the expression of genes, have over the whole system of human signaling and the corresponding functional consequences. We show several use cases where we demonstrate how different the ultimate impact of mutations with similar loss-of-function potential can be and how the potential pathological role of a damaged gene can be inferred within the context of a signaling network. The use of systems biology-based approaches, such as mechanistic models, allows estimating the potential impact of loss-of-function mutations occurring in proteins that are part of complex biological interaction networks, such as signaling pathways. This holistic approach provides an elegant alternative to gene-centric approaches that can open new avenues in the interpretation of the genomic variability in complex diseases.
Collapse
Affiliation(s)
- María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain
- Bioinformatics in RareDiseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013, Sevilla, Spain
| | - Marina Esteban-Medina
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain
| | - Matias M Falco
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain
- Bioinformatics in RareDiseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013, Sevilla, Spain
| | - Kinza Rian
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain.
- Bioinformatics in RareDiseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013, Sevilla, Spain.
- INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, Sevilla, 42013, Spain.
| |
Collapse
|
9
|
Paunovska K, Loughrey D, Sago CD, Langer R, Dahlman JE. Using Large Datasets to Understand Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902798. [PMID: 31429126 PMCID: PMC6810779 DOI: 10.1002/adma.201902798] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Indexed: 05/02/2023]
Abstract
Advances in sequencing technologies have made studying biological processes with genomics, transcriptomics, and proteomics commonplace. As a result, this suite of increasingly integrated techniques is well positioned to study drug delivery, a process that is influenced by many biomolecules working in concert. Omics-based approaches can be used to study the vast nanomaterial chemical space as well as the biological factors that affect the safety, toxicity, and efficacy of nanotechnologies. The generation and analysis of large datasets, methods to interpret them, and dataset applications to nanomaterials to date, are demonstrated here. Finally, new approaches for how sequencing-generated datasets can answer fundamental questions in nanotechnology based drug delivery are proposed.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
10
|
Amadoz A, Hidalgo MR, Çubuk C, Carbonell-Caballero J, Dopazo J. A comparison of mechanistic signaling pathway activity analysis methods. Brief Bioinform 2019; 20:1655-1668. [PMID: 29868818 PMCID: PMC6917216 DOI: 10.1093/bib/bby040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
Understanding the aspects of cell functionality that account for disease mechanisms or drug modes of action is a main challenge for precision medicine. Classical gene-based approaches ignore the modular nature of most human traits, whereas conventional pathway enrichment approaches produce only illustrative results of limited practical utility. Recently, a family of new methods has emerged that change the focus from the whole pathways to the definition of elementary subpathways within them that have any mechanistic significance and to the study of their activities. Thus, mechanistic pathway activity (MPA) methods constitute a new paradigm that allows recoding poorly informative genomic measurements into cell activity quantitative values and relate them to phenotypes. Here we provide a review on the MPA methods available and explain their contribution to systems medicine approaches for addressing challenges in the diagnostic and treatment of complex diseases.
Collapse
Affiliation(s)
- Alicia Amadoz
- Department of Bioinformatics, Igenomix S.L., 46980 Valencia, Spain
| | - Marta R Hidalgo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla 41013, Spain
| | - Cankut Çubuk
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla 41013, Spain
| | - José Carbonell-Caballero
- Chromatin and Gene expression Lab, Gene Regulation, Stem Cells and Cancer Program, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, PRBB, Barcelona 08003, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla 41013, Spain
- Chromatin and Gene expression Lab, Gene Regulation, Stem Cells and Cancer Program, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, PRBB, Barcelona 08003, Spain
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla 41013, Spain, Functional Genomics Node (INB), FPS, Hospital Virgen del Rocío, Sevilla 41013, Spain and Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla 41013, Spain
| |
Collapse
|
11
|
Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinformatics 2019; 20:370. [PMID: 31266445 PMCID: PMC6604281 DOI: 10.1186/s12859-019-2969-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In spite of the abundance of genomic data, predictive models that describe phenotypes as a function of gene expression or mutations are difficult to obtain because they are affected by the curse of dimensionality, given the disbalance between samples and candidate genes. And this is especially dramatic in scenarios in which the availability of samples is difficult, such as the case of rare diseases. RESULTS The application of multi-output regression machine learning methodologies to predict the potential effect of external proteins over the signaling circuits that trigger Fanconi anemia related cell functionalities, inferred with a mechanistic model, allowed us to detect over 20 potential therapeutic targets. CONCLUSIONS The use of artificial intelligence methods for the prediction of potentially causal relationships between proteins of interest and cell activities related with disease-related phenotypes opens promising avenues for the systematic search of new targets in rare diseases.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Sevilla, Spain
- INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| |
Collapse
|
12
|
Kumaran M, Subramanian U, Devarajan B. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data. BMC Bioinformatics 2019; 20:342. [PMID: 31208315 PMCID: PMC6580603 DOI: 10.1186/s12859-019-2928-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Background Whole exome sequencing (WES) is a cost-effective method that identifies clinical variants but it demands accurate variant caller tools. Currently available tools have variable accuracy in predicting specific clinical variants. But it may be possible to find the best combination of aligner-variant caller tools for detecting accurate single nucleotide variants (SNVs) and small insertion and deletion (InDels) separately. Moreover, many important aspects of InDel detection are overlooked while comparing the performance of tools, particularly its base pair length. Results We assessed the performance of variant calling pipelines using the combinations of four variant callers and five aligners on human NA12878 and simulated exome data. We used high confidence variant calls from Genome in a Bottle (GiaB) consortium for validation, and GRCh37 and GRCh38 as the human reference genome. Based on the performance metrics, both BWA and Novoalign aligners performed better with DeepVariant and SAMtools callers for detecting SNVs, and with DeepVariant and GATK for InDels. Furthermore, we obtained similar results on human NA24385 and NA24631 exome data from GiaB. Conclusion In this study, DeepVariant with BWA and Novoalign performed best for detecting accurate SNVs and InDels. The accuracy of variant calling was improved by merging the top performing pipelines. The results of our study provide useful recommendations for analysis of WES data in clinical genomics. Electronic supplementary material The online version of this article (10.1186/s12859-019-2928-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manojkumar Kumaran
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625020, India.,School of Chemical and Biotechnology, SASTRA (Deemed to be University), Thanjavur, Tamil Nadu, 613401, India
| | - Umadevi Subramanian
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625020, India
| | - Bharanidharan Devarajan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625020, India.
| |
Collapse
|
13
|
Lee JH, Ahn BK, Baik SS, Lee KH. Comprehensive Analysis of Somatic Mutations in Colorectal Cancer With Peritoneal Metastasis. In Vivo 2019; 33:447-452. [PMID: 30804124 DOI: 10.21873/invivo.11493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND To analyze for genetic mutations which may presage peritoneal metastasis by using targeted next-generation sequencing (NGS). MATERIALS AND METHODS Formalin-fixed, paraffin-embedded primary tumor specimens were obtained from 10 patients with small obstructing colorectal cancer and peritoneal metastasis (group A) and five with large non-obstructing colorectal cancer and no recurrence (group B). DNA was extracted for the sequencing of 409 cancer genes. The distribution of genetic mutations was compared between the two groups to find genetic mutations related to peritoneal metastasis. RESULTS When the samples were sorted based on similarity of gene expression by hierarchical clustering analysis, the samples were well divided between the two study groups. Mutations in AT-rich interactive domain-containing protein 1A (ARID1A), polycystic kidney and hepatic disease 1 (PKHD1), ubiquitin-protein ligase E3 component n-recognin 5 (UBR5), paired box 5 (PAX5), tumor protein p53 (TP53), additional sex combs like 1 (ASXL1) and androgen receptor (AR) genes were detected more frequently in group A. CONCLUSION A number of somatic mutations presumed to be relevant to colorectal cancer with peritoneal metastasis were identified in our study by NGS.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Department of Surgery, Dongguk University Medical Center, Gyeongju, Republic of Korea
| | - Byung Kyu Ahn
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seung Sam Baik
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kang Hong Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Damase TR, Allen PB. Designed and Evolved Nucleic Acid Nanotechnology: Contrast and Complementarity. Bioconjug Chem 2019; 30:2-12. [PMID: 30561987 DOI: 10.1021/acs.bioconjchem.8b00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this review, we explore progress on DNA aptamers (evolved DNA), DNA circuits (designed DNA), and the newest projects that integrate both. Designed DNA nanotechnology includes static nanostructures, dynamic nanodevices, and reaction networks (sometimes called DNA circuits). DNA circuits are dynamic DNA reactions that perform computations and sequence-specific amplification. Directed evolution can be used to produce DNA that can recognize specific targets. Aptamers are evolved nucleic acids; they are produced artificially with an in vitro selection process. DNA aptamers are molecular recognition elements made of single-stranded DNA (ssDNA) with the potential to interact with proteins, small molecules, viruses, and even cells. Designed molecular structures can incorporate aptamers for applications with immediate practical impact.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- Department of Chemistry , University of Idaho , 001 Renfrew Hall, 875 Perimeter Drive , Moscow , Idaho 83844-2343 , United States
| | - Peter B Allen
- Department of Chemistry , University of Idaho , 001 Renfrew Hall, 875 Perimeter Drive , Moscow , Idaho 83844-2343 , United States
| |
Collapse
|
15
|
Zhao D, Zheng D. SMARTcleaner: identify and clean off-target signals in SMART ChIP-seq analysis. BMC Bioinformatics 2018; 19:544. [PMID: 30587107 PMCID: PMC6307164 DOI: 10.1186/s12859-018-2577-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Noises and artifacts may arise in several steps of the next-generation sequencing (NGS) process. Recently, an NGS library preparation method called SMART, or Switching Mechanism At the 5′ end of the RNA Transcript, is introduced to prepare ChIP-seq (chromatin immunoprecipitation and deep sequencing) libraries from small amount of DNA material, using the DNA SMART ChIP-seq Kit. The protocol adds Ts to the 3′ end of DNA templates, which is subsequently recognized and used by SMART poly(dA) primers for reverse transcription and then addition of PCR primers and sequencing adapters. The poly(dA) primers, however, can anneal to poly(T) sequences in a genome and amplify DNA fragments that are not enriched in the immunoprecipitated DNA templates. This off-target amplification results in false signals in the ChIP-seq data. Results Here, we show that the off-target ChIP-seq reads derived from false amplification of poly(T/A) genomic sequences have unique and strand-specific features. Accordingly, we develop a tool (called “SMARTcleaner”) that can exploit these features to remove SMART ChIP-seq artifacts. Application of SMARTcleaner to several SMART ChIP-seq datasets demonstrates that it can remove reads from off-target amplification effectively, leading to significantly improved ChIP-seq peaks and results. Conclusions SMARTcleaner could identify and clean the false signals in SMART-based ChIP-seq libraries, leading to improvement in peak calling, and downstream data analysis and interpretation. Electronic supplementary material The online version of this article (10.1186/s12859-018-2577-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA. .,Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA. .,Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
16
|
Ohshiro T, Tsutsui M, Yokota K, Taniguchi M. Quantitative analysis of DNA with single-molecule sequencing. Sci Rep 2018; 8:8517. [PMID: 29867186 PMCID: PMC5986817 DOI: 10.1038/s41598-018-26875-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Cancer can be diagnosed by identifying DNA and microRNA base sequences that have the same base length yet differ in a few base sequences, if the abundance ratios of these slightly deviant base sequences can be determined. However, such quantitative analyses cannot be performed using the current DNA sequencers. Here we determine entire base sequences of four types of DNA corresponding to the let-7 microRNA, which is a 22-base cancer marker. We record the single-molecule conductances of the base molecules using current-tunneling measurements. In addition, we count the numbers of molecules in a solution to determine the abundance ratios of two DNA strands that differ by a single base sequence.
Collapse
Affiliation(s)
- Takahito Ohshiro
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
17
|
SHI7 Is a Self-Learning Pipeline for Multipurpose Short-Read DNA Quality Control. mSystems 2018; 3:mSystems00202-17. [PMID: 29719872 PMCID: PMC5915699 DOI: 10.1128/msystems.00202-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
Quality control of high-throughput DNA sequencing data is an important but sometimes laborious task requiring background knowledge of the sequencing protocol used (such as adaptor type, sequencing technology, insert size/stitchability, paired-endedness, etc.). Quality control protocols typically require applying this background knowledge to selecting and executing numerous quality control steps with the appropriate parameters, which is especially difficult when working with public data or data from collaborators who use different protocols. We have created a streamlined quality control pipeline intended to substantially simplify the process of DNA quality control from raw machine output files to actionable sequence data. In contrast to other methods, our proposed pipeline is easy to install and use and attempts to learn the necessary parameters from the data automatically with a single command. Next-generation sequencing technology is of great importance for many biological disciplines; however, due to technical and biological limitations, the short DNA sequences produced by modern sequencers require numerous quality control (QC) measures to reduce errors, remove technical contaminants, or merge paired-end reads together into longer or higher-quality contigs. Many tools for each step exist, but choosing the appropriate methods and usage parameters can be challenging because the parameterization of each step depends on the particularities of the sequencing technology used, the type of samples being analyzed, and the stochasticity of the instrumentation and sample preparation. Furthermore, end users may not know all of the relevant information about how their data were generated, such as the expected overlap for paired-end sequences or type of adaptors used to make informed choices. This increasing complexity and nuance demand a pipeline that combines existing steps together in a user-friendly way and, when possible, learns reasonable quality parameters from the data automatically. We propose a user-friendly quality control pipeline called SHI7 (canonically pronounced “shizen”), which aims to simplify quality control of short-read data for the end user by predicting presence and/or type of common sequencing adaptors, what quality scores to trim, whether the data set is shotgun or amplicon sequencing, whether reads are paired end or single end, and whether pairs are stitchable, including the expected amount of pair overlap. We hope that SHI7 will make it easier for all researchers, expert and novice alike, to follow reasonable practices for short-read data quality control. IMPORTANCE Quality control of high-throughput DNA sequencing data is an important but sometimes laborious task requiring background knowledge of the sequencing protocol used (such as adaptor type, sequencing technology, insert size/stitchability, paired-endedness, etc.). Quality control protocols typically require applying this background knowledge to selecting and executing numerous quality control steps with the appropriate parameters, which is especially difficult when working with public data or data from collaborators who use different protocols. We have created a streamlined quality control pipeline intended to substantially simplify the process of DNA quality control from raw machine output files to actionable sequence data. In contrast to other methods, our proposed pipeline is easy to install and use and attempts to learn the necessary parameters from the data automatically with a single command.
Collapse
|
18
|
Upgrading Affinity Screening Experiments by Analysis of Next-Generation Sequencing Data. Methods Mol Biol 2017; 1701:411-424. [PMID: 29116519 DOI: 10.1007/978-1-4939-7447-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Computational analysis of next-generation sequencing data (NGS; also termed deep sequencing) enables the analysis of affinity screening procedures (or biopanning experiments) in an unprecedented depth and therewith improves the identification of relevant peptide or antibody ligands with desired binding or functional properties. Virtually any selection methodology employing the direct physical linkage of geno- and phenotype to select for desired properties can be leveraged by computational analysis. This article describes a concept how relevant ligands can be identified by harnessing NGS data. Thereby, the focus lays on improved ligand identification and describes how NGS data can be structured for single-round analysis as well as for comparative analysis of multiple selection rounds. Especially, the comparative analysis opens new avenues in the field of ligand identification. The concept of computational analysis is described at the example of the software tool "AptaAnalyzer TM ." This intuitive tool was developed for scientists without special computer skills and makes the computational approach accessible to a broad user range.
Collapse
|
19
|
Civit L, Taghdisi SM, Jonczyk A, Haßel SK, Gröber C, Blank M, Stunden HJ, Beyer M, Schultze J, Latz E, Mayer G. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie 2017; 145:53-62. [PMID: 29054799 DOI: 10.1016/j.biochi.2017.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The sensitive and specific detection of pathogenic cells is essential in clinical diagnostics. To achieve this, molecular tools are required that unequivocally recognise appropriate cell surface molecules, such as biomarkers that come along with disease onset and progression. Aptamers are short single-stranded oligonucleotides that interact with cognate target molecules with high affinity and specificity. Within the last years they have gained an increased attention as cell-recognition tools. Here, we report a systematic analysis of a cell-SELEX procedure, for the identification of aptamers that recognise breast cancer cells. Besides a comparison of conventional (Sanger) with high-throughput sequencing techniques (next-generation sequencing), three different screening techniques have been applied to characterise the binding properties of selected aptamer candidates. This method has been found to be beneficial in finding DNA aptamers, rarely enriched in the libraries. Finally, four DNA aptamers were identified that exhibit broad-spectrum interaction patterns to different cancer cell lines derived from solid tumours.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Seyed Mohammad Taghdisi
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Silvana K Haßel
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - H James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany; Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
20
|
Li X, Dong W, Qu X, Zhao H, Wang S, Hao Y, Li Q, Zhu J, Ye M, Xiao W. Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data. Oncol Lett 2017; 13:3177-3185. [PMID: 28521423 DOI: 10.3892/ol.2017.5798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/30/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is often diagnosed in the advanced stages and is associated with a poor prognosis. Obtaining an in depth understanding of the molecular mechanisms of GC has lagged behind compared with other cancers. This study aimed to identify candidate biomarkers for GC. An integrated analysis of microarray datasets was performed to identify differentially expressed genes (DEGs) between GC and normal tissues. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then performed to identify the functions of the DEGs. Furthermore, a protein-protein interaction (PPI) network of the DEGs was constructed. The expression levels of the DEGs were validated in human GC tissues using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A set of 689 DEGs were identified in GC tissues, as compared with normal tissues, including 202 upregulated DEGs and 487 downregulated DEGs. The KEGG pathway analysis suggested that various pathways may play important roles in the pathology of GC, including pathways related to protein digestion and absorption, extracellular matrix-receptor interaction, and the metabolism of xenobiotics by cytochrome P450. The PPI network analysis indicated that the significant hub proteins consisted of SPP1, TOP2A and ARPC1B. RT-qPCR validation indicated that the expression levels of the top 10 most significantly dysexpressed genes were consistent with the illustration of the integrated analysis. The present study yielded a reference list of reliable DEGs, which represents a robust pool of candidates for further evaluation of GC pathogenesis and treatment.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China.,Department of Oncology, PLA General Hospital, Beijing 100853, P.R. China
| | - Weiwei Dong
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China.,Department of Oncology, PLA General Hospital, Beijing 100853, P.R. China
| | - Xueling Qu
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China.,Graduate School Department of Oncology, Medical College of Liaoning, Jinzhou, Liaoning 121001, P.R. China
| | - Huixia Zhao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Shuo Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Yixin Hao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Qiuwen Li
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Jianhua Zhu
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Min Ye
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Wenhua Xiao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
21
|
Jin L, Li G, Yu D, Huang W, Cheng C, Liao S, Wu Q, Zhang Y. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae. BMC Genomics 2017; 18:130. [PMID: 28166730 PMCID: PMC5294800 DOI: 10.1186/s12864-017-3507-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022] Open
Abstract
Background Alternative splicing (AS) regulation is extensive and shapes the functional complexity of higher organisms. However, the contribution of alternative splicing to fungal biology is not well studied. Results This study provides sequences of the transcriptomes of the plant wilt pathogen Verticillium dahliae, using two different strains and multiple methods for cDNA library preparations. We identified alternatively spliced mRNA isoforms in over a half of the multi-exonic fungal genes. Over one-thousand isoforms involve TopHat novel splice junction; multiple types of combinatory alternative splicing patterns were identified. We showed that one Verticillium gene could use four different 5′ splice sites and two different 3′ donor sites to produce up to five mature mRNAs, representing one of the most sophisticated alternative splicing model in eukaryotes other than animals. Hundreds of novel intron types involving a pair of new splice sites were identified in the V. dahliae genome. All the types of AS events were validated by using RT-PCR. Functional enrichment analysis showed that AS genes are involved in most known biological functions and enriched in ATP biosynthesis, sexual/asexual reproduction, morphogenesis, signal transduction etc., predicting that the AS regulation modulates mRNA isoform output and shapes the V. dahliae proteome plasticity of the pathogen in response to the environmental and developmental changes. Conclusions These findings demonstrate the comprehensive alternative splicing mechanisms in a fungal plant pathogen, which argues the importance of this fungus in developing complicate genome regulation strategies in eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3507-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lirong Jin
- Key Laboratory of Integrated Pest Management on Crops in Central China, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Guanglin Li
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China.,College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Dazhao Yu
- Key Laboratory of Integrated Pest Management on Crops in Central China, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| | - Wei Huang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China
| | - Shengjie Liao
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Heath, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China
| | - Qijia Wu
- Laboratory for Genome Regulation and Human Heath, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China.,Seqhealth Technology Co., Ltd, Wuhan, Hubei, 430075, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China. .,Laboratory for Genome Regulation and Human Heath, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei, 430075, China.
| |
Collapse
|
22
|
Eshghifar N, Farrokhi N, Naji T, Zali M. Tumor suppressor genes in familial adenomatous polyposis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:3-13. [PMID: 28331559 PMCID: PMC5346818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is mostly due to a series of genetic alterations that are being greatly under the influence of the environmental factors. These changes, mutational or epigenetic modifications at transcriptional forefront and/or post-transcriptional effects via miRNAs, include inactivation and the conversion of proto-oncogene to oncogenes, and/or inactivation of tumor suppressor genes (TSG). Here, a thorough review was carried out on the role of TSGs with the focus on the APC as the master regulator, mutated genes and mal-/dysfunctional pathways that lead to one type of hereditary form of the CRC; namely familial adenomatous polyposis (FAP). This review provides a venue towards defining candidate genes that can be used as new PCR-based markers for early diagnosis of FAP. In addition to diagnosis, defining the modes of genetic alterations will open door towards genome editing to either suppress the disease or reduce its progression during the course of action.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Naser Farrokhi
- Department of Plant Biology & Biotechnology, Faculty of Biosciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Tahereh Naji
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Aptamer Selection Technology and Recent Advances. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 4:e223. [PMID: 28110747 PMCID: PMC4345306 DOI: 10.1038/mtna.2014.74] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Over the last decade, aptamers have begun to find their way from basic research to diverse commercial applications. The development of diagnostics is even more widespread than clinical applications because aptamers do not have to be extensively modified to enhance their in vivo stability and pharmacokinetics in diagnostic assays. The increasing attention has propelled the technical progress of the in vitro selection technology (SELEX) to enhance the efficiency of developing aptamers for commercially interesting targets. This review highlights recent progress in the technical steps of a SELEX experiment with a focus on high-throughput next-generation sequencing and bioinformatics. Achievements have been made in the optimization of aptamer libraries, separation schemes, amplification of the selected libraries and the identification of aptamer sequences from enriched libraries.
Collapse
|
24
|
Glenn TC, Faircloth BC. Capturing Darwin's dream. Mol Ecol Resour 2016; 16:1051-8. [PMID: 27454358 PMCID: PMC5318190 DOI: 10.1111/1755-0998.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/28/2023]
Abstract
Evolutionary biologists from Darwin forward have dreamed of having data that would elucidate our understanding of evolutionary history and the diversity of life. Sequence capture is a relatively old DNA technology, but its use is growing rapidly due to advances in (i) massively parallel DNA sequencing approaches and instruments, (ii) massively parallel bait construction, (iii) methods to identify target regions and (iv) sample preparation. We give a little historical context to these developments, summarize some of the important advances reported in this special issue and point to further advances that can be made to help fulfill Darwin's dream.
Collapse
Affiliation(s)
- Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Blank M. Next-Generation Analysis of Deep Sequencing Data: Bringing Light into the Black Box of SELEX Experiments. Methods Mol Biol 2016; 1380:85-95. [PMID: 26552818 DOI: 10.1007/978-1-4939-3197-2_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In silico analysis of next-generation sequencing data (NGS; also termed deep sequencing) derived from in vitro selection experiments enables the analysis of the SELEX procedure (Systematic Evolution of Ligands by EXponential enrichment) in an unprecedented depth and improves the identification of aptamers. Besides quality control and optimization of starting libraries, advanced screening strategies for difficult targets or early identification of rare but high quality aptamers which are otherwise lost in the in vitro selection experiments become possible. The high information content of sequence data obtained from selection experiments is furthermore useful for subsequent lead optimization.
Collapse
|
26
|
Acousto-microfluidics for screening of ssDNA aptamer. Sci Rep 2016; 6:27121. [PMID: 27272884 PMCID: PMC4897735 DOI: 10.1038/srep27121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
We demonstrate a new screening method for obtaining a prostate-specific antigen (PSA) binding aptamer based on an acoustofluidic separation (acoustophoreis) technique. Since acoustophoresis provides simultaneous washing and separation in a continuous flow mode, we efficiently obtained a PSA binding aptamer that shows high affinity without any additional washing step, which is necessary in other screening methods. In addition, next-generation sequencing (NGS) was applied to accelerate the identification of the screened ssDNA pool, improving the selecting process of the aptamer candidate based on the frequency ranking of the sequences. After the 8th round of the acoustophoretic systematic evolution of ligands by exponential enrichment (SELEX) and following sequence analysis with NGS, 7 PSA binding ssDNA aptamer-candidates were obtained and characterized with surface plasmon resonance (SPR) for affinity and specificity. As a result of the new SELEX method with PSA as the model target protein, the best PSA binding aptamer showed specific binding to PSA with a dissociation constant (Kd) of 0.7 nM.
Collapse
|
27
|
Makarevitch I, Martinez-Vaz B. Killing two birds with one stone: Model plant systems as a tool to teach the fundamental concepts of gene expression while analyzing biological data. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:166-173. [PMID: 27155065 DOI: 10.1016/j.bbagrm.2016.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/23/2016] [Accepted: 04/29/2016] [Indexed: 11/25/2022]
Abstract
Plants are ideal systems to teach core biology concepts due to their unique physiological and developmental features. Advances in DNA sequencing technology and genomics have allowed scientists to generate genome sequences and transcriptomics data for numerous model plant species. This information is publicly available and presents a valuable tool to introduce undergraduate students to the fundamental concepts of gene expression in the context of modern quantitative biology and bioinformatics. Modern biology classrooms must provide authentic research experiences to allow developing core competencies such as scientific inquiry, critical interpretation of experimental results, and quantitative analyses of large dataset using computational approaches. Recent educational research has shown that undergraduate students struggle when connecting gene expression concepts to classic genetics, phenotypic analyses, and overall flow of biological information in living organisms, suggesting that novel approaches are necessary to enhance learning of gene expression and regulation. This review describes different strategies and resources available to instructors willing to incorporate authentic research experiences, genomic tools, and bioinformatics analyses when teaching transcriptional regulation and gene expression in undergraduate courses. A variety of laboratory exercises and pedagogy materials developed to teach gene expression using plants are discussed. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Irina Makarevitch
- Department of Biology, Hamline University, Saint Paul, MN 55104, United States.
| | - Betsy Martinez-Vaz
- Department of Biology, Hamline University, Saint Paul, MN 55104, United States
| |
Collapse
|
28
|
Poulsen JB, Lescai F, Grove J, Bækvad-Hansen M, Christiansen M, Hagen CM, Maller J, Stevens C, Li S, Li Q, Sun J, Wang J, Nordentoft M, Werge TM, Mortensen PB, Børglum AD, Daly M, Hougaard DM, Bybjerg-Grauholm J, Hollegaard MV. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA. PLoS One 2016; 11:e0153253. [PMID: 27089011 PMCID: PMC4835089 DOI: 10.1371/journal.pone.0153253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/26/2016] [Indexed: 12/16/2022] Open
Abstract
Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject we analysed a neonatal DBS sample and corresponding adult whole-blood (WB) reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2) and raw DNA extract of the WB reference sample (WB_ref). Pilot 2: DBS_2x3.2, WB_ref and a WB_ref replica sharing DNA extract with the WB_ref sample. Pilot 3: DBS_2x3.2, WB_ref, wgaDNA of 2x1.6 mm neonatal DBSs and wgaDNA of the WB reference sample. Following sequencing and data analysis, we compared pairwise variant calls to obtain a measure of similarity—the concordance rate. Concordance rates were slightly lower when comparing DBS vs WB sample types than for any two WB sample types of the same subject before filtering of the variant calls. The overall concordance rates were dependent on the variant type, with SNPs performing best. Post-filtering, the comparisons of DBS vs WB and WB vs WB sample types yielded similar concordance rates, with values close to 100%. WgaDNA of neonatal DBS samples performs with great accuracy and efficiency in exome sequencing. The wgaDNA performed similarly to matched high-quality reference—whole-blood DNA—based on concordance rates calculated from variant calls. No differences were observed substituting 2x3.2 with 2x1.6 mm discs, allowing for additional reduction of sample material in future projects.
Collapse
Affiliation(s)
- Jesper Buchhave Poulsen
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Francesco Lescai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Molecular Medicine, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Munch Hagen
- Department for Congenital Disorders, Molecular Medicine, Statens Serum Institut, Copenhagen, Denmark
| | - Julian Maller
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - Shenting Li
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | | | | | - Jun Wang
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Merete Nordentoft
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- Mental Health Centre Copenhagen, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mears Werge
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Institute for Biological Psychiatry, Capital Region of Denmark, Roskilde, Denmark
| | - Preben Bo Mortensen
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Anders Dupont Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Mark Daly
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - David Michael Hougaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, The Danish Neonatal Screening Biobank, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Mads Vilhelm Hollegaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, The Danish Neonatal Screening Biobank, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
29
|
High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Microbiol Res 2016; 185:1-12. [DOI: 10.1016/j.micres.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 02/03/2023]
|
30
|
Li CJ, Li RW, Baldwin RL, Blomberg LA, Wu S, Li W. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:1-8. [PMID: 26819550 PMCID: PMC4723047 DOI: 10.4137/grsb.s35607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/19/2023]
Abstract
Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation.
Collapse
Affiliation(s)
- Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Robert W Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Ransom L Baldwin
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Le Ann Blomberg
- United States Department of Agriculture, Agriculture Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, USA
| | - Sitao Wu
- Informatics Group, J. Craig Venter Institute, La Jolla, CA. USA
| | - Weizhong Li
- Informatics Group, J. Craig Venter Institute, La Jolla, CA. USA
| |
Collapse
|
31
|
Li YF, Xin F, Altman RB. SEPARATING THE CAUSES AND CONSEQUENCES IN DISEASE TRANSCRIPTOME. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016; 21:381-92. [PMID: 26776202 PMCID: PMC4722949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The causes of complex diseases are multifactorial and the phenotypes of complex diseases are typically heterogeneous, posting significant challenges for both the experiment design and statistical inference in the study of such diseases. Transcriptome profiling can potentially provide key insights on the pathogenesis of diseases, but the signals from the disease causes and consequences are intertwined, leaving it to speculations what are likely causal. Genome-wide association study on the other hand provides direct evidences on the potential genetic causes of diseases, but it does not provide a comprehensive view of disease pathogenesis, and it has difficulties in detecting the weak signals from individual genes. Here we propose an approach diseaseExPatho that combines transcriptome data, regulome knowledge, and GWAS results if available, for separating the causes and consequences in the disease transcriptome. DiseaseExPatho computationally deconvolutes the expression data into gene expression modules, hierarchically ranks the modules based on regulome using a novel algorithm, and given GWAS data, it directly labels the potential causal gene modules based on their correlations with genome-wide gene-disease associations. Strikingly, we observed that the putative causal modules are not necessarily differentially expressed in disease, while the other modules can show strong differential expression without enrichment of top GWAS variations. On the other hand, we showed that the regulatory network based module ranking prioritized the putative causal modules consistently in 6 diseases. We suggest that the approach is applicable to other common and rare complex diseases to prioritize causal pathways with or without genome-wide association studies.
Collapse
Affiliation(s)
- Yong Fuga Li
- Department of Bioengineering, Stanford University
- Stanford Genome Technology Center, Stanford University
| | - Fuxiao Xin
- Machine Learning Lab, GE Global Research
| | - Russ B. Altman
- Department of Bioengineering, Stanford University
- Department of Genetics, Stanford University
| |
Collapse
|
32
|
Valley-Omar Z, Nindo F, Mudau M, Hsiao M, Martin DP. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children's Hospital, Cape Town, South Africa in 2011. PLoS One 2015; 10:e0141744. [PMID: 26565994 PMCID: PMC4643913 DOI: 10.1371/journal.pone.0141744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/11/2015] [Indexed: 12/27/2022] Open
Abstract
Traditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional role for viral sequence data in nosocomial transmission investigation through its ability to enrich traditional, non-molecular observational epidemiological investigation by teasing out possible transmission pathways and working toward more accurately enumerating the number of possible transmission events.
Collapse
Affiliation(s)
- Ziyaad Valley-Omar
- Centre for Respiratory Diseases and Meningitis, Virology, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
- University of Cape Town, Faculty of Health Sciences, Department of Clinical Laboratory Sciences Medical Virology, Observatory, Cape Town, South Africa
- * E-mail:
| | - Fredrick Nindo
- University of Cape Town, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, Computational Biology Group, Observatory, Cape Town, South Africa
| | - Maanda Mudau
- Centre for Tuberculosis, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Marvin Hsiao
- University of Cape Town, Faculty of Health Sciences, Department of Clinical Laboratory Sciences Medical Virology, Observatory, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Complex, Department of Clinical Virology, Observatory, Cape Town, South Africa
| | - Darren Patrick Martin
- University of Cape Town, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, Computational Biology Group, Observatory, Cape Town, South Africa
| |
Collapse
|
33
|
Liu YP, Xu LF, Wang Q, Zhou XL, Zhou JL, Pan C, Zhang JP, Wu QR, Li YQ, Xia YJ, Peng X, Zhang MR, Yu HM, Xu LC. Identification of susceptibility genes in non-syndromic cleft lip with or without cleft palate using whole-exome sequencing. Med Oral Patol Oral Cir Bucal 2015; 20:e763-70. [PMID: 26449438 PMCID: PMC4670259 DOI: 10.4317/medoral.20758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/06/2015] [Indexed: 01/16/2023] Open
Abstract
Background Non-syndromic cleft lip with or without cleft palate (NSCL/P) is among the most common congenital malformations. The etiology of NSCL/P remains poorly characterized owing to its complex genetic heterogeneity. The objective of this study was to identify genetic variants that increase susceptibility to NSCL/P. Material and Methods Whole-exome sequencing (WES) was performed in 8 fetuses with NSCL/P in China. Bioinformatics analysis was performed using commercially available software. Variants detected by WES were validated by Sanger sequencing. Results By filtering out synonymous variants in exons, we identified average 8575 nonsynonymous single nucleotide variants (SNVs). We subsequently compared the SNVs against public databases including NCBI dbSNP build 135 and 1000 Genomes Project and obtained an average of 203 SNVs. Total 12 reported candidate genes were verified by Sanger sequencing. Sanger sequencing also confirmed 16 novel SNVs shared by two or more samples. Conclusions We have found and confirmed 16 susceptibility genes responsible for NSCL/P, which may play important role in the etiology of NSCL/P. The susceptibility genes identified in this study will not only be useful in revealing the etiology of NSCL/P but also in diagnosis and treatment of the patients with NSCL/P. Key words:Non-syndromic cleft lip with or without cleft palate, whole-exome sequencing, sanger sequencing, susceptibility gene, single nucleotide variants (SNVs).
Collapse
Affiliation(s)
- Ya-Peng Liu
- School of Public Health, Xuzhou Medical College, 209 Tongshan Road. Xuzhou, Jiangsu, 221004, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Simbolo M, Mafficini A, Agostini M, Pedrazzani C, Bedin C, Urso ED, Nitti D, Turri G, Scardoni M, Fassan M, Scarpa A. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes. Hered Cancer Clin Pract 2015; 13:18. [PMID: 26300997 PMCID: PMC4546256 DOI: 10.1186/s13053-015-0039-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. METHODS A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. RESULTS Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. CONCLUSIONS The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve homopolymeric DNA regions not adequately assessed by NGS. The implementation of NGS approaches in routine diagnostics of familial CRC is cost-effective and significantly reduces diagnostic turnaround times.
Collapse
Affiliation(s)
- Michele Simbolo
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Mafficini
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Marco Agostini
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Nano Inspired Biomedicine, Institute of Pediatric Research, Città della Speranza, Padua, Italy
| | - Corrado Pedrazzani
- Department of Surgery, General Surgery A, University of Verona, Verona, Italy
| | - Chiara Bedin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Nano Inspired Biomedicine, Institute of Pediatric Research, Città della Speranza, Padua, Italy
| | - Emanuele D. Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Donato Nitti
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Giona Turri
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Maria Scardoni
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Matteo Fassan
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, Department of Pathology & Diagnostics, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro, 10, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, Department of Pathology & Diagnostics, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro, 10, Verona, Italy
| |
Collapse
|
35
|
Baek IP, Jeong YB, Jung SH, Chung YJ. MAP: Mutation Arranger for Defining Phenotype-Related Single-Nucleotide Variant. Genomics Inform 2015; 12:289-92. [PMID: 25705172 PMCID: PMC4330268 DOI: 10.5808/gi.2014.12.4.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) is widely used to identify the causative mutations underlying diverse human diseases, including cancers, which can be useful for discovering the diagnostic and therapeutic targets. Currently, a number of single-nucleotide variant (SNV)-calling algorithms are available; however, there is no tool for visualizing the recurrent and phenotype-specific mutations for general researchers. In this study, in order to support defining the recurrent mutations or phenotype-specific mutations from NGS data of a group of cancers with diverse phenotypes, we aimed to develop a user-friendly tool, named mutation arranger for defining phenotype-related SNV (MAP). MAP is a user-friendly program with multiple functions that supports the determination of recurrent or phenotype-specific mutations and provides graphic illustration images to the users. Its operation environment, the Microsoft Windows environment, enables more researchers who cannot operate Linux to define clinically meaningful mutations with NGS data from cancer cohorts.
Collapse
Affiliation(s)
- In-Pyo Baek
- Department of Microbiology, Integrated Research Center for Genome Polymorphism (IRCGP), The Catholic University of Korea College of Medicine, Seoul 137-701, Korea
| | | | - Seung-Hyun Jung
- Department of Microbiology, Integrated Research Center for Genome Polymorphism (IRCGP), The Catholic University of Korea College of Medicine, Seoul 137-701, Korea
| | - Yeun-Jun Chung
- Department of Microbiology, Integrated Research Center for Genome Polymorphism (IRCGP), The Catholic University of Korea College of Medicine, Seoul 137-701, Korea
| |
Collapse
|
36
|
Chen K, Dai X, Wu J. Alternative splicing: An important mechanism in stem cell biology. World J Stem Cells 2015; 7:1-10. [PMID: 25621101 PMCID: PMC4300919 DOI: 10.4252/wjsc.v7.i1.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/22/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing (AS) is an essential mechanism in post-transcriptional regulation and leads to protein diversity. It has been shown that AS is prevalent in metazoan genomes, and the splicing pattern is dynamically regulated in different tissues and cell types, including embryonic stem cells. These observations suggest that AS may play critical roles in stem cell biology. Since embryonic stem cells and induced pluripotent stem cells have the ability to give rise to all types of cells and tissues, they hold the promise of future cell-based therapy. Many efforts have been devoted to understanding the mechanisms underlying stem cell self-renewal and differentiation. However, most of the studies focused on the expression of a core set of transcription factors and regulatory RNAs. The role of AS in stem cell differentiation was not clear. Recent advances in high-throughput technologies have allowed the profiling of dynamic splicing patterns and cis-motifs that are responsible for AS at a genome-wide scale, and provided novel insights in a number of studies. In this review, we discuss some recent findings involving AS and stem cells. An emerging picture from these findings is that AS is integrated in the transcriptional and post-transcriptional networks and together they control pluripotency maintenance and differentiation of stem cells.
Collapse
|
37
|
Escalante AE, Jardón Barbolla L, Ramírez-Barahona S, Eguiarte LE. The study of biodiversity in the era of massive sequencing. REV MEX BIODIVERS 2014. [DOI: 10.7550/rmb.43498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Wang D, Liu Q, Jones HD, Bruce T, Xia L. Comparative transcriptomic analyses revealed divergences of two agriculturally important aphid species. BMC Genomics 2014; 15:1023. [PMID: 25424897 PMCID: PMC4301665 DOI: 10.1186/1471-2164-15-1023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 11/06/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Grain aphid (Sitobion avenae F) and pea aphid (Acyrthosiphon pisum) are two agriculturally important pest species, which cause significant yield losses to crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring debilitating plant viruses. Although a close phylogenetic relationship between grain aphid and pea aphid was proposed, the biological variations between these two aphid species are obvious. While the host ranges of grain aphid is restricted to cereal crops and in particular wheat, that of pea aphid is wider, mainly colonizing leguminous plant species. Until now, the genetic factors underlying the divergence between grain aphid and pea aphid still remain unclear due to the limited genomic data of grain aphid available in public databases. RESULTS Based on a set of transcriptome data of grain aphid generated by using Roche 454 GS-FLX pyrosequencing, comparative analysis between this set of transcriptome data of grain aphid and mRNA sequences of pea aphid available in the public databases was performed. Compared with mRNA sequences of pea aphid, 4,857 unigenes were found to be specifically presented in the transcriptome of grain aphid under the rearing conditions described in this study. Furthermore, 3,368 orthologous pairs which could be calculated with both nonsynonymous (Ka) and synonymous (Ks) substitutions were used to infer their sequence divergences. The average differences in the coding, 5' and 3' untranslated regions of these orthologs were 10.53%, 21.29% and 18.96%, respectively. Moreover, of 340 orthologs which were identified to have evolved in response to positive selection based on the rates of Ka and Ks substitutions, 186 were predicted to be involved in secondary metabolism and xenobiotic metabolisms which might contribute to the divergence of these two aphid species. CONCLUSIONS The comprehensive transcriptome divergent sequence analysis between grain aphid and pea aphid provides an invaluable resource for the investigation of genes involved in host plant adaptation and evolution. Moreover, the demonstration of divergent transcriptome sequences between grain aphid and pea aphid pave the way for the investigation of the molecular mechanisms underpinning the biological variations of these two agriculturally important aphid species.
Collapse
Affiliation(s)
| | | | | | | | - Lanqin Xia
- Institute of Crop Sciences /The National Key Facility for Crop Gene Resource and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguanchun South Street, Beijing 10081, China.
| |
Collapse
|
39
|
Dang Y, Wang YC, Huang QJ. Microarray and Next-Generation Sequencing to Analyse Gastric Cancer. Asian Pac J Cancer Prev 2014. [DOI: 10.7314/apjcp.2014.15.19.8035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Qiang-long Z, Shi L, Peng G, Fei-shi L. High-throughput Sequencing Technology and Its Application. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/s1006-8104(14)60073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
A preliminary study of the relationship between breast cancer metastasis and loss of heterozygosity by using exome sequencing. Sci Rep 2014; 4:5460. [PMID: 24964733 PMCID: PMC5381542 DOI: 10.1038/srep05460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
We explored the feasibility of studying loss of heterozygosity (LOH) by using exome sequencing and compared the differences in genetic LOH between primary breast tumors and metastatic lesions. Exome sequencing was conducted to investigate the genetic LOH in the peripheral blood, a primary tumor, and a metastatic lesion from the same patient. LOH was observed in 30 and 48 chromosomal loci of the primary tumor and metastatic lesion, respectively. The incidence of LOH was the highest on chromosome 19, followed by chromosomes 14, 3, and 11 in the metastatic lesion. Among these ‘hot' regions, LOH was observed for multiple genes of the CECAM, MMP and ZNF families. Therefore, the use of exome sequencing for studying LOH is feasible. More members of gene families appeared with LOH in ‘hot' regions, suggesting that these gene families had synergistic effects in tumorigenesis.
Collapse
|
42
|
Rodovalho CDM, Lyra ML, Ferro M, Bacci M. The mitochondrial genome of the leaf-cutter ant Atta laevigata: a mitogenome with a large number of intergenic spacers. PLoS One 2014; 9:e97117. [PMID: 24828084 PMCID: PMC4020775 DOI: 10.1371/journal.pone.0097117] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/02/2014] [Indexed: 01/28/2023] Open
Abstract
In this paper we describe the nearly complete mitochondrial genome of the leaf-cutter ant Atta laevigata, assembled using transcriptomic libraries from Sanger and Illumina next generation sequencing (NGS), and PCR products. This mitogenome was found to be very large (18,729 bp), given the presence of 30 non-coding intergenic spacers (IGS) spanning 3,808 bp. A portion of the putative control region remained unsequenced. The gene content and organization correspond to that inferred for the ancestral pancrustacea, except for two tRNA gene rearrangements that have been described previously in other ants. The IGS were highly variable in length and dispersed through the mitogenome. This pattern was also found for the other hymenopterans in particular for the monophyletic Apocrita. These spacers with unknown function may be valuable for characterizing genome evolution and distinguishing closely related species and individuals. NGS provided better coverage than Sanger sequencing, especially for tRNA and ribosomal subunit genes, thus facilitating efforts to fill in sequence gaps. The results obtained showed that data from transcriptomic libraries contain valuable information for assembling mitogenomes. The present data also provide a source of molecular markers that will be very important for improving our understanding of genomic evolutionary processes and phylogenetic relationships among hymenopterans.
Collapse
Affiliation(s)
- Cynara de Melo Rodovalho
- Centro de Estudos de Insetos Sociais, UNESP – Univ Estadual Paulista. Rio Claro, São Paulo, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ – Fundação Oswaldo Cruz. Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Lúcio Lyra
- Departamento de Zoologia, UNESP – Univ Estadual Paulista. Rio Claro, São Paulo, Brazil
| | - Milene Ferro
- Centro de Estudos de Insetos Sociais, UNESP – Univ Estadual Paulista. Rio Claro, São Paulo, Brazil
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, UNESP – Univ Estadual Paulista. Rio Claro, São Paulo, Brazil
- Departamento de Bioquímica e Microbiologia, UNESP – Univ Estadual Paulista. Rio Claro, São Paulo, Brazil
| |
Collapse
|
43
|
Bawazer LA, Newman AM, Gu Q, Ibish A, Arcila M, Cooper JB, Meldrum FC, Morse DE. Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering. ACS NANO 2014; 8:387-395. [PMID: 24341560 DOI: 10.1021/nn404448s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DNA-based information systems drive the combinatorial optimization processes of natural evolution, including the evolution of biominerals. Advances in high-throughput DNA sequencing expand the power of DNA as a potential information platform for combinatorial engineering, but many applications remain to be developed due in part to the challenge of handling large amounts of sequence data. Here we employ high-throughput sequencing and a recently developed clustering method (AutoSOME) to identify single-stranded DNA sequence families that bind specifically to ZnO semiconductor mineral surfaces. These sequences were enriched from a diverse DNA library after a single round of screening, whereas previous screening approaches typically require 5-15 rounds of enrichment for effective sequence identification. The consensus sequence of the largest cluster was poly d(T)30. This consensus sequence exhibited clear aptamer behavior and was shown to promote the synthesis of crystalline ZnO from aqueous solution at near-neutral pH. This activity is significant, as the crystalline form of this wide-bandgap semiconductor is not typically amenable to solution synthesis in this pH range. High-resolution TEM revealed that this DNA synthesis route yields ZnO nanoparticles with an amorphous-crystalline core-shell structure, suggesting that the mechanism of mineralization involves nanoscale coacervation around the DNA template. We thus demonstrate that our new method, termed Single round Enrichment of Ligands by deep Sequencing (SEL-Seq), can facilitate biomimetic synthesis of technological nanomaterials by accelerating combinatorial selection of biomolecular-mineral interactions. Moreover, by enabling direct characterization of sequence family demographics, we anticipate that SEL-Seq will enhance aptamer discovery in applications employing additional rounds of screening.
Collapse
Affiliation(s)
- Lukmaan A Bawazer
- Department of Molecular, Cellular and Developmental Biology, Institute for Collaborative Biotechnologies, and Biomolecular Science and Engineering Program, University of California , Santa Barbara, California 93106 , United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Exome sequencing greatly expedites the progressive research of Mendelian diseases. Front Med 2014; 8:42-57. [PMID: 24384736 DOI: 10.1007/s11684-014-0303-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
Abstract
The advent of whole-exome sequencing (WES) has facilitated the discovery of rare structure and functional genetic variants. Combining exome sequencing with linkage studies is one of the most efficient strategies in searching disease genes for Mendelian diseases. WES has achieved great success in the past three years for Mendelian disease genetics and has identified over 150 new Mendelian disease genes. We illustrate the workflow of exome capture and sequencing to highlight the advantages of WES. We also indicate the progress and limitations of WES that can potentially result in failure to identify disease-causing mutations in part of patients. With an affordable cost, WES is expected to become the most commonly used tool for Mendelian disease gene identification. The variants detected cumulatively from previous WES studies will be widely used in future clinical services.
Collapse
|
45
|
Mason CE, Porter SG, Smith TM. Characterizing multi-omic data in systems biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 799:15-38. [PMID: 24292960 DOI: 10.1007/978-1-4614-8778-4_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In today's biology, studies have shifted to analyzing systems over discrete biochemical reactions and pathways. These studies depend on combining the results from scores of experimental methods that analyze DNA; mRNA; noncoding RNAs, DNA, RNA, and protein interactions; and the nucleotide modifications that form the epigenome into global datasets that represent a diverse array of "omics" data (transcriptional, epigenetic, proteomic, metabolomic). The methods used to collect these data consist of high-throughput data generation platforms that include high-content screening, imaging, flow cytometry, mass spectrometry, and nucleic acid sequencing. Of these, the next-generation DNA sequencing platforms predominate because they provide an inexpensive and scalable way to quickly interrogate the molecular changes at the genetic, epigenetic, and transcriptional level. Furthermore, existing and developing single-molecule sequencing platforms will likely make direct RNA and protein measurements possible, thus increasing the specificity of current assays and making it possible to better characterize "epi-alterations" that occur in the epigenome and epitranscriptome. These diverse data types present us with the largest challenge: how do we develop software systems and algorithms that can integrate these datasets and begin to support a more democratic model where individuals can capture and track their own medical information through biometric devices and personal genome sequencing? Such systems will need to provide the necessary user interactions to work with the trillions of data points needed to make scientific discoveries. Here, we describe novel approaches in the genesis and processing of such data, models to integrate these data, and the increasing ubiquity of self-reporting and self-measured genomics and health data.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA,
| | | | | |
Collapse
|
46
|
Lavezzo E, Toppo S, Franchin E, Di Camillo B, Finotello F, Falda M, Manganelli R, Palù G, Barzon L. Genomic comparative analysis and gene function prediction in infectious diseases: application to the investigation of a meningitis outbreak. BMC Infect Dis 2013; 13:554. [PMID: 24252229 PMCID: PMC4225559 DOI: 10.1186/1471-2334-13-554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/13/2013] [Indexed: 11/26/2022] Open
Abstract
Background Next generation sequencing (NGS) is being increasingly used for the detection and characterization of pathogens during outbreaks. This technology allows rapid sequencing of pathogen full genomes, useful not only for accurate genotyping and molecular epidemiology, but also for identification of drug resistance and virulence traits. Methods In this study, an approach based on whole genome sequencing by NGS, comparative genomics, and gene function prediction was set up and retrospectively applied for the investigation of two N. meningitidis serogroup C isolates collected from a cluster of meningococcal disease, characterized by a high fatality rate. Results According to conventional molecular typing methods, all the isolates had the same typing results and were classified as outbreak isolates within the same N. meningitidis sequence type ST-11, while full genome sequencing demonstrated subtle genetic differences between the isolates. Looking for these specific regions by means of 9 PCR and cycle sequencing assays in other 7 isolates allowed distinguishing outbreak cases from unrelated cases. Comparative genomics and gene function prediction analyses between outbreak isolates and a set of reference N. meningitidis genomes led to the identification of differences in gene content that could be relevant for pathogenesis. Most genetic changes occurred in the capsule locus and were consistent with recombination and horizontal acquisition of a set of genes involved in capsule biosynthesis. Conclusions This study showed the added value given by whole genome sequencing by NGS over conventional sequence-based typing methods in the investigation of an outbreak. Routine application of this technology in clinical microbiology will significantly improve methods for molecular epidemiology and surveillance of infectious disease and provide a bulk of data useful to improve our understanding of pathogens biology.
Collapse
Affiliation(s)
- Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim TM, Lee SH, Chung YJ. Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol 2013; 19:6784-6793. [PMID: 24187453 PMCID: PMC3812477 DOI: 10.3748/wjg.v19.i40.6784] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/22/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Like other solid tumors, colorectal cancer (CRC) is a genomic disorder in which various types of genomic alterations, such as point mutations, genomic rearrangements, gene fusions, or chromosomal copy number alterations, can contribute to the initiation and progression of the disease. The advent of a new DNA sequencing technology known as next-generation sequencing (NGS) has revolutionized the speed and throughput of cataloguing such cancer-related genomic alterations. Now the challenge is how to exploit this advanced technology to better understand the underlying molecular mechanism of colorectal carcinogenesis and to identify clinically relevant genetic biomarkers for diagnosis and personalized therapeutics. In this review, we will introduce NGS-based cancer genomics studies focusing on those of CRC, including a recent large-scale report from the Cancer Genome Atlas. We will mainly discuss how NGS-based exome-, whole genome- and methylome-sequencing have extended our understanding of colorectal carcinogenesis. We will also introduce the unique genomic features of CRC discovered by NGS technologies, such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis. Finally, we will discuss the necessary steps prior to development of a clinical application of NGS-related findings for the advanced management of patients with CRC.
Collapse
|
48
|
Chen K, Deng S, Lu H, Zheng Y, Yang G, Kim D, Cao Q, Wu JQ. RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PLoS One 2013; 8:e72567. [PMID: 23951329 PMCID: PMC3739761 DOI: 10.1371/journal.pone.0072567] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/13/2013] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease without effective treatment. To generate a comprehensive view of the mechanisms involved in SCI pathology, we applied RNA-Sequencing (RNA-Seq) technology to characterize the temporal changes in global gene expression after contusive SCI in mice. We sequenced tissue samples from acute and subacute phases (2 days and 7 days after injury) and systematically characterized the transcriptomes with the goal of identifying pathways and genes critical in SCI pathology. The top enriched functional categories include “inflammation response,” “neurological disease,” “cell death and survival” and “nervous system development.” The top enriched pathways include LXR/RXR Activation and Atherosclerosis Signaling, etc. Furthermore, we developed a systems-based analysis framework in order to identify key determinants in the global gene networks of the acute and sub-acute phases. Some candidate genes that we identified have been shown to play important roles in SCI, which demonstrates the validity of our approach. There are also many genes whose functions in SCI have not been well studied and can be further investigated by future experiments. We have also incorporated pharmacogenomic information into our analyses. Among the genes identified, the ones with existing drug information can be readily tested in SCI animal models. Therefore, in this study we have described an example of how global gene profiling can be translated to identifying genes of interest for functional tests in the future and generating new hypotheses. Additionally, the RNA-Seq enables splicing isoform identification and the estimation of expression levels, thus providing useful information for increasing the specificity of drug design and reducing potential side effect. In summary, these results provide a valuable reference data resource for a better understanding of the SCI process in the acute and sub-acute phases.
Collapse
Affiliation(s)
- Kenian Chen
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Shuyun Deng
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Hezuo Lu
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Guodong Yang
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Dong Kim
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Qilin Cao
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
- * E-mail: ; (JQW) (QC)
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
- * E-mail: ; (JQW) (QC)
| |
Collapse
|
49
|
Mideo N, Kennedy DA, Carlton JM, Bailey JA, Juliano JJ, Read AF. Ahead of the curve: next generation estimators of drug resistance in malaria infections. Trends Parasitol 2013; 29:321-8. [PMID: 23746748 PMCID: PMC3694767 DOI: 10.1016/j.pt.2013.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/16/2022]
Abstract
Drug resistance is a major obstacle to controlling infectious diseases. A key challenge is detecting the early signs of drug resistance when little is known about its genetic basis. Focusing on malaria parasites, we propose a way to do this. Newly developing or low level resistance at low frequency in patients can be detected through a phenotypic signature: individual parasite variants clearing more slowly following drug treatment. Harnessing the abundance and resolution of deep sequencing data, our 'selection differential' approach addresses some limitations of extant methods of resistance detection, should allow for the earliest detection of resistance in malaria or other multi-clone infections, and has the power to uncover the true scale of the drug resistance problem.
Collapse
Affiliation(s)
- Nicole Mideo
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Diagnostic testing has been improving the quality of cancer care. The dynamics of this field can be grasped through the application of innovation lifecycle models. Single testing, parallel testing and whole-genome sequencing are major technological evolutions. Given the increasing availability of biomarkers, the performance of single testing will be limited in the future, favoring the further implementation of parallel testing technologies. Whole-genome sequencing will lead to a further performance increase by introducing the era of genomic medicine. A broad adoption of presently available diagnostic technologies sets up the infrastructure for future technologies. The speed at which these technologies are introduced depends heavily on the regulatory and reimbursement environment, while their final diffusion is subject to pragmatic criteria such as user friendliness, perceived risk and perceived value added.
Collapse
Affiliation(s)
| | - Christian Lenz
- Global Health Economics & Outcomes Research, Pfizer Oncology, Linkstrasse 10, Berlin 10795, Germany
| |
Collapse
|