BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453:524-528. [PMID: 18432194 DOI: 10.1038/nature06894] [Cited by in Crossref: 1046] [Cited by in F6Publishing: 897] [Article Influence: 80.5] [Reference Citation Analysis]
Number Citing Articles
1 Pesl M, Acimovic I, Pribyl J, Hezova R, Vilotic A, Fauconnier J, Vrbsky J, Kruzliak P, Skladal P, Kara T. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessels. 2014;29:834-846. [PMID: 24258387 DOI: 10.1007/s00380-013-0436-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
2 Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM. Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 2012;21:977-86. [PMID: 22182484 DOI: 10.1089/scd.2011.0075] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 8.0] [Reference Citation Analysis]
3 Gregoire S, Li G, Sturzu AC, Schwartz RJ, Wu SM. YY1 Expression Is Sufficient for the Maintenance of Cardiac Progenitor Cell State. Stem Cells 2017;35:1913-23. [PMID: 28580685 DOI: 10.1002/stem.2646] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
4 Freytes DO, Wan LQ, Vunjak-Novakovic G. Geometry and force control of cell function. J Cell Biochem. 2009;108:1047-1058. [PMID: 19795385 DOI: 10.1002/jcb.22355] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 4.5] [Reference Citation Analysis]
5 Hou L, Kim JJ, Wanjare M, Patlolla B, Coller J, Natu V, Hastie TJ, Huang NF. Combinatorial Extracellular Matrix Microenvironments for Probing Endothelial Differentiation of Human Pluripotent Stem Cells. Sci Rep 2017;7:6551. [PMID: 28747756 DOI: 10.1038/s41598-017-06986-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
6 Feric NT, Radisic M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016;96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Cited by in Crossref: 121] [Cited by in F6Publishing: 101] [Article Influence: 20.2] [Reference Citation Analysis]
7 Bursac N. Cardiac tissue engineering using stem cells. IEEE Eng Med Biol Mag. 2009;28:80, 82, 84-86, 88-89. [PMID: 19353830 DOI: 10.1109/memb.2009.931792] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
8 Abilez OJ, Wong J, Prakash R, Deisseroth K, Zarins CK, Kuhl E. Multiscale computational models for optogenetic control of cardiac function. Biophys J 2011;101:1326-34. [PMID: 21943413 DOI: 10.1016/j.bpj.2011.08.004] [Cited by in Crossref: 76] [Cited by in F6Publishing: 57] [Article Influence: 7.6] [Reference Citation Analysis]
9 Young DA, DeQuach JA, Christman KL. Human cardiomyogenesis and the need for systems biology analysis. Wiley Interdiscip Rev Syst Biol Med 2011;3:666-80. [PMID: 21197666 DOI: 10.1002/wsbm.141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
10 Zhao M, Tang Y, Zhou Y, Zhang J. Deciphering Role of Wnt Signalling in Cardiac Mesoderm and Cardiomyocyte Differentiation from Human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation. Sci Rep 2019;9:19389. [PMID: 31852937 DOI: 10.1038/s41598-019-55620-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Wang Z, Nakamura K, Jinnin M, Kudo H, Goto M, Era T, Kira T, Nakashima T, Fukushima S, Ihn H. Establishment and gene expression analysis of disease-derived induced pluripotent stem cells of scleroderma. Journal of Dermatological Science 2016;84:186-96. [DOI: 10.1016/j.jdermsci.2016.08.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
12 Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009;24:98-103; quiz 104. [PMID: 19242274 DOI: 10.1097/jcn.0b013e318197a6a5] [Cited by in Crossref: 78] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
13 Skelton RJ, Costa M, Anderson DJ, Bruveris F, Finnin BW, Koutsis K, Arasaratnam D, White AJ, Rafii A, Ng ES, Elefanty AG, Stanley EG, Pouton CW, Haynes JM, Ardehali R, Davis RP, Mummery CL, Elliott DA. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Res 2014;13:172-9. [PMID: 24968096 DOI: 10.1016/j.scr.2014.04.016] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
14 Chen H, Zhang A, Wu JC. Harnessing cell pluripotency for cardiovascular regenerative medicine. Nat Biomed Eng 2018;2:392-8. [DOI: 10.1038/s41551-018-0244-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
15 Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021;5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Reference Citation Analysis]
16 Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC;  American Heart Association Council on Functional Genomics and Translational Biology;  Council on Cardiovascular Disease in the Young;  and Council on Cardiovascular and Stroke Nursing. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2018;11:e000043. [PMID: 29874173 DOI: 10.1161/hcg.0000000000000043] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 18.0] [Reference Citation Analysis]
17 Kim JH, Oh AY, Choi YM, Ku SY, Kim YY, Lee NJ, Sepac A, Bosnjak ZJ. Isoflurane decreases death of human embryonic stem cell-derived, transcriptional marker Nkx2.5(+) cardiac progenitor cells. Acta Anaesthesiol Scand 2011;55:1124-31. [PMID: 22092211 DOI: 10.1111/j.1399-6576.2011.02509.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
18 Knarston IM, Pachernegg S, Robevska G, Ghobrial I, Er PX, Georges E, Takasato M, Combes AN, Jørgensen A, Little MH, Sinclair AH, Ayers KL. An In Vitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports 2020;15:1377-91. [PMID: 33217324 DOI: 10.1016/j.stemcr.2020.10.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Rai M, Walthall JM, Hu J, Hatzopoulos AK. Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev 2012;21:54-66. [PMID: 21861760 DOI: 10.1089/scd.2011.0326] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
20 Kempf H, Lecina M, Ting S, Zweigerdt R, Oh S. Distinct regulation of mitogen-activated protein kinase activities is coupled with enhanced cardiac differentiation of human embryonic stem cells. Stem Cell Res. 2011;7:198-209. [PMID: 21907163 DOI: 10.1016/j.scr.2011.06.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
21 Mirbagheri M, Adibnia V, Hughes BR, Waldman SD, Banquy X, Hwang DK. Advanced cell culture platforms: a growing quest for emulating natural tissues. Mater Horiz 2019;6:45-71. [DOI: 10.1039/c8mh00803e] [Cited by in Crossref: 67] [Cited by in F6Publishing: 2] [Article Influence: 33.5] [Reference Citation Analysis]
22 Alsaeedi HA, Lam C, Koh AE, Teh SW, Mok PL, Higuchi A, Then KY, Bastion MC, Alzahrani B, Farhana A, Muthuvenkatachalam BS, Samrot AV, Swamy KB, Marraiki N, Elgorban AM, Subbiah SK. Looking into dental pulp stem cells in the therapy of photoreceptors and retinal degenerative disorders. J Photochem Photobiol B 2020;203:111727. [PMID: 31862637 DOI: 10.1016/j.jphotobiol.2019.111727] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ishida H, Saba R, Kokkinopoulos I, Hashimoto M, Yamaguchi O, Nowotschin S, Shiraishi M, Ruchaya P, Miller D, Harmer S, Poliandri A, Kogaki S, Sakata Y, Dunkel L, Tinker A, Hadjantonakis AK, Sawa Y, Sasaki H, Ozono K, Suzuki K, Yashiro K. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Rep. 2016;16:1026-1038. [PMID: 27396331 DOI: 10.1016/j.celrep.2016.06.050] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
24 Sasaki D, Matsuura K, Seta H, Haraguchi Y, Okano T, Shimizu T. Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 2018;13:e0198026. [PMID: 29791489 DOI: 10.1371/journal.pone.0198026] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
25 González-Prieto C, Agúndez L, Linden RM, Llosa M. HUH site-specific recombinases for targeted modification of the human genome. Trends Biotechnol 2013;31:305-12. [PMID: 23545167 DOI: 10.1016/j.tibtech.2013.02.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
26 Slukvin II. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood 2013;122:4035-46. [PMID: 24124087 DOI: 10.1182/blood-2013-07-474825] [Cited by in Crossref: 90] [Cited by in F6Publishing: 71] [Article Influence: 11.3] [Reference Citation Analysis]
27 Rehman J. Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med (Berl). 2010;88:981-986. [PMID: 20809088 DOI: 10.1007/s00109-010-0678-2] [Cited by in Crossref: 116] [Cited by in F6Publishing: 113] [Article Influence: 10.5] [Reference Citation Analysis]
28 Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021;128:670-86. [PMID: 33818124 DOI: 10.1161/CIRCRESAHA.120.318049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
29 Pahnke A, Conant G, Huyer LD, Zhao Y, Feric N, Radisic M. The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective. Biochem Biophys Res Commun. 2016;473:698-703. [PMID: 26626076 DOI: 10.1016/j.bbrc.2015.11.060] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
30 Pekkanen-Mattila M, Ojala M, Kerkelä E, Rajala K, Skottman H, Aalto-Setälä K. The effect of human and mouse fibroblast feeder cells on cardiac differentiation of human pluripotent stem cells. Stem Cells Int 2012;2012:875059. [PMID: 22315618 DOI: 10.1155/2012/875059] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
31 Godier-Furnémont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang G, Hudson B, Homma S, Vunjak-Novakovic G. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A 2011;108:7974-9. [PMID: 21508321 DOI: 10.1073/pnas.1104619108] [Cited by in Crossref: 192] [Cited by in F6Publishing: 149] [Article Influence: 19.2] [Reference Citation Analysis]
32 Bernstein HS, Srivastava D. Stem cell therapy for cardiac disease. Pediatr Res 2012;71:491-9. [DOI: 10.1038/pr.2011.61] [Cited by in Crossref: 76] [Cited by in F6Publishing: 59] [Article Influence: 8.4] [Reference Citation Analysis]
33 Estrov Z. Stem Cells and Somatic Cells: Reprogramming and Plasticity. Clinical Lymphoma and Myeloma 2009;9:S319-28. [DOI: 10.3816/clm.2009.s.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
34 Kamdar F, Klaassen Kamdar A, Koyano-Nakagawa N, Garry MG, Garry DJ. Cardiomyopathy in a dish: using human inducible pluripotent stem cells to model inherited cardiomyopathies. J Card Fail 2015;21:761-70. [PMID: 25934595 DOI: 10.1016/j.cardfail.2015.04.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
35 Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 2015;15:365-75. [PMID: 26318718 DOI: 10.1016/j.scr.2015.08.002] [Cited by in Crossref: 102] [Cited by in F6Publishing: 82] [Article Influence: 17.0] [Reference Citation Analysis]
36 Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, Muskheli V, Nourse MB, Bendixen K, Reinecke H, Murry CE. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA. 2009;106:16568-16573. [PMID: 19805339 DOI: 10.1073/pnas.0908381106] [Cited by in Crossref: 313] [Cited by in F6Publishing: 260] [Article Influence: 26.1] [Reference Citation Analysis]
37 Leri A, Hosoda T, Kajstura J, Anversa P, Rota M. Identification of a coronary stem cell in the human heart. J Mol Med (Berl) 2011;89:947-59. [PMID: 21607542 DOI: 10.1007/s00109-011-0769-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
38 Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012;303:H133-43. [PMID: 22582087 DOI: 10.1152/ajpheart.00007.2012] [Cited by in Crossref: 68] [Cited by in F6Publishing: 56] [Article Influence: 7.6] [Reference Citation Analysis]
39 Zhang J, Tao R, Campbell KF, Carvalho JL, Ruiz EC, Kim GC, Schmuck EG, Raval AN, da Rocha AM, Herron TJ, Jalife J, Thomson JA, Kamp TJ. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 2019;10:2238. [PMID: 31110246 DOI: 10.1038/s41467-019-09831-5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 25.0] [Reference Citation Analysis]
40 Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res. 2014;13:202-213. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 43] [Article Influence: 8.3] [Reference Citation Analysis]
41 Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018;7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Cited by in Crossref: 121] [Cited by in F6Publishing: 75] [Article Influence: 30.3] [Reference Citation Analysis]
42 Rodrigues GM, Matos AF, Fernandes TG, Rodrigues CA, Peitz M, Haupt S, Diogo MM, Brüstle O, Cabral JM. Integrated platform for production and purification of human pluripotent stem cell-derived neural precursors. Stem Cell Rev. 2014;10:151-161. [PMID: 24221956 DOI: 10.1007/s12015-013-9482-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
43 Menasché P. Embryonic stem cells for severe heart failure: why and how? J Cardiovasc Transl Res 2012;5:555-65. [PMID: 22411322 DOI: 10.1007/s12265-012-9356-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
44 Cho GS, Fernandez L, Kwon C. Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxid Redox Signal 2014;21:2018-31. [PMID: 25133793 DOI: 10.1089/ars.2014.6063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
45 Foo KS, Lehtinen ML, Leung CY, Lian X, Xu J, Keung W, Geng L, Kolstad TRS, Thams S, Wong AO, Wong N, Bylund K, Zhou C, He X, Jin SB, Clarke J, Lendahl U, Li RA, Louch WE, Chien KR. Human ISL1+ Ventricular Progenitors Self-Assemble into an In Vivo Functional Heart Patch and Preserve Cardiac Function Post Infarction. Mol Ther 2018;26:1644-59. [PMID: 29606507 DOI: 10.1016/j.ymthe.2018.02.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
46 Zhang B, Green JV, Murthy SK, Radisic M. Label-free enrichment of functional cardiomyocytes using microfluidic deterministic lateral flow displacement. PLoS One 2012;7:e37619. [PMID: 22666372 DOI: 10.1371/journal.pone.0037619] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
47 Jyoti S, Tandon S. Genetic basis for developmental toxicity due to statin intake using embryonic stem cell differentiation model. Hum Exp Toxicol 2015;34:965-84. [PMID: 25712412 DOI: 10.1177/0960327114564795] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
48 Zimmermann WH. Remuscularizing failing hearts with tissue engineered myocardium. Antioxid Redox Signal 2009;11:2011-23. [PMID: 19203222 DOI: 10.1089/ars.2009.2467] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
49 Chen L, Fulcoli FG, Tang S, Baldini A. Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 2009;105:842-51. [PMID: 19745164 DOI: 10.1161/CIRCRESAHA.109.200295] [Cited by in Crossref: 109] [Cited by in F6Publishing: 65] [Article Influence: 9.1] [Reference Citation Analysis]
50 Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA. 2010;107:4335-4340. [PMID: 20160098 DOI: 10.1073/pnas.0910012107] [Cited by in Crossref: 731] [Cited by in F6Publishing: 630] [Article Influence: 66.5] [Reference Citation Analysis]
51 Dunn KK, Palecek SP. Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Front Med (Lausanne) 2018;5:110. [PMID: 29740580 DOI: 10.3389/fmed.2018.00110] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
52 Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmermann WH. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation. 2017;135:1832-1847. [PMID: 28167635 DOI: 10.1161/circulationaha.116.024145] [Cited by in Crossref: 267] [Cited by in F6Publishing: 146] [Article Influence: 66.8] [Reference Citation Analysis]
53 Willems E, Lanier M, Forte E, Lo F, Cashman J, Mercola M. A chemical biology approach to myocardial regeneration. J Cardiovasc Transl Res 2011;4:340-50. [PMID: 21424858 DOI: 10.1007/s12265-011-9270-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
54 Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA. 2010;107:4335-4340. [PMID: 20160098 DOI: 10.1073/pnas.01910012107] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 2008;3:69-84. [PMID: 18593560 DOI: 10.1016/j.stem.2008.06.009] [Cited by in Crossref: 269] [Cited by in F6Publishing: 229] [Article Influence: 20.7] [Reference Citation Analysis]
56 Li S, Keung W, Cheng H, Li RA. Structural and Mechanistic Bases of Nuclear Calcium Signaling in Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes. Stem Cells Int 2019;2019:8765752. [PMID: 31065282 DOI: 10.1155/2019/8765752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Keung W, Boheler KR, Li RA. Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2014;5:17. [PMID: 24467782 DOI: 10.1186/scrt406] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
58 Sultana N, Magadum A, Hadas Y, Kondrat J, Singh N, Youssef E, Calderon D, Chepurko E, Dubois N, Hajjar RJ, Zangi L. Optimizing Cardiac Delivery of Modified mRNA. Mol Ther 2017;25:1306-15. [PMID: 28389322 DOI: 10.1016/j.ymthe.2017.03.016] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 10.5] [Reference Citation Analysis]
59 Amos PJ, Cagavi Bozkulak E, Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs 2012;195:26-40. [PMID: 21996576 DOI: 10.1159/000331390] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
60 Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, Eisenberg LM. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cells Dev 2013;22:654-67. [PMID: 22994322 DOI: 10.1089/scd.2012.0181] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
61 Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des. 2013;19:3429-3445. [PMID: 23432679 DOI: 10.2174/13816128113199990350] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
62 Cao F, Wagner RA, Wilson KD, Xie X, Fu JD, Drukker M, Lee A, Li RA, Gambhir SS, Weissman IL, Robbins RC, Wu JC. Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 2008;3:e3474. [PMID: 18941512 DOI: 10.1371/journal.pone.0003474] [Cited by in Crossref: 167] [Cited by in F6Publishing: 151] [Article Influence: 12.8] [Reference Citation Analysis]
63 Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X, Xu Y, Cao H, Meng Q, Chen L, Tian T, Wang X, Li P, Hescheler J, Ji G, Ma Y. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 2011;21:579-87. [PMID: 21102549 DOI: 10.1038/cr.2010.163] [Cited by in Crossref: 212] [Cited by in F6Publishing: 177] [Article Influence: 19.3] [Reference Citation Analysis]
64 Keith MC, Bolli R. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 2015;116:1216-30. [PMID: 25814683 DOI: 10.1161/CIRCRESAHA.116.305557] [Cited by in Crossref: 93] [Cited by in F6Publishing: 58] [Article Influence: 15.5] [Reference Citation Analysis]
65 Tsaioun K, Jacewicz M. De-Risking Drug Discovery with ADDMEA voiding D rug D evelopment M istakes E arly. Altern Lab Anim 2009;37:47-55. [DOI: 10.1177/026119290903701s10] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
66 Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setälä K. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One 2012;7:e48659. [PMID: 23119085 DOI: 10.1371/journal.pone.0048659] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
67 Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F, de la Roche J, Polten F, Christoph Wollert K, Kraft T, Fischer M, Martin U, Gruh I, Kempf H, Zweigerdt R. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports 2019;13:366-79. [PMID: 31353227 DOI: 10.1016/j.stemcr.2019.06.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
68 Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, O’Sullivan C, Laflamme MA, Zhu WZ, Van Biber B. Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen Med. 2011;6:53-66. [PMID: 21175287 DOI: 10.2217/rme.10.91] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 6.7] [Reference Citation Analysis]
69 Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014;5:12. [PMID: 24444355 DOI: 10.1186/scrt401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
70 Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848-E1857. [PMID: 22645348 DOI: 10.1073/pnas.1200250109] [Cited by in Crossref: 941] [Cited by in F6Publishing: 811] [Article Influence: 104.6] [Reference Citation Analysis]
71 Willems E, Bushway PJ, Mercola M. Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatr Cardiol. 2009;30:635-642. [PMID: 19319460 DOI: 10.1007/s00246-009-9409-2] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
72 Zhang J, Chou OH, Tse YL, Ng KM, Tse HF. Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies. Int J Mol Sci 2021;22:8132. [PMID: 34360897 DOI: 10.3390/ijms22158132] [Reference Citation Analysis]
73 Mordwinkin NM, Burridge PW, Wu JC. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 2013;6:22-30. [PMID: 23229562 DOI: 10.1007/s12265-012-9423-2] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 11.2] [Reference Citation Analysis]
74 Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JM. Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochemical and Biophysical Research Communications 2018;499:611-7. [DOI: 10.1016/j.bbrc.2018.03.198] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
75 Luna JI, Ciriza J, Garcia-ojeda ME, Kong M, Herren A, Lieu DK, Li RA, Fowlkes CC, Khine M, Mccloskey KE. Multiscale Biomimetic Topography for the Alignment of Neonatal and Embryonic Stem Cell-Derived Heart Cells. Tissue Engineering Part C: Methods 2011;17:579-88. [DOI: 10.1089/ten.tec.2010.0410] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 5.8] [Reference Citation Analysis]
76 Hao T, Li J, Yao F, Dong D, Wang Y, Yang B, Wang C. Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. ACS Nano 2017;11:5474-88. [DOI: 10.1021/acsnano.7b00221] [Cited by in Crossref: 116] [Cited by in F6Publishing: 84] [Article Influence: 29.0] [Reference Citation Analysis]
77 Tan Y, Han P, Gu Q, Chen G, Wang L, Ma R, Wu J, Feng C, Zhang Y, Wang L, Hu B, Li W, Hao J, Zhou Q. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. J Tissue Eng Regen Med 2018;12:153-63. [PMID: 27943600 DOI: 10.1002/term.2381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
78 Magadum A, Ding Y, He L, Kim T, Vasudevarao MD, Long Q, Yang K, Wickramasinghe N, Renikunta HV, Dubois N, Weidinger G, Yang Q, Engel FB. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res 2017;27:1002-19. [PMID: 28621328 DOI: 10.1038/cr.2017.84] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
79 Pringle S, De Bari C, Dell'Accio F, Przyborski S, Cooke MJ, Minger SL, Grigoriadis AE. Mesenchymal differentiation propensity of a human embryonic stem cell line. Cell Prolif 2011;44:120-7. [PMID: 21401753 DOI: 10.1111/j.1365-2184.2011.00744.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
80 Zhu W, Hassink RJ, Rubart M, Field LJ. Cell-cycle-based strategies to drive myocardial repair. Pediatr Cardiol 2009;30:710-5. [PMID: 19340478 DOI: 10.1007/s00246-009-9408-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
81 Waqas M, Us-Salam I, Bibi Z, Wang Y, Li H, Zhu Z, He S. Stem Cell-Based Therapeutic Approaches to Restore Sensorineural Hearing Loss in Mammals. Neural Plast 2020;2020:8829660. [PMID: 32802037 DOI: 10.1155/2020/8829660] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Liau B, Christoforou N, Leong KW, Bursac N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 2011;32:9180-7. [PMID: 21906802 DOI: 10.1016/j.biomaterials.2011.08.050] [Cited by in Crossref: 170] [Cited by in F6Publishing: 137] [Article Influence: 17.0] [Reference Citation Analysis]
83 Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell. EMBO J. 2015;34:710-738. [PMID: 25712211 DOI: 10.15252/embj.201490563] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
84 Steinbach SK, Husain M. Vascular smooth muscle cell differentiation from human stem/progenitor cells. Methods 2016;101:85-92. [PMID: 26678794 DOI: 10.1016/j.ymeth.2015.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
85 Tan JY, Sriram G, Rufaihah AJ, Neoh KG, Cao T. Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. Stem Cells Dev 2013;22:1893-906. [PMID: 23413973 DOI: 10.1089/scd.2012.0590] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 8.1] [Reference Citation Analysis]
86 Olmer R, Engels L, Usman A, Menke S, Malik MNH, Pessler F, Göhring G, Bornhorst D, Bolten S, Abdelilah-Seyfried S, Scheper T, Kempf H, Zweigerdt R, Martin U. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Reports 2018;10:1657-72. [PMID: 29681541 DOI: 10.1016/j.stemcr.2018.03.017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 12.3] [Reference Citation Analysis]
87 Kumar A, D'Souza SS, Thakur AS. Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019;2019:2141475. [PMID: 31198425 DOI: 10.1155/2019/2141475] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
88 Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012;22:219-236. [PMID: 22143566 DOI: 10.1038/cr.2011.195] [Cited by in Crossref: 144] [Cited by in F6Publishing: 135] [Article Influence: 14.4] [Reference Citation Analysis]
89 Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 2010;30:80-9. [PMID: 19875721 DOI: 10.1161/ATVBAHA.109.194233] [Cited by in Crossref: 116] [Cited by in F6Publishing: 68] [Article Influence: 9.7] [Reference Citation Analysis]
90 Ye Z, Zhou Y, Cai H, Tan W. Myocardial regeneration: Roles of stem cells and hydrogels. Adv Drug Deliv Rev 2011;63:688-97. [PMID: 21371512 DOI: 10.1016/j.addr.2011.02.007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 6.3] [Reference Citation Analysis]
91 Pryzhkova MV, Aria I, Cheng Q, Harris GM, Zan X, Gharib M, Jabbarzadeh E. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials 2014;35:5098-109. [PMID: 24690530 DOI: 10.1016/j.biomaterials.2014.03.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
92 Yamahara K, Itoh H. Potential use of endothelial progenitor cells for regeneration of the vasculature. Therapeutic Advances in Cardiovascular Disease 2009;3:17-27. [DOI: 10.1177/1753944708097728] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
93 Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair. Biomed Res Int. 2013;2013:547902. [PMID: 23509740 DOI: 10.1155/2013/547902] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
94 Miklas JW, Nunes SS, Zhang B, Radisic M. Design and fabrication of biological wires. Methods Mol Biol 2014;1181:157-65. [PMID: 25070335 DOI: 10.1007/978-1-4939-1047-2_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
95 Huang J, Zhang M, Zhang P, Liang H, Ouyang K, Yang HT. Coupling switch of P2Y-IP3 receptors mediates differential Ca(2+) signaling in human embryonic stem cells and derived cardiovascular progenitor cells. Purinergic Signal 2016;12:465-78. [PMID: 27098757 DOI: 10.1007/s11302-016-9512-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
96 Baddour JA, Sousounis K, Tsonis PA. Organ repair and regeneration: An overview. Birth Defects Research Part C: Embryo Today: Reviews 2012;96:1-29. [DOI: 10.1002/bdrc.21006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 62] [Article Influence: 9.1] [Reference Citation Analysis]
97 Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S, Toyoda T, Kotaka M, Takaki T, Umeda M, Okubo C, Nishikawa M, Oishi A, Narita M, Miyashita I, Asano K, Hayashi K, Osafune K, Yamanaka S, Saito H, Yoshida Y. Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell 2015;16:699-711. [PMID: 26004781 DOI: 10.1016/j.stem.2015.04.005] [Cited by in Crossref: 128] [Cited by in F6Publishing: 98] [Article Influence: 21.3] [Reference Citation Analysis]
98 Prowse AB, Timmins NE, Yau TM, Li R, Weisel RD, Keller G, Zandstra PW. Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology 2014;30:1335-49. [DOI: 10.1016/j.cjca.2014.08.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
99 Votteler M, Kluger PJ, Walles H, Schenke-Layland K. Stem cell microenvironments--unveiling the secret of how stem cell fate is defined. Macromol Biosci. 2010;10:1302-1315. [PMID: 20715131 DOI: 10.1002/mabi.201000102] [Cited by in Crossref: 63] [Cited by in F6Publishing: 52] [Article Influence: 6.3] [Reference Citation Analysis]
100 Wile BM, Ban K, Yoon YS, Bao G. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs. Nat Protoc 2014;9:2411-24. [PMID: 25232937 DOI: 10.1038/nprot.2014.154] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
101 Domian IJ, Buikema JW, de Boer RA, van der Meer P. Stem cells in heart failure. European Journal of Heart Failure 2010;12:642-4. [DOI: 10.1093/eurjhf/hfq105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
102 Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111:344-358. [PMID: 22821908 DOI: 10.1161/CIRCRESAHA.110.227512] [Cited by in Crossref: 438] [Cited by in F6Publishing: 236] [Article Influence: 48.7] [Reference Citation Analysis]
103 Habib M, Caspi O, Gepstein L. Human embryonic stem cells for cardiomyogenesis. J Mol Cell Cardiol 2008;45:462-74. [PMID: 18775434 DOI: 10.1016/j.yjmcc.2008.08.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 3.2] [Reference Citation Analysis]
104 Sison-young R, Kia R, Heslop J, Kelly L, Rowe C, Cross M, Kitteringham N, Hanley N, Park B, Goldring C. Human Pluripotent Stem Cells for Modeling Toxicity. Current Concepts in Drug Metabolism and Toxicology. Elsevier; 2012. pp. 207-56. [DOI: 10.1016/b978-0-12-398339-8.00006-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
105 van Weerd JH, Koshiba-Takeuchi K, Kwon C, Takeuchi JK. Epigenetic factors and cardiac development. Cardiovasc Res 2011;91:203-11. [PMID: 21606181 DOI: 10.1093/cvr/cvr138] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
106 Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013;152:570-83. [PMID: 23352431 DOI: 10.1016/j.cell.2013.01.003] [Cited by in Crossref: 641] [Cited by in F6Publishing: 562] [Article Influence: 80.1] [Reference Citation Analysis]
107 Leung HW, Moerkamp AT, Padmanabhan J, Ng SW, Goumans MJ, Choo A. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs. J Mol Cell Cardiol 2015;82:228-37. [PMID: 25820071 DOI: 10.1016/j.yjmcc.2015.02.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
108 Gibb N, Lavery DL, Hoppler S. sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling. Development 2013;140:1537-49. [PMID: 23482489 DOI: 10.1242/dev.088047] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
109 Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M, Huang GY, Hajjar RJ, Zhou B, Moon A, Cai CL. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun 2015;6:8701. [PMID: 26515110 DOI: 10.1038/ncomms9701] [Cited by in Crossref: 210] [Cited by in F6Publishing: 171] [Article Influence: 35.0] [Reference Citation Analysis]
110 Haraguchi Y, Shimizu T, Yamato M, Okano T. Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 2012;1:136-41. [PMID: 23197760 DOI: 10.5966/sctm.2012-0030] [Cited by in Crossref: 63] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
111 Nakano H, Williams E, Hoshijima M, Sasaki M, Minamisawa S, Chien KR, Nakano A. Cardiac origin of smooth muscle cells in the inflow tract. J Mol Cell Cardiol 2011;50:337-45. [PMID: 20974149 DOI: 10.1016/j.yjmcc.2010.10.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
112 Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D'Amario D, D'Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P. Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 2009;106:15885-90. [PMID: 19717420 DOI: 10.1073/pnas.0907622106] [Cited by in Crossref: 158] [Cited by in F6Publishing: 130] [Article Influence: 13.2] [Reference Citation Analysis]
113 Chen VC, Stull R, Joo D, Cheng X, Keller G. Notch signaling respecifies the hemangioblast to a cardiac fate. Nat Biotechnol 2008;26:1169-78. [PMID: 18820686 DOI: 10.1038/nbt.1497] [Cited by in Crossref: 66] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
114 Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020;21:E4354. [PMID: 32575374 DOI: 10.3390/ijms21124354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
115 Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP. Murine “Cardiospheres” Are Not a Source of Stem Cells with Cardiomyogenic Potential. Stem Cells 2009;27:1571-81. [DOI: 10.1002/stem.72] [Cited by in Crossref: 102] [Cited by in F6Publishing: 86] [Article Influence: 8.5] [Reference Citation Analysis]
116 Shinozawa T, Furukawa H, Sato E, Takami K. A novel purification method of murine embryonic stem cell- and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation. J Biomol Screen 2012;17:683-91. [PMID: 22274911 DOI: 10.1177/1087057111434145] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
117 Liu J, Liu S, Han L, Sheng Y, Zhang Y, Kim IM, Wan J, Yang L. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 2021;148:dev199628. [PMID: 34027990 DOI: 10.1242/dev.199628] [Reference Citation Analysis]
118 Herrmann F, Groß A, Zhou D, Kestler HA, Kühl M. A boolean model of the cardiac gene regulatory network determining first and second heart field identity. PLoS One 2012;7:e46798. [PMID: 23056457 DOI: 10.1371/journal.pone.0046798] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
119 Slukvin II, Uenishi GI. Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Exp Hematol 2019;71:3-12. [PMID: 30500414 DOI: 10.1016/j.exphem.2018.11.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
120 Lian X, Zhang J, Zhu K, Kamp TJ, Palecek SP. Insulin inhibits cardiac mesoderm, not mesendoderm, formation during cardiac differentiation of human pluripotent stem cells and modulation of canonical Wnt signaling can rescue this inhibition. Stem Cells 2013;31:447-57. [PMID: 23193013 DOI: 10.1002/stem.1289] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
121 Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, Saafir T, Song MK, Yu SP, Wagner M, Bao G, Yoon YS. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 2013;128:1897-909. [PMID: 23995537 DOI: 10.1161/CIRCULATIONAHA.113.004228] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
122 Kadota S, Tanaka Y, Shiba Y. Heart regeneration using pluripotent stem cells. J Cardiol 2020;76:459-63. [PMID: 32690435 DOI: 10.1016/j.jjcc.2020.03.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
123 Raad FS, Khan TA, Esser TU, Hudson JE, Seth BI, Fujita B, Gandamala R, Tietze LF, Zimmermann WH. Chalcone-Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering. ChemMedChem 2021. [PMID: 34309224 DOI: 10.1002/cmdc.202100222] [Reference Citation Analysis]
124 Hirschi KK, Li S, Roy K. Induced pluripotent stem cells for regenerative medicine. Annu Rev Biomed Eng. 2014;16:277-294. [PMID: 24905879 DOI: 10.1146/annurev-bioeng-071813-105108] [Cited by in Crossref: 77] [Cited by in F6Publishing: 59] [Article Influence: 11.0] [Reference Citation Analysis]
125 Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med 2013;3:a013847. [PMID: 24086063 DOI: 10.1101/cshperspect.a013847] [Cited by in Crossref: 118] [Cited by in F6Publishing: 92] [Article Influence: 14.8] [Reference Citation Analysis]
126 Drowley L, Koonce C, Peel S, Jonebring A, Plowright AT, Kattman SJ, Andersson H, Anson B, Swanson BJ, Wang QD, Brolen G. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation. Stem Cells Transl Med 2016;5:164-74. [PMID: 26683871 DOI: 10.5966/sctm.2015-0114] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
127 Haque M, Siegel RJ, Fox DA, Ahmed S. Interferon-stimulated GTPases in autoimmune and inflammatory diseases: promising role for the guanylate-binding protein (GBP) family. Rheumatology (Oxford) 2021;60:494-506. [PMID: 33159795 DOI: 10.1093/rheumatology/keaa609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
128 Huang NF, Fleissner F, Sun J, Cooke JP. Role of nitric oxide signaling in endothelial differentiation of embryonic stem cells. Stem Cells Dev. 2010;19:1617-1626. [PMID: 20064011 DOI: 10.1089/scd.2009.0417] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
129 Gibson JD, Jakuba CM, Boucher N, Holbrook KA, Carter MG, Nelson CE. Single-cell transcript analysis of human embryonic stem cells. Integr Biol (Camb) 2009;1:540-51. [PMID: 20023769 DOI: 10.1039/b908276j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
130 Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng. 2009;102:493-507. [PMID: 18767184 DOI: 10.1002/bit.22065] [Cited by in Crossref: 161] [Cited by in F6Publishing: 133] [Article Influence: 13.4] [Reference Citation Analysis]
131 Jin G, Palecek SP. Inductive factors for generation of pluripotent stem cell-derived cardiomyocytes. Engineering Strategies for Regenerative Medicine. Elsevier; 2020. pp. 177-242. [DOI: 10.1016/b978-0-12-816221-7.00006-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Cheng P, Andersen P, Hassel D, Kaynak BL, Limphong P, Juergensen L, Kwon C, Srivastava D. Fibronectin mediates mesendodermal cell fate decisions. Development 2013;140:2587-96. [PMID: 23715551 DOI: 10.1242/dev.089052] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 5.9] [Reference Citation Analysis]
133 Liu Y, Chen L, Diaz AD, Benham A, Xu X, Wijaya CS, Fa'ak F, Luo W, Soibam B, Azares A, Yu W, Lyu Q, Stewart MD, Gunaratne P, Cooney A, McConnell BK, Schwartz RJ. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Sci Rep. 2016;6:31457. [PMID: 27538477 DOI: 10.1038/srep31457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
134 Qian L, Srivastava D. Monkeying around with cardiac progenitors: hope for the future. J Clin Invest 2010;120:1034-6. [PMID: 20335651 DOI: 10.1172/JCI42643] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
135 Kadari A, Mekala S, Wagner N, Malan D, Köth J, Doll K, Stappert L, Eckert D, Peitz M, Matthes J, Sasse P, Herzig S, Brüstle O, Ergün S, Edenhofer F. Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. Stem Cell Rev Rep 2015;11:560-9. [PMID: 25392050 DOI: 10.1007/s12015-014-9564-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
136 Josowitz R, Carvajal-Vergara X, Lemischka IR, Gelb BD. Induced pluripotent stem cell-derived cardiomyocytes as models for genetic cardiovascular disorders. Curr Opin Cardiol 2011;26:223-9. [PMID: 21451408 DOI: 10.1097/HCO.0b013e32834598ad] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
137 Hodgkiss-Geere HM, Argyle DJ, Corcoran BM, Whitelaw B, Milne E, Bennett D, Argyle SA. Characterisation and cardiac directed differentiation of canine adult cardiac stem cells. Vet J 2012;191:176-82. [PMID: 21330169 DOI: 10.1016/j.tvjl.2010.12.033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
138 Miklas JW, Nunes SS, Sofla A, Reis LA, Pahnke A, Xiao Y, Laschinger C, Radisic M. Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication 2014;6:024113. [PMID: 24876342 DOI: 10.1088/1758-5082/6/2/024113] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.9] [Reference Citation Analysis]
139 Veevers J, Farah EN, Corselli M, Witty AD, Palomares K, Vidal JG, Emre N, Carson CT, Ouyang K, Liu C, van Vliet P, Zhu M, Hegarty JM, Deacon DC, Grinstein JD, Dirschinger RJ, Frazer KA, Adler ED, Knowlton KU, Chi NC, Martin JC, Chen J, Evans SM. Cell-Surface Marker Signature for Enrichment of Ventricular Cardiomyocytes Derived from Human Embryonic Stem Cells. Stem Cell Reports 2018;11:828-41. [PMID: 30122443 DOI: 10.1016/j.stemcr.2018.07.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
140 Jha R, Xu RH, Xu C. Efficient differentiation of cardiomyocytes from human pluripotent stem cells with growth factors. Methods Mol Biol 2015;1299:115-31. [PMID: 25836579 DOI: 10.1007/978-1-4939-2572-8_9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
141 Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020;12:a036731. [PMID: 31818856 DOI: 10.1101/cshperspect.a036731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
142 Radisic M, Alsberg E. Special Issue on Tissue Engineering. ACS Biomater Sci Eng 2017;3:1880-3. [PMID: 33440546 DOI: 10.1021/acsbiomaterials.7b00604] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
143 Sun X, Nunes SS. Maturation of Human Stem Cell-derived Cardiomyocytes in Biowires Using Electrical Stimulation. J Vis Exp. 2017;123. [PMID: 28518082 DOI: 10.3791/55373] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
144 Hatani T, Funakoshi S, Deerinck TJ, Bushong EA, Kimura T, Takeshima H, Ellisman MH, Hoshijima M, Yoshida Y. Nano-structural analysis of engrafted human induced pluripotent stem cell-derived cardiomyocytes in mouse hearts using a genetic-probe APEX2. Biochem Biophys Res Commun 2018;505:1251-6. [PMID: 30333092 DOI: 10.1016/j.bbrc.2018.10.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
145 Azarin SM, Lian X, Larson EA, Popelka HM, de Pablo JJ, Palecek SP. Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array. Biomaterials. 2012;33:2041-2049. [PMID: 22177620 DOI: 10.1016/j.biomaterials.2011.11.070] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 5.5] [Reference Citation Analysis]
146 Rana AA, Callery EM. Applications of nuclear reprogramming and directed differentiation in vascular regenerative medicine. N Biotechnol 2015;32:191-8. [PMID: 25064145 DOI: 10.1016/j.nbt.2014.07.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
147 Liu Y, Dakou E, Meng Y, Leyns L. Loss of Emp2 compromises cardiogenic differentiation in mouse embryonic stem cells. Biochemical and Biophysical Research Communications 2019;511:173-8. [DOI: 10.1016/j.bbrc.2019.02.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Foley TE, Hess B, Savory JGA, Ringuette R, Lohnes D. Role of Cdx factors in early mesodermal fate decisions. Development 2019;146:dev170498. [PMID: 30936115 DOI: 10.1242/dev.170498] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
149 Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020;21:E507. [PMID: 31941149 DOI: 10.3390/ijms21020507] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
150 Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GC, Rasmusson RL, Denning C, Yang L. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 2015;8:457-466. [PMID: 25791035 DOI: 10.1242/dmm.019505] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 12.0] [Reference Citation Analysis]
151 Dar A, Gerecht S, Itskovitz-eldor J. Human Vascular Progenitor Cells. Handbook of Stem Cells. Elsevier; 2013. pp. 587-94. [DOI: 10.1016/b978-0-12-385942-6.00051-2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
152 Chen A, Lieu DK, Freschauf L, Lew V, Sharma H, Wang J, Nguyen D, Karakikes I, Hajjar RJ, Gopinathan A, Botvinick E, Fowlkes CC, Li RA, Khine M. Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv Mater 2011;23:5785-91. [PMID: 22065428 DOI: 10.1002/adma.201103463] [Cited by in Crossref: 97] [Cited by in F6Publishing: 70] [Article Influence: 9.7] [Reference Citation Analysis]
153 Walsh KB. Targeting cardiac potassium channels for state-of-the-art drug discovery. Expert Opin Drug Discov 2015;10:157-69. [PMID: 25400064 DOI: 10.1517/17460441.2015.983471] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
154 Li L, Larabee SM, Chen S, Basiri L, Yamaguchi S, Zakaria A, Gallicano GI. Novel 5'TOPmRNAs regulated by ribosomal S6 kinase are important for cardiomyocyte development: S6 kinase suppression limits cardiac differentiation and promotes pluripotent cells toward a neural lineage. Stem Cells Dev 2012;21:1538-48. [PMID: 22165977 DOI: 10.1089/scd.2011.0582] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
155 Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev Rep 2015;11:710-27. [PMID: 26085192 DOI: 10.1007/s12015-015-9596-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
156 Gao M, Yang J, Liu G, Wei R, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T. Ghrelin promotes the differentiation of human embryonic stem cells in infarcted cardiac microenvironment. Peptides 2012;34:373-9. [PMID: 22386650 DOI: 10.1016/j.peptides.2012.02.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
157 Kirouac DC, Zandstra PW. The systematic production of cells for cell therapies. Cell Stem Cell. 2008;3:369-381. [PMID: 18940729 DOI: 10.1016/j.stem.2008.09.001] [Cited by in Crossref: 225] [Cited by in F6Publishing: 166] [Article Influence: 17.3] [Reference Citation Analysis]
158 Chimenti I, Forte E, Angelini F, Giacomello A, Messina E. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells. Prog Mol Biol Transl Sci 2012;111:109-37. [PMID: 22917228 DOI: 10.1016/B978-0-12-398459-3.00005-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
159 Hwang GH, Park SM, Han HJ, Kim JS, Yun SP, Ryu JM, Lee HJ, Chang W, Lee SJ, Choi JH, Choi JS, Lee MY. Purification of small molecule-induced cardiomyocytes from human induced pluripotent stem cells using a reporter system. J Cell Physiol 2017;232:3384-95. [PMID: 28063225 DOI: 10.1002/jcp.25783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
160 Hong SP, Song S, Cho SW, Lee S, Koh BI, Bae H, Kim KH, Park JS, Do HS, Im I, Heo HJ, Ko TH, Park JH, Youm JB, Kim SJ, Kim I, Han J, Han YM, Koh GY. Generation of PDGFRα+ Cardioblasts from Pluripotent Stem Cells. Sci Rep 2017;7:41840. [PMID: 28165490 DOI: 10.1038/srep41840] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
161 Samak M, Hinkel R. Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells 2019;8:E1530. [PMID: 31783680 DOI: 10.3390/cells8121530] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
162 Sinha S, Santoro MM. New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovascular Research 2018;114:481-91. [DOI: 10.1093/cvr/cvy005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
163 Zhang Z, Ito WD, Hopfner U, Böhmert B, Kremer M, Reckhenrich AK, Harder Y, Lund N, Kruse C, Machens HG, Egaña JT. The role of single cell derived vascular resident endothelial progenitor cells in the enhancement of vascularization in scaffold-based skin regeneration. Biomaterials 2011;32:4109-17. [PMID: 21435711 DOI: 10.1016/j.biomaterials.2011.02.036] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
164 Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Chan HYS, Webb SE, Keung W, Chow H, Miller AL, Leung AY, Hajjar RJ, Li RA, Chan CW. A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 2014;23:1704-16. [PMID: 24564569 DOI: 10.1089/scd.2013.0509] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 11.3] [Reference Citation Analysis]
165 Sun X, Nunes SS. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods 2016;101:21-6. [PMID: 26546730 DOI: 10.1016/j.ymeth.2015.11.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 5.7] [Reference Citation Analysis]
166 Wang P, Rodriguez RT, Wang J, Ghodasara A, Kim SK. Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell. 2011;8:335-346. [PMID: 21362573 DOI: 10.1016/j.stem.2011.01.017] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 9.3] [Reference Citation Analysis]
167 Turner WS, Wang X, Johnson S, Medberry C, Mendez J, Badylak SF, McCord MG, McCloskey KE. Cardiac tissue development for delivery of embryonic stem cell-derived endothelial and cardiac cells in natural matrices. J Biomed Mater Res B Appl Biomater 2012;100:2060-72. [PMID: 22888031 DOI: 10.1002/jbm.b.32770] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
168 Wang Z, Huang J. Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines. Appl Biochem Biotechnol 2019;189:396-410. [PMID: 31025171 DOI: 10.1007/s12010-019-03012-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
169 Koyanagi M, Iwasaki M, Rupp S, Tedesco FS, Yoon CH, Boeckel JN, Trauth J, Schütz C, Ohtani K, Goetz R, Iekushi K, Bushoven P, Momma S, Mummery C, Passier R, Henschler R, Akintuerk H, Schranz D, Urbich C, Galvez BG, Cossu G, Zeiher AM, Dimmeler S. Sox2 transduction enhances cardiovascular repair capacity of blood-derived mesoangioblasts. Circ Res 2010;106:1290-302. [PMID: 20185800 DOI: 10.1161/CIRCRESAHA.109.206045] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
170 Shao-Fang Z, Hong-Tian Z, Zhi-Nian Z, Yuan-Li H. PKH26 as a fluorescent label for live human umbilical mesenchymal stem cells. In Vitro Cell Dev Biol Anim. 2011;47:516-520. [PMID: 21805232 DOI: 10.1007/s11626-011-9424-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
171 Jain KK. Cell Therapy for Cardiovascular Disorders. Applications of Biotechnology in Cardiovascular Therapeutics. Totowa: Humana Press; 2011. pp. 159-218. [DOI: 10.1007/978-1-61779-240-3_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
172 Bai H, Gao Y, Arzigian M, Wojchowski DM, Wu WS, Wang ZZ. BMP4 regulates vascular progenitor development in human embryonic stem cells through a Smad-dependent pathway. J Cell Biochem 2010;109:363-74. [PMID: 19950207 DOI: 10.1002/jcb.22410] [Cited by in Crossref: 7] [Cited by in F6Publishing: 30] [Article Influence: 0.6] [Reference Citation Analysis]
173 Abilez OJ, Tzatzalos E, Yang H, Zhao MT, Jung G, Zöllner AM, Tiburcy M, Riegler J, Matsa E, Shukla P, Zhuge Y, Chour T, Chen VC, Burridge PW, Karakikes I, Kuhl E, Bernstein D, Couture LA, Gold JD, Zimmermann WH, Wu JC. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells 2018;36:265-77. [PMID: 29086457 DOI: 10.1002/stem.2732] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 14.5] [Reference Citation Analysis]
174 Kim C. iPSC technology--Powerful hand for disease modeling and therapeutic screen. BMB Rep 2015;48:256-65. [PMID: 25104399 DOI: 10.5483/bmbrep.2015.48.5.100] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 5.4] [Reference Citation Analysis]
175 Guan K, Cheng I, Baazm M. Human spermatagonial stem cells: a novel therapeutic hope for cardiac regeneration and repair? Future Cardiology 2012;8:39-51. [DOI: 10.2217/fca.11.78] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
176 Szebényi K, Péntek A, Erdei Z, Várady G, Orbán TI, Sarkadi B, Apáti Á. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression. Tissue Eng Part C Methods 2015;21:35-45. [PMID: 24734786 DOI: 10.1089/ten.TEC.2013.0646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
177 Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Update: Innovation in cardiology (IV). Cardiac tissue engineering and the bioartificial heart. Rev Esp Cardiol (Engl Ed) 2013;66:391-9. [PMID: 24775822 DOI: 10.1016/j.rec.2012.11.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
178 Zhou Y, Kim J, Yuan X, Braun T. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res. 2011;109:1067-1081. [PMID: 21998298 DOI: 10.1161/circresaha.111.243709] [Cited by in Crossref: 57] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
179 Mekala SR, Wörsdörfer P, Bauer J, Stoll O, Wagner N, Reeh L, Loew K, Eckner G, Kwok CK, Wischmeyer E, Dickinson ME, Schulze H, Stegner D, Benndorf RA, Edenhofer F, Pfeiffer V, Kuerten S, Frantz S, Ergün S. Generation of Cardiomyocytes From Vascular Adventitia-Resident Stem Cells. Circ Res 2018;123:686-99. [PMID: 30355234 DOI: 10.1161/CIRCRESAHA.117.312526] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 9.5] [Reference Citation Analysis]
180 Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020;11:138. [PMID: 32216837 DOI: 10.1186/s13287-020-01648-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
181 Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ, Schulz LC, Roberts RM, Ezashi T. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci USA. 2013;110:E1212-E1221. [PMID: 23493551 DOI: 10.1073/pnas.1303094110] [Cited by in Crossref: 129] [Cited by in F6Publishing: 107] [Article Influence: 16.1] [Reference Citation Analysis]
182 Chang D, Fan T, Gao S, Jin Y, Zhang M, Ono M. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther 2021;12:384. [PMID: 34233729 DOI: 10.1186/s13287-021-02451-1] [Reference Citation Analysis]
183 Terai M, Izumiyama-Shimomura N, Aida J, Ishikawa N, Sawabe M, Arai T, Fujiwara M, Ishii A, Nakamura K, Takubo K. Association of telomere shortening in myocardium with heart weight gain and cause of death. Sci Rep 2013;3:2401. [PMID: 23929129 DOI: 10.1038/srep02401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
184 Chun YW, Balikov DA, Feaster TK, Williams CH, Sheng CC, Lee JB, Boire TC, Neely MD, Bellan LM, Ess KC, Bowman AB, Sung HJ, Hong CC. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 2015;67:52-64. [PMID: 26204225 DOI: 10.1016/j.biomaterials.2015.07.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 7.7] [Reference Citation Analysis]
185 Brafman DA, Phung C, Kumar N, Willert K. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ. 2013;20:369-381. [PMID: 23154389 DOI: 10.1038/cdd.2012.138] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 8.7] [Reference Citation Analysis]
186 Ni X, Xu K, Zhao Y, Li J, Wang L, Yu F, Li G. Single-cell analysis reveals the purification and maturation effects of glucose starvation in hiPSC-CMs. Biochem Biophys Res Commun 2021;534:367-73. [PMID: 33279112 DOI: 10.1016/j.bbrc.2020.11.076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
187 Tadevosyan K, Iglesias-García O, Mazo MM, Prósper F, Raya A. Engineering and Assessing Cardiac Tissue Complexity. Int J Mol Sci 2021;22:1479. [PMID: 33540699 DOI: 10.3390/ijms22031479] [Reference Citation Analysis]
188 Vallier L, Touboul T, Brown S, Cho C, Bilican B, Alexander M, Cedervall J, Chandran S, Ahrlund-Richter L, Weber A, Pedersen RA. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 2009;27:2655-66. [PMID: 19688839 DOI: 10.1002/stem.199] [Cited by in Crossref: 130] [Cited by in F6Publishing: 119] [Article Influence: 11.8] [Reference Citation Analysis]
189 Kotini AG, Sadelain M, Papapetrou EP. LiPS-A3S, a human genomic site for robust expression of inserted transgenes. Mol Ther Nucleic Acids 2016;5:e394. [PMID: 27898090 DOI: 10.1038/mtna.2016.99] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
190 Buikema JW, Van Der Meer P, Sluijter JP, Domian IJ. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 2013;31:2587-98. [PMID: 23843322 DOI: 10.1002/stem.1467] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
191 Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. Adv Ther (Weinh) 2020;3:1900182. [PMID: 33665356 DOI: 10.1002/adtp.201900182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
192 Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30-e41. [PMID: 19213953 DOI: 10.1161/circresaha.108.192237] [Cited by in Crossref: 882] [Cited by in F6Publishing: 507] [Article Influence: 73.5] [Reference Citation Analysis]
193 Hong SH, Rampalli S, Lee JB, McNicol J, Collins T, Draper JS, Bhatia M. Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 2011;9:24-36. [PMID: 21726831 DOI: 10.1016/j.stem.2011.06.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 8.0] [Reference Citation Analysis]
194 Li W, Jiang K, Wei W, Shi Y, Ding S. Chemical approaches to studying stem cell biology. Cell Res 2013;23:81-91. [PMID: 23266890 DOI: 10.1038/cr.2012.182] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
195 Susaki EA, Takasato M. Perspective: Extending the Utility of Three-Dimensional Organoids by Tissue Clearing Technologies. Front Cell Dev Biol 2021;9:679226. [PMID: 34195197 DOI: 10.3389/fcell.2021.679226] [Reference Citation Analysis]
196 Nazareth EJ, Ostblom JE, Lücker PB, Shukla S, Alvarez MM, Oh SK, Yin T, Zandstra PW. High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias. Nat Methods 2013;10:1225-31. [PMID: 24141495 DOI: 10.1038/nmeth.2684] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
197 Josowitz R, Mulero-Navarro S, Rodriguez NA, Falce C, Cohen N, Ullian EM, Weiss LA, Rauen KA, Sobie EA, Gelb BD. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports 2016;7:355-69. [PMID: 27569062 DOI: 10.1016/j.stemcr.2016.07.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
198 Cagavi E, Bartulos O, Suh CY, Sun B, Yue Z, Jiang Z, Yue L, Qyang Y. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation. PLoS One 2014;9:e110752. [PMID: 25522363 DOI: 10.1371/journal.pone.0110752] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
199 Reinecke H, Minami E, Zhu WZ, Laflamme MA. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 2008;103:1058-71. [PMID: 18988903 DOI: 10.1161/CIRCRESAHA.108.180588] [Cited by in Crossref: 106] [Cited by in F6Publishing: 58] [Article Influence: 8.2] [Reference Citation Analysis]
200 Kim JJ, Yang L, Lin B, Zhu X, Sun B, Kaplan AD, Bett GC, Rasmusson RL, London B, Salama G. Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J Mol Cell Cardiol 2015;81:81-93. [PMID: 25644533 DOI: 10.1016/j.yjmcc.2015.01.013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 9.7] [Reference Citation Analysis]
201 Park M, Yoon YS. Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korean Circ J 2018;48:974-88. [PMID: 30334384 DOI: 10.4070/kcj.2018.0312] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
202 Ikonomou L, Hemnes AR, Bilousova G, Hamid R, Loyd JE, Hatzopoulos AK, Kotton DN, Majka SM, Austin ED. Programmatic change: lung disease research in the era of induced pluripotency. Am J Physiol Lung Cell Mol Physiol 2011;301:L830-5. [PMID: 21984571 DOI: 10.1152/ajplung.00255.2011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
203 Denning C, Anderson D. Cardiomyocytes from human embryonic stem cells as predictors of cardiotoxicity. Drug Discovery Today: Therapeutic Strategies 2008;5:223-32. [DOI: 10.1016/j.ddstr.2008.08.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
204 Pitrez P, Rosa S, Praça C, Ferreira L. Vascular disease modeling using induced pluripotent stem cells: Focus in Hutchinson-Gilford Progeria Syndrome. Biochemical and Biophysical Research Communications 2016;473:710-8. [DOI: 10.1016/j.bbrc.2015.10.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
205 Salick MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 2014;35:4454-64. [PMID: 24582552 DOI: 10.1016/j.biomaterials.2014.02.001] [Cited by in Crossref: 99] [Cited by in F6Publishing: 79] [Article Influence: 14.1] [Reference Citation Analysis]
206 Rajala K, Pekkanen-Mattila M, Aalto-Setälä K. Cardiac differentiation of pluripotent stem cells. Stem Cells Int 2011;2011:383709. [PMID: 21603143 DOI: 10.4061/2011/383709] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 7.2] [Reference Citation Analysis]
207 Miyagawa S, Fukushima S, Imanishi Y, Kawamura T, Mochizuki-Oda N, Masuda S, Sawa Y. Building A New Treatment For Heart Failure-Transplantation of Induced Pluripotent Stem Cell-derived Cells into the Heart. Curr Gene Ther 2016;16:5-13. [PMID: 26785736 DOI: 10.2174/1566523216666160119094143] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
208 Razaq MA, Taylor S, Roberts DJ, Carpenter L. A molecular roadmap of definitive erythropoiesis from human induced pluripotent stem cells. Br J Haematol 2017;176:971-83. [PMID: 28060419 DOI: 10.1111/bjh.14491] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
209 Fabre KM, Delsing L, Hicks R, Colclough N, Crowther DC, Ewart L. Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling: a case study for blood brain barrier research in a pharmaceutical setting. Adv Drug Deliv Rev 2019;140:129-35. [PMID: 30253201 DOI: 10.1016/j.addr.2018.09.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
210 Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A 2013;110:12601-6. [PMID: 23858432 DOI: 10.1073/pnas.1306562110] [Cited by in Crossref: 151] [Cited by in F6Publishing: 133] [Article Influence: 18.9] [Reference Citation Analysis]
211 Xu J, Lian W, Li L, Huang Z. Generation of induced cardiac progenitor cells via somatic reprogramming. Oncotarget 2017;8:29442-57. [PMID: 28199972 DOI: 10.18632/oncotarget.15272] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
212 Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, Keller GM. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 2017;35:56-68. [PMID: 27941801 DOI: 10.1038/nbt.3745] [Cited by in Crossref: 169] [Cited by in F6Publishing: 127] [Article Influence: 33.8] [Reference Citation Analysis]
213 Dengler J, Song H, Thavandiran N, Massé S, Wood GA, Nanthakumar K, Zandstra PW, Radisic M. Engineered heart tissue enables study of residual undifferentiated embryonic stem cell activity in a cardiac environment. Biotechnol Bioeng 2011;108:704-19. [PMID: 21246514 DOI: 10.1002/bit.22987] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
214 Duelen R, Gilbert G, Patel A, de Schaetzen N, De Waele L, Roderick L, Sipido KR, Verfaillie CM, Buyse GM, Thorrez L, Sampaolesi M. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int 2017;2017:4651238. [PMID: 28163723 DOI: 10.1155/2017/4651238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
215 Yang F, Cho SW, Son SM, Hudson SP, Bogatyrev S, Keung L, Kohane DS, Langer R, Anderson DG. Combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D. Biomacromolecules 2010;11:1909-14. [PMID: 20614932 DOI: 10.1021/bm100357t] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 5.4] [Reference Citation Analysis]
216 Zwi-dantsis L, Gepstein L. Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 2012;69:3285-99. [DOI: 10.1007/s00018-012-1078-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
217 Zhou Y, Fujisawa I, Ino K, Matsue T, Shiku H. Metabolic suppression during mesodermal differentiation of embryonic stem cells identified by single-cell comprehensive gene expression analysis. Mol BioSyst 2015;11:2560-7. [DOI: 10.1039/c5mb00340g] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
218 David R, Franz WM. From pluripotency to distinct cardiomyocyte subtypes. Physiology (Bethesda) 2012;27:119-29. [PMID: 22689787 DOI: 10.1152/physiol.00044.2011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
219 Van Vliet P, Wu SM, Zaffran S, Pucéat M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 2012;96:352-62. [PMID: 22893679 DOI: 10.1093/cvr/cvs270] [Cited by in Crossref: 86] [Cited by in F6Publishing: 71] [Article Influence: 9.6] [Reference Citation Analysis]
220 Freytes DO, Santambrogio L, Vunjak-Novakovic G. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs 2012;195:171-82. [PMID: 21996612 DOI: 10.1159/000331392] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
221 Kattman SJ, Koonce CH, Swanson BJ, Anson BD. Stem Cells and Their Derivatives: A Renaissance in Cardiovascular Translational Research. J of Cardiovasc Trans Res 2011;4:66-72. [DOI: 10.1007/s12265-010-9235-1] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
222 Paik DT, Tian L, Lee J, Sayed N, Chen IY, Rhee S, Rhee JW, Kim Y, Wirka RC, Buikema JW, Wu SM, Red-Horse K, Quertermous T, Wu JC. Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circ Res 2018;123:443-50. [PMID: 29986945 DOI: 10.1161/CIRCRESAHA.118.312913] [Cited by in Crossref: 62] [Cited by in F6Publishing: 36] [Article Influence: 31.0] [Reference Citation Analysis]
223 He P, Fu J, Wang DA. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta Biomater 2016;35:87-97. [PMID: 26911880 DOI: 10.1016/j.actbio.2016.02.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
224 Leung RK, Lin Y, Liu Y. Recent Advances in Understandings Towards Pathogenesis and Treatment for Intrauterine Adhesion and Disruptive Insights from Single-Cell Analysis. Reprod Sci 2021;28:1812-26. [PMID: 33125685 DOI: 10.1007/s43032-020-00343-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
225 Liu F, Fang Y, Hou X, Yan Y, Xiao H, Zuo D, Wen J, Wang L, Zhou Z, Dang X, Zhou R, Liao B. Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways. Stem Cell Res Ther 2020;11:284. [PMID: 32678003 DOI: 10.1186/s13287-020-01794-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
226 Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 2019;198:3-26. [PMID: 30343824 DOI: 10.1016/j.biomaterials.2018.09.036] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 18.0] [Reference Citation Analysis]
227 Moon SH, Kim JS, Park SJ, Lim JJ, Lee HJ, Lee SM, Chung HM. Effect of chromosome instability on the maintenance and differentiation of human embryonic stem cells in vitro and in vivo. Stem Cell Res 2011;6:50-9. [PMID: 20920899 DOI: 10.1016/j.scr.2010.08.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
228 Vittet D, Merdzhanova G, Prandini MH, Feige JJ, Bailly S. TGFβ1 inhibits lymphatic endothelial cell differentiation from mouse embryonic stem cells. J Cell Physiol 2012;227:3593-602. [PMID: 22287283 DOI: 10.1002/jcp.24063] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
229 Liu S, Zhao Y, Su X, Zhou C, Yang P, Lin Q, Li S, Tan H, Wang Q, Wang C, Wu Q. Reconstruction of Alzheimer's Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells Int 2020;2020:8897494. [PMID: 33381193 DOI: 10.1155/2020/8897494] [Reference Citation Analysis]
230 Ge X, Wang IN, Toma I, Sebastiano V, Liu J, Butte MJ, Reijo Pera RA, Yang PC. Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev 2012;21:2798-808. [PMID: 22530853 DOI: 10.1089/scd.2011.0435] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
231 Wuriyanghai Y, Makiyama T, Sasaki K, Kamakura T, Yamamoto Y, Hayano M, Harita T, Nishiuchi S, Chen J, Kohjitani H, Hirose S, Yokoi F, Gao J, Chonabayashi K, Watanabe K, Ohno S, Yoshida Y, Kimura T, Horie M. Complex aberrant splicing in the induced pluripotent stem cell–derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation. Heart Rhythm 2018;15:1566-74. [DOI: 10.1016/j.hrthm.2018.05.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
232 Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH, Wagner EF, Keller GM. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood. 2010;115:2769-2776. [PMID: 20065292 DOI: 10.1182/blood-2009-07-234690] [Cited by in Crossref: 106] [Cited by in F6Publishing: 88] [Article Influence: 9.6] [Reference Citation Analysis]
233 Cheung C, Sinha S. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J Mol Cell Cardiol 2011;51:651-64. [PMID: 21816157 DOI: 10.1016/j.yjmcc.2011.07.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
234 Jin G, Yang G, Kim G. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells: BIOREACTOR SYSTEMS FOR TISSUE ENGINEERING. J Biomed Mater Res 2015;103:935-48. [DOI: 10.1002/jbm.b.33268] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 2.9] [Reference Citation Analysis]
235 Cui X, Shang S, Lv X, Zhao J, Qi Y, Liu Z. Perspectives of small molecule inhibitors of activin receptor‑like kinase in anti‑tumor treatment and stem cell differentiation (Review). Mol Med Rep 2019;19:5053-62. [PMID: 31059090 DOI: 10.3892/mmr.2019.10209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
236 Ng KM, Lee YK, Lai WH, Chan YC, Fung ML, Tse HF, Siu CW. Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. PLoS One 2011;6:e19787. [PMID: 21589943 DOI: 10.1371/journal.pone.0019787] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
237 Carpenter L, Malladi R, Yang CT, French A, Pilkington KJ, Forsey RW, Sloane-Stanley J, Silk KM, Davies TJ, Fairchild PJ. Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood. 2011;117:4008-4011. [PMID: 21343609 DOI: 10.1182/blood-2010-08-299941] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
238 Talavera-Adame D, Gupta A, Kurtovic S, Chaiboonma KL, Arumugaswami V, Dafoe DC. Bone morphogenetic protein-2/-4 upregulation promoted by endothelial cells in coculture enhances mouse embryoid body differentiation. Stem Cells Dev. 2013;22:3252-3260. [PMID: 23924071 DOI: 10.1089/scd.2013.0013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
239 Yan Y, Liu F, Dang X, Zhou R, Liao B. TBX3 induces biased differentiation of human induced pluripotent stem cells into cardiac pacemaker-like cells. Gene Expr Patterns 2021;40:119184. [PMID: 33975000 DOI: 10.1016/j.gep.2021.119184] [Reference Citation Analysis]
240 Khan JM, Lyon AR, Harding SE. The case for induced pluripotent stem cell-derived cardiomyocytes in pharmacological screening. Br J Pharmacol 2013;169:304-17. [PMID: 22845396 DOI: 10.1111/j.1476-5381.2012.02118.x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
241 Dick E, Rajamohan D, Ronksley J, Denning C. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 2010;38:1037-45. [PMID: 20659000 DOI: 10.1042/BST0381037] [Cited by in Crossref: 87] [Cited by in F6Publishing: 37] [Article Influence: 7.9] [Reference Citation Analysis]
242 Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. Curr Treat Options Cardiovasc Med. 2014;16:319. [PMID: 24838687 DOI: 10.1007/s11936-014-0319-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
243 Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige SL, Vernot B, Cheng JB, Thurman RE, Sandstrom R, Haugen E, Heimfeld S, Murry CE, Akey JM, Stamatoyannopoulos JA. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 2013;154:888-903. [PMID: 23953118 DOI: 10.1016/j.cell.2013.07.020] [Cited by in Crossref: 253] [Cited by in F6Publishing: 202] [Article Influence: 31.6] [Reference Citation Analysis]
244 Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019;7:164. [PMID: 31448277 DOI: 10.3389/fcell.2019.00164] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
245 Yechikov S, Kao HKJ, Chang CW, Pretto D, Zhang XD, Sun YH, Smithers R, Sirish P, Nolta JA, Chan JW, Chiamvimonvat N, Lieu DK. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res 2020;49:102043. [PMID: 33128951 DOI: 10.1016/j.scr.2020.102043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
246 Higuchi A, Ku N, Tseng Y, Pan C, Li H, Kumar SS, Ling Q, Chang Y, Alarfaj AA, Munusamy MA, Benelli G, Murugan K. Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest 2017;97:1167-79. [DOI: 10.1038/labinvest.2017.100] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
247 Zhang Y, Mignone J, MacLellan WR. Cardiac Regeneration and Stem Cells. Physiol Rev 2015;95:1189-204. [PMID: 26269526 DOI: 10.1152/physrev.00021.2014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 8.3] [Reference Citation Analysis]
248 Huang X, Wu SM. Isolation and functional characterization of pluripotent stem cell-derived cardiac progenitor cells. Curr Protoc Stem Cell Biol 2010;Chapter 1:Unit 1F.10. [PMID: 20814937 DOI: 10.1002/9780470151808.sc01f10s14] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
249 Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 2013;8:162-75. [PMID: 23257984 DOI: 10.1038/nprot.2012.150] [Cited by in Crossref: 783] [Cited by in F6Publishing: 671] [Article Influence: 87.0] [Reference Citation Analysis]
250 Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011;6:e23657. [PMID: 21876760 DOI: 10.1371/journal.pone.0023657] [Cited by in Crossref: 219] [Cited by in F6Publishing: 175] [Article Influence: 21.9] [Reference Citation Analysis]
251 Verma VK, Kamaraju SR, Kancherla R, Kona LK, Beevi SS, Debnath T, Usha SP, Vadapalli R, Arbab AS, Chelluri LK. Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging. Int J Nanomedicine 2015;10:711-26. [PMID: 25653519 DOI: 10.2147/IJN.S75445] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
252 Puceat M. Could a pluripotent stem cell give rise to a high yield of a single cell lineage: a myocardial cell? Curr Opin Genet Dev 2013;23:498-9. [PMID: 23850377 DOI: 10.1016/j.gde.2013.06.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
253 Bizy A, Klos M. Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020;10:E1561. [PMID: 32887495 DOI: 10.3390/ani10091561] [Reference Citation Analysis]
254 Yang H, Zhang M, Huang J, Liang H, Zhang P, Boheler KR. Cardiomyocytes derived from pluripotent stem cells: Progress and prospects from China. Experimental Cell Research 2013;319:120-5. [DOI: 10.1016/j.yexcr.2012.09.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
255 Miwa H, Era T. Mesoderm Differentiation from hiPS Cells. Methods Mol Biol 2016;1357:403-13. [PMID: 25520286 DOI: 10.1007/7651_2014_162] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
256 Rodriguez A, Crespo I, Androsova G, del Sol A. Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET. PLoS One 2015;10:e0127216. [PMID: 26058016 DOI: 10.1371/journal.pone.0127216] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
257 Jesty SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, Lee JC, Doran RM, Nikitin AY, Fleischmann BK, Kotlikoff MI. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A 2012;109:13380-5. [PMID: 22847442 DOI: 10.1073/pnas.1208114109] [Cited by in Crossref: 173] [Cited by in F6Publishing: 161] [Article Influence: 19.2] [Reference Citation Analysis]
258 Grajales L, Lach LE, Janisch P, Geenen DL, García J. Temporal expression of calcium channel subunits in satellite cells and bone marrow mesenchymal cells. Stem Cell Rev Rep 2015;11:408-22. [PMID: 25277766 DOI: 10.1007/s12015-014-9566-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
259 MacAskill MG, Saif J, Condie A, Jansen MA, MacGillivray TJ, Tavares AAS, Fleisinger L, Spencer HL, Besnier M, Martin E, Biglino G, Newby DE, Hadoke PWF, Mountford JC, Emanueli C, Baker AH. Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product. Mol Ther 2018;26:1669-84. [PMID: 29703701 DOI: 10.1016/j.ymthe.2018.03.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
260 Evans T. Embryonic Stem Cells as a Model for Cardiac Development and Disease. Drug Discov Today Dis Models 2008;5:147-55. [PMID: 19802368 DOI: 10.1016/j.ddmod.2009.03.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
261 Sirabella D, Cimetta E, Vunjak-Novakovic G. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells. Exp Biol Med (Maywood) 2015;240:1008-18. [PMID: 26069271 DOI: 10.1177/1535370215589910] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
262 Lee TJ, Kang S, Jeong GJ, Yoon JK, Bhang SH, Oh J, Kim BS. Incorporation of gold-coated microspheres into embryoid body of human embryonic stem cells for cardiomyogenic differentiation. Tissue Eng Part A 2015;21:374-81. [PMID: 25065511 DOI: 10.1089/ten.TEA.2014.0015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
263 Eng G, Lee BW, Protas L, Gagliardi M, Brown K, Kass RS, Keller G, Robinson RB, Vunjak-Novakovic G. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016;7:10312. [PMID: 26785135 DOI: 10.1038/ncomms10312] [Cited by in Crossref: 78] [Cited by in F6Publishing: 68] [Article Influence: 15.6] [Reference Citation Analysis]
264 Lee MM, Li R, Yau TM. Stem cell therapy for heart failure: Out with the new and in with the old? The Journal of Thoracic and Cardiovascular Surgery 2015;150:1035-7. [DOI: 10.1016/j.jtcvs.2015.09.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
265 Jiang C, Guo J, Cheng H, Feng Y. Induced Expression of Endogenous CXCR4 in iPSCs by Targeted CpG Demethylation Enhances Cell Migration Toward the Ligand CXCL12. Inflammation 2019;42:20-34. [DOI: 10.1007/s10753-018-0869-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
266 Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Cited by in Crossref: 71] [Cited by in F6Publishing: 55] [Article Influence: 11.8] [Reference Citation Analysis]
267 Zhang J. Engineered Tissue Patch for Cardiac Cell Therapy. Curr Treat Options Cardiovasc Med 2015;17:399. [PMID: 26122908 DOI: 10.1007/s11936-015-0399-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
268 Aguilar JS, Begum AN, Alvarez J, Zhang XB, Hong Y, Hao J. Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules. Biochem J 2015;469:235-41. [PMID: 26171831 DOI: 10.1042/BJ20150186] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
269 Atmanli A, Domian IJ. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends Cell Biol 2017;27:352-64. [PMID: 28007424 DOI: 10.1016/j.tcb.2016.11.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
270 Guan X, Delo DM, Atala A, Soker S. In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med 2011;5:220-8. [PMID: 20687122 DOI: 10.1002/term.308] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.4] [Reference Citation Analysis]
271 Yoon C, Song H, Yin T, Bausch-Fluck D, Frei AP, Kattman S, Dubois N, Witty AD, Hewel JA, Guo H, Emili A, Wollscheid B, Keller G, Zandstra PW. FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports. 2018;10:87-100. [PMID: 29249665 DOI: 10.1016/j.stemcr.2017.11.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
272 Pereira IT, Spangenberg L, Robert AW, Amorín R, Stimamiglio MA, Naya H, Dallagiovanna B. Polysome profiling followed by RNA-seq of cardiac differentiation stages in hESCs. Sci Data 2018;5:180287. [PMID: 30512016 DOI: 10.1038/sdata.2018.287] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
273 Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017;35:77-94. [PMID: 28007615 DOI: 10.1016/j.biotechadv.2016.12.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
274 Jiang YF, Chen M, Zhang NN, Yang HJ, Rui Q, Zhou YF. In vitro and in vivo differentiation of induced pluripotent stem cells generated from urine-derived cells into cardiomyocytes. Biol Open 2018;7:bio029157. [PMID: 29212797 DOI: 10.1242/bio.029157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
275 Hsieh A, Feric NT, Radisic M. Combined hypoxia and sodium nitrite pretreatment for cardiomyocyte protection in vitro. Biotechnol Progress 2015;31:482-92. [DOI: 10.1002/btpr.2039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
276 Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M. Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 2014;14:869-82. [PMID: 24352498 DOI: 10.1039/c3lc51123e] [Cited by in Crossref: 87] [Cited by in F6Publishing: 40] [Article Influence: 12.4] [Reference Citation Analysis]
277 Ge F, Wang Z, Xi JJ. Engineered Maturation Approaches of Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes. Cells 2019;9:E9. [PMID: 31861463 DOI: 10.3390/cells9010009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
278 Kong CW, Chen S, Geng L, Shum AM, Sun D, Li RA. Increasing the physical size and nucleation status of human pluripotent stem cell-derived ventricular cardiomyocytes by cell fusion. Stem Cell Res 2017;19:76-81. [PMID: 28086122 DOI: 10.1016/j.scr.2017.01.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
279 Wang K, Lin RZ, Hong X, Ng AH, Lee CN, Neumeyer J, Wang G, Wang X, Ma M, Pu WT, Church GM, Melero-Martin JM. Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Sci Adv 2020;6:eaba7606. [PMID: 32832668 DOI: 10.1126/sciadv.aba7606] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
280 Bernstein HS. Cardiac repair and restoration using human embryonic stem cells. Regenerative Medicine 2012;7:697-712. [DOI: 10.2217/rme.12.46] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
281 Jameel MN, Zhang J. Stem cell therapy for ischemic heart disease. Antioxid Redox Signal 2010;13:1879-97. [PMID: 20687781 DOI: 10.1089/ars.2010.3434] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
282 Christalla P, Hudson JE, Zimmermann WH. The cardiogenic niche as a fundamental building block of engineered myocardium. Cells Tissues Organs 2012;195:82-93. [PMID: 21996934 DOI: 10.1159/000331407] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
283 Coulombe KL, Bajpai VK, Andreadis ST, Murry CE. Heart regeneration with engineered myocardial tissue. Annu Rev Biomed Eng 2014;16:1-28. [PMID: 24819474 DOI: 10.1146/annurev-bioeng-071812-152344] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 7.6] [Reference Citation Analysis]
284 Lee AS, Xu D, Plews JR, Nguyen PK, Nag D, Lyons JK, Han L, Hu S, Lan F, Liu J, Huang M, Narsinh KH, Long CT, de Almeida PE, Levi B, Kooreman N, Bangs C, Pacharinsak C, Ikeno F, Yeung AC, Gambhir SS, Robbins RC, Longaker MT, Wu JC. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem. 2011;286:32697-32704. [PMID: 21719696 DOI: 10.1074/jbc.m111.235739] [Cited by in Crossref: 73] [Cited by in F6Publishing: 35] [Article Influence: 7.3] [Reference Citation Analysis]
285 Zbinden A, Layland SL, Urbanczyk M, Carvajal Berrio DA, Marzi J, Zauner M, Hammerschmidt A, Brauchle EM, Sudrow K, Fink S, Templin M, Liebscher S, Klein G, Deb A, Duffy GP, Crooks GM, Eble JA, Mikkola HKA, Nsair A, Seifert M, Schenke-Layland K. Nidogen-1 Mitigates Ischemia and Promotes Tissue Survival and Regeneration. Adv Sci (Weinh) 2021;8:2002500. [PMID: 33643791 DOI: 10.1002/advs.202002500] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
286 Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA. Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS One 2013;8:e77784. [PMID: 24204964 DOI: 10.1371/journal.pone.0077784] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
287 Wagner N, Ninkov M, Vukolic A, Cubukcuoglu Deniz G, Rassoulzadegan M, Michiels JF, Wagner KD. Implications of the Wilms' Tumor Suppressor Wt1 in Cardiomyocyte Differentiation. Int J Mol Sci 2021;22:4346. [PMID: 33919406 DOI: 10.3390/ijms22094346] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
288 George V, Colombo S, Targoff KL. An early requirement for nkx2.5 ensures the first and second heart field ventricular identity and cardiac function into adulthood. Dev Biol 2015;400:10-22. [PMID: 25536398 DOI: 10.1016/j.ydbio.2014.12.019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
289 Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. Biochim Biophys Acta Mol Cell Res 2020;1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
290 Yamashita JK. ES and iPS cell research for cardiovascular regeneration. Exp Cell Res 2010;316:2555-9. [PMID: 20385126 DOI: 10.1016/j.yexcr.2010.04.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
291 Li S, Cheng H, Tomaselli GF, Li RA. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: Direct evidence of functional Ca2+-induced Ca2+ release. Heart Rhythm 2014;11:133-40. [DOI: 10.1016/j.hrthm.2013.10.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
292 Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA. 2012;109:13016-13021. [PMID: 22826236 DOI: 10.1073/pnas.1120299109] [Cited by in Crossref: 149] [Cited by in F6Publishing: 122] [Article Influence: 16.6] [Reference Citation Analysis]
293 Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med. 2013;3. [PMID: 24186488 DOI: 10.1101/cshperspect.a014027] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
294 Pekkanen-Mattila M, Pelto-Huikko M, Kujala V, Suuronen R, Skottman H, Aalto-Setälä K, Kerkelä E. Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochem Cell Biol 2010;133:595-606. [PMID: 20369364 DOI: 10.1007/s00418-010-0689-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
295 Mills RJ, Hudson JE. Bioengineering adult human heart tissue: How close are we? APL Bioeng 2019;3:010901. [PMID: 31069330 DOI: 10.1063/1.5070106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
296 Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29:1011-1018. [PMID: 22020386 DOI: 10.1038/nbt.2005] [Cited by in Crossref: 379] [Cited by in F6Publishing: 314] [Article Influence: 37.9] [Reference Citation Analysis]
297 Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021;10:641. [PMID: 33805763 DOI: 10.3390/cells10030641] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
298 Kammili RK, Taylor DG, Xia J, Osuala K, Thompson K, Menick DR, Ebert SN. Generation of novel reporter stem cells and their application for molecular imaging of cardiac-differentiated stem cells in vivo. Stem Cells Dev. 2010;19:1437-1448. [PMID: 20109065 DOI: 10.1089/scd.2009.0308] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
299 Noseda M, Peterkin T, Simões FC, Patient R, Schneider MD. Cardiopoietic Factors: Extracellular Signals for Cardiac Lineage Commitment. Circ Res 2011;108:129-52. [DOI: 10.1161/circresaha.110.223792] [Cited by in Crossref: 85] [Cited by in F6Publishing: 43] [Article Influence: 8.5] [Reference Citation Analysis]
300 Jiang B, Xiang Z, Ai Z, Wang H, Li Y, Ji W, Li T. Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials 2015;65:103-14. [DOI: 10.1016/j.biomaterials.2015.06.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
301 Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020;11:384. [PMID: 32390874 DOI: 10.3389/fphys.2020.00384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
302 Hulot JS, Stillitano F, Salem JE, Kovacic JC, Fuster V, Hajjar RJ. Considerations for pre-clinical models and clinical trials of pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2014;5:1. [PMID: 24405778 DOI: 10.1186/scrt390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
303 Tateishi K, Takehara N, Matsubara H, Oh H. Stemming heart failure with cardiac- or reprogrammed-stem cells. J Cell Mol Med 2008;12:2217-32. [PMID: 18754813 DOI: 10.1111/j.1582-4934.2008.00487.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
304 Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019;10:68. [PMID: 30808416 DOI: 10.1186/s13287-019-1165-5] [Cited by in Crossref: 180] [Cited by in F6Publishing: 133] [Article Influence: 90.0] [Reference Citation Analysis]
305 Zhang JZ, Guo H, Wu JC. Applications of genetically engineered human pluripotent stem cell reporters in cardiac stem cell biology. Curr Opin Biotechnol 2018;52:66-73. [PMID: 29579626 DOI: 10.1016/j.copbio.2018.03.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
306 Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 2014;6:951-960. [PMID: 24561253 DOI: 10.1016/j.celrep.2014.01.038] [Cited by in Crossref: 123] [Cited by in F6Publishing: 105] [Article Influence: 17.6] [Reference Citation Analysis]
307 Xin LZ, Govindasamy V, Musa S, Abu Kasim NH. Dental stem cells as an alternative source for cardiac regeneration. Med Hypotheses 2013;81:704-6. [PMID: 23932760 DOI: 10.1016/j.mehy.2013.07.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
308 Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, Wong HS, Weng Z, Wong OT, Lam YW, Tomaselli GF, Chen C, Boheler KR, Li RA. Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation. Circ Cardiovasc Genet 2015;8:427-36. [PMID: 25759434 DOI: 10.1161/CIRCGENETICS.114.000918] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
309 Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011;109:47-59. [PMID: 21597009 DOI: 10.1161/CIRCRESAHA.110.237206] [Cited by in Crossref: 471] [Cited by in F6Publishing: 272] [Article Influence: 47.1] [Reference Citation Analysis]
310 Liu J, Sun N, Bruce MA, Wu JC, Butte MJ. Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes. PLoS One 2012;7:e37559. [PMID: 22624048 DOI: 10.1371/journal.pone.0037559] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 8.1] [Reference Citation Analysis]
311 Jang J, Ku SY, Kim JE, Choi K, Kim YY, Kim HS, Oh SK, Lee EJ, Cho HJ, Song YH, Lee SH, Lee SH, Suh CS, Kim SH, Moon SY, Choi YM. Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation. Stem Cells 2008;26:2782-90. [PMID: 18757302 DOI: 10.1634/stemcells.2007-1053] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 2.5] [Reference Citation Analysis]
312 White MP, Rufaihah AJ, Liu L, Ghebremariam YT, Ivey KN, Cooke JP, Srivastava D. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells. Stem Cells 2013;31:92-103. [PMID: 23079999 DOI: 10.1002/stem.1267] [Cited by in Crossref: 83] [Cited by in F6Publishing: 81] [Article Influence: 10.4] [Reference Citation Analysis]
313 Green MD, Snoeck HW. Novel approaches for immune reconstitution and adaptive immune modeling with human pluripotent stem cells. BMC Med 2011;9:51. [PMID: 21569275 DOI: 10.1186/1741-7015-9-51] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
314 Otsuji TG, Minami I, Kurose Y, Yamauchi K, Tada M, Nakatsuji N. Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs. Stem Cell Res 2010;4:201-13. [PMID: 20199896 DOI: 10.1016/j.scr.2010.01.002] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 8.0] [Reference Citation Analysis]
315 Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet. 2014;15:82-92. [PMID: 24434846 DOI: 10.1038/nrg3563] [Cited by in Crossref: 311] [Cited by in F6Publishing: 257] [Article Influence: 44.4] [Reference Citation Analysis]
316 Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 2012;21:1513-23. [PMID: 21933026 DOI: 10.1089/scd.2011.0254] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 6.0] [Reference Citation Analysis]
317 Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016;245:1130-44. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
318 Tung JC, Paige SL, Ratner BD, Murry CE, Giachelli CM. Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports 2014;2:271-81. [PMID: 24672751 DOI: 10.1016/j.stemcr.2014.01.011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
319 Pallotta I, Sun B, Lallos G, Terrenoire C, Freytes DO. Contributions of bone morphogenetic proteins in cardiac repair cells in three-dimensional in vitro models and angiogenesis. J Tissue Eng Regen Med 2018;12:349-59. [PMID: 28482139 DOI: 10.1002/term.2460] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
320 Yang Y, Schumacher A, Yang Y, Liu J, Shi X, Hill WD, Hu TC. Monitoring bone marrow-originated mesenchymal stem cell traffic to myocardial infarction sites using magnetic resonance imaging: Monitoring MSC Traffic to MI Sites. Magn Reson Med 2011;65:1430-6. [DOI: 10.1002/mrm.22735] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
321 Romagnuolo R, Laflamme MA. Programming cells for cardiac repair. Curr Opin Biotechnol 2017;47:43-50. [PMID: 28633074 DOI: 10.1016/j.copbio.2017.05.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
322 Stubenvoll A, Rice M, Wietelmann A, Wheeler M, Braun T. Attenuation of Wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. Hum Mol Genet 2015;24:802-13. [PMID: 25274778 DOI: 10.1093/hmg/ddu498] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.1] [Reference Citation Analysis]
323 Wang J, Chen A, Lieu DK, Karakikes I, Chen G, Keung W, Chan CW, Hajjar RJ, Costa KD, Khine M, Li RA. Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials 2013;34:8878-86. [PMID: 23942210 DOI: 10.1016/j.biomaterials.2013.07.039] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
324 Zhao Z, Lan H, El-Battrawy I, Li X, Buljubasic F, Sattler K, Yücel G, Lang S, Tiburcy M, Zimmermann WH, Cyganek L, Utikal J, Wieland T, Borggrefe M, Zhou XB, Akin I. Ion Channel Expression and Characterization in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Int 2018;2018:6067096. [PMID: 29535773 DOI: 10.1155/2018/6067096] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
325 Stefanska M, Costa G, Lie-a-ling M, Kouskoff V, Lacaud G. Smooth muscle cells largely develop independently of functional hemogenic endothelium. Stem Cell Research 2014;12:222-32. [DOI: 10.1016/j.scr.2013.10.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
326 Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, Ginistrelli LC, Ctortecka C, Šalic Š, Novatchkova M, Mendjan S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 2021;184:3299-3317.e22. [PMID: 34019794 DOI: 10.1016/j.cell.2021.04.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
327 Musunuru K, Domian IJ, Chien KR. Stem cell models of cardiac development and disease. Annu Rev Cell Dev Biol 2010;26:667-87. [PMID: 20604707 DOI: 10.1146/annurev-cellbio-100109-103948] [Cited by in Crossref: 52] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
328 Okada A, Tashiro K, Yamaguchi T, Kawabata K. Selective Differentiation into Hematopoietic and Cardiac Cells from Pluripotent Stem Cells Based on the Expression of Cell Surface Markers. In: Turksen K, editor. Embryonic Stem Cell Protocols. New York: Springer; 2016. pp. 181-95. [DOI: 10.1007/7651_2015_232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
329 Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016;5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
330 Lewis FC, Henning BJ, Marazzi G, Sassoon D, Ellison GM, Nadal-Ginard B. Porcine skeletal muscle-derived multipotent PW1pos/Pax7neg interstitial cells: isolation, characterization, and long-term culture. Stem Cells Transl Med 2014;3:702-12. [PMID: 24744394 DOI: 10.5966/sctm.2013-0174] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
331 Bylund JB, Trinh LT, Awgulewitsch CP, Paik DT, Jetter C, Jha R, Zhang J, Nolan K, Xu C, Thompson TB, Kamp TJ, Hatzopoulos AK. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2. Stem Cells Dev 2017;26:678-93. [PMID: 28125926 DOI: 10.1089/scd.2016.0226] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
332 Rafii S, Kloss CC, Butler JM, Ginsberg M, Gars E, Lis R, Zhan Q, Josipovic P, Ding BS, Xiang J, Elemento O, Zaninovic N, Rosenwaks Z, Sadelain M, Rafii JA, James D. Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood 2013;121:770-80. [PMID: 23169780 DOI: 10.1182/blood-2012-07-444208] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
333 Yu MS, Spiering S, Colas AR. Generation of First Heart Field-like Cardiac Progenitors and Ventricular-like Cardiomyocytes from Human Pluripotent Stem Cells. J Vis Exp 2018. [PMID: 29985326 DOI: 10.3791/57688] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
334 Anastasia L, Pelissero G, Venerando B, Tettamanti G. Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ. 2010;17:1230-1237. [PMID: 20168332 DOI: 10.1038/cdd.2010.14] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
335 Nunes SS, Miklas JW, Radisic M. Maturation of stem cell-derived human heart tissue by mimicking fetal heart rate. Future Cardiol 2013;9:751-4. [PMID: 24180529 DOI: 10.2217/fca.13.71] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
336 Drukker M, Tang C, Ardehali R, Rinkevich Y, Seita J, Lee AS, Mosley AR, Weissman IL, Soen Y. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat Biotechnol 2012;30:531-42. [PMID: 22634564 DOI: 10.1038/nbt.2239] [Cited by in Crossref: 82] [Cited by in F6Publishing: 64] [Article Influence: 9.1] [Reference Citation Analysis]
337 Zaruba MM, Field LJ. The mouse as a model system to study cardiac regeneration. Drug Discov Today Dis Models 2008;5:165-71. [PMID: 21394226 DOI: 10.1016/j.ddmod.2009.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
338 Kamps JA, Krenning G. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 2016;8:163-79. [PMID: 26981212 DOI: 10.4330/wjc.v8.i2.163] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
339 Cui G, Luk SC, Li RA, Chan KK, Lei SW, Wang L, Shen H, Leung GP, Lee SM. Cytoprotection of baicalein against oxidative stress-induced cardiomyocytes injury through the Nrf2/Keap1 pathway. J Cardiovasc Pharmacol 2015;65:39-46. [PMID: 25343567 DOI: 10.1097/FJC.0000000000000161] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 5.2] [Reference Citation Analysis]
340 Akhmedov AT, Marín-García J. Myocardial regeneration of the failing heart. Heart Fail Rev 2013;18:815-33. [PMID: 23001638 DOI: 10.1007/s10741-012-9348-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
341 Palencia-Desai S, Kohli V, Kang J, Chi NC, Black BL, Sumanas S. Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function. Development 2011;138:4721-32. [PMID: 21989916 DOI: 10.1242/dev.064998] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 6.7] [Reference Citation Analysis]
342 Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, Scholes J, Dravid G, Li X, MacLellan WR, Crooks GM. Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 2010;107:13742-7. [PMID: 20643952 DOI: 10.1073/pnas.1002077107] [Cited by in Crossref: 164] [Cited by in F6Publishing: 147] [Article Influence: 14.9] [Reference Citation Analysis]
343 Hu Z, Ulfendahl M. The potential of stem cells for the restoration of auditory function in humans. Regen Med 2013;8:309-18. [PMID: 23627825 DOI: 10.2217/rme.13.32] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
344 Pawani H, Nagvenkar P, Pethe P, Bhartiya D. Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors. In Vitro Cell Dev Biol Anim 2013;49:82-93. [PMID: 23288411 DOI: 10.1007/s11626-012-9558-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
345 Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One. 2011;6:e18293. [PMID: 21494607 DOI: 10.1371/journal.pone.0018293] [Cited by in Crossref: 286] [Cited by in F6Publishing: 253] [Article Influence: 28.6] [Reference Citation Analysis]
346 Ramachandra CJ, Mehta A, Wong P, Shim W. ErbB4 Activated p38γ MAPK Isoform Mediates Early Cardiogenesis Through NKx2.5 in Human Pluripotent Stem Cells: ErbB4-p38γ Signaling and Cardiogenesis. Stem Cells 2016;34:288-98. [DOI: 10.1002/stem.2223] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
347 Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 2009;460:113-7. [PMID: 19571884 DOI: 10.1038/nature08191] [Cited by in Crossref: 407] [Cited by in F6Publishing: 338] [Article Influence: 33.9] [Reference Citation Analysis]
348 Sperling SR. Systems biology approaches to heart development and congenital heart disease. Cardiovascular Research 2011;91:269-78. [DOI: 10.1093/cvr/cvr126] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
349 Sepac A, Sedlic F, Si-Tayeb K, Lough J, Duncan SA, Bienengraeber M, Park F, Kim J, Bosnjak ZJ. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology 2010;113:906-16. [PMID: 20823757 DOI: 10.1097/ALN.0b013e3181eff6b7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
350 Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2012;2:1448-1460. [PMID: 23103164 DOI: 10.1016/j.celrep.2012.09.015] [Cited by in Crossref: 182] [Cited by in F6Publishing: 145] [Article Influence: 20.2] [Reference Citation Analysis]
351 Bulatovic I, Månsson-Broberg A, Sylvén C, Grinnemo KH. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart. Best Pract Res Clin Obstet Gynaecol 2016;31:58-68. [PMID: 26421632 DOI: 10.1016/j.bpobgyn.2015.08.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
352 Lu TY, Lin B, Li Y, Arora A, Han L, Cui C, Coronnello C, Sheng Y, Benos PV, Yang L. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways. J Mol Cell Cardiol. 2013;63:146-154. [PMID: 23939491 DOI: 10.1016/j.yjmcc.2013.07.019] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
353 Fujimori K, Matsumoto T, Kisa F, Hattori N, Okano H, Akamatsu W. Escape from Pluripotency via Inhibition of TGF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells. Stem Cell Reports 2017;9:1675-91. [PMID: 29107593 DOI: 10.1016/j.stemcr.2017.09.024] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
354 Herrmann F, Bundschu K, Kühl SJ, Kühl M. Tbx5 overexpression favors a first heart field lineage in murine embryonic stem cells and in Xenopus laevis embryos. Dev Dyn. 2011;240:2634-2645. [PMID: 22072574 DOI: 10.1002/dvdy.22776] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
355 Quaranta R, Fell J, Rühle F, Rao J, Piccini I, Araúzo-Bravo MJ, Verkerk AO, Stoll M, Greber B. Revised roles of ISL1 in a hES cell-based model of human heart chamber specification. Elife 2018;7:e31706. [PMID: 29337667 DOI: 10.7554/eLife.31706] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
356 Pijnappels DA, Gregoire S, Wu SM. The integrative aspects of cardiac physiology and their implications for cell-based therapy. Ann N Y Acad Sci 2010;1188:7-14. [PMID: 20201880 DOI: 10.1111/j.1749-6632.2009.05077.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
357 Den Hartogh SC, Schreurs C, Monshouwer-kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R. Dual Reporter MESP1 mCherry/w -NKX2-5 eGFP/w hESCs Enable Studying Early Human Cardiac Differentiation: A Dual Cardiac Reporter hESC Line. Stem Cells 2015;33:56-67. [DOI: 10.1002/stem.1842] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 7.6] [Reference Citation Analysis]
358 Tang Y, Hong YZ, Bai HJ, Wu Q, Chen CD, Lang JY, Boheler KR, Yang HT. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells 2016;34:1527-40. [PMID: 26866517 DOI: 10.1002/stem.2333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
359 Lee JA, An J, Kang TM, De D, Kim KK. Discovery of Natural Compounds Promoting Cardiomyocyte Differentiation. Stem Cells Dev 2019;28:13-27. [PMID: 30358491 DOI: 10.1089/scd.2018.0153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
360 Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, Li TC, Chen Y, Wang ZG, Ye Y, Zhu ZM. Common Expression of Stemness Molecular Markers and Early Cardiac Transcription Factors in Human Wharton's Jelly-Derived Mesenchymal Stem Cells and Embryonic Stem Cells. Cell Transplant 2013;22:1883-900. [DOI: 10.3727/096368912x662444] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 3.9] [Reference Citation Analysis]
361 Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, Aggarwal P, Zhang B, Conant G, Ronaldson-Bouchard K, Pahnke A, Protze S, Lee JH, Davenport Huyer L, Jekic D, Wickeler A, Naguib HE, Keller GM, Vunjak-Novakovic G, Broeckel U, Backx PH, Radisic M. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell. 2019;176:913-927.e18. [PMID: 30686581 DOI: 10.1016/j.cell.2018.11.042] [Cited by in Crossref: 168] [Cited by in F6Publishing: 129] [Article Influence: 84.0] [Reference Citation Analysis]
362 Lu B, Atala A. Small molecules and small molecule drugs in regenerative medicine. Drug Discov Today 2014;19:801-8. [PMID: 24252867 DOI: 10.1016/j.drudis.2013.11.011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
363 Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, Letang V, Cervello P, Itier JM, Pruniaux MP, Hulot JS. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. Int J Mol Sci. 2017;18. [PMID: 28587156 DOI: 10.3390/ijms18061173] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
364 Li Y, Lin B, Yang L. Comparative transcriptomic analysis of multiple cardiovascular fates from embryonic stem cells predicts novel regulators in human cardiogenesis. Sci Rep 2015;5:9758. [PMID: 25997157 DOI: 10.1038/srep09758] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
365 Xu XQ, Sun W. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes. J Cell Biochem 2013;114:39-46. [PMID: 22903726 DOI: 10.1002/jcb.24359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
366 Vyas B, Nandkishore N, Sambasivan R. Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin. Cell Mol Life Sci 2020;77:1933-45. [PMID: 31722070 DOI: 10.1007/s00018-019-03373-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
367 Gaber N, Gagliardi M, Patel P, Kinnear C, Zhang C, Chitayat D, Shannon P, Jaeggi E, Tabori U, Keller G, Mital S. Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. The American Journal of Pathology 2013;183:720-34. [DOI: 10.1016/j.ajpath.2013.05.022] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
368 Zhang J, Zhu W, Radisic M, Vunjak-Novakovic G. Can We Engineer a Human Cardiac Patch for Therapy? Circ Res 2018;123:244-65. [PMID: 29976691 DOI: 10.1161/CIRCRESAHA.118.311213] [Cited by in Crossref: 69] [Cited by in F6Publishing: 30] [Article Influence: 34.5] [Reference Citation Analysis]
369 Henckaerts E, Linden RM. Adeno-associated virus: a key to the human genome? Future Virol 2010;5:555-74. [PMID: 21212830 DOI: 10.2217/fvl.10.48] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
370 Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019;37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
371 Craft AM, Rockel JS, Nartiss Y, Kandel RA, Alman BA, Keller GM. Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33:638-645. [PMID: 25961409 DOI: 10.1038/nbt.3210] [Cited by in Crossref: 99] [Cited by in F6Publishing: 75] [Article Influence: 16.5] [Reference Citation Analysis]
372 Miyagawa S, Sawa Y. Building a new strategy for treating heart failure using Induced Pluripotent Stem Cells. J Cardiol 2018;72:445-8. [PMID: 30172684 DOI: 10.1016/j.jjcc.2018.05.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
373 Nostro MC, Keller G. Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine. Semin Cell Dev Biol. 2012;23:701-710. [PMID: 22750147 DOI: 10.1016/j.semcdb.2012.06.010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 61] [Article Influence: 7.9] [Reference Citation Analysis]
374 Tsaioun K, Bottlaender M, Mabondzo A; Alzheimer's Drug Discovery Foundation. ADDME--Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective. BMC Neurol 2009;9 Suppl 1:S1. [PMID: 19534730 DOI: 10.1186/1471-2377-9-S1-S1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
375 Lee J, Laronde S, Collins TJ, Shapovalova Z, Tanasijevic B, Mcnicol JD, Fiebig-comyn A, Benoit YD, Lee JB, Mitchell RR, Bhatia M. Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Reports 2017;19:20-35. [DOI: 10.1016/j.celrep.2017.03.036] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
376 Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacol Ther 2012;134:180-8. [PMID: 22269465 DOI: 10.1016/j.pharmthera.2012.01.005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
377 Mandla S, Radisic M. Cardiac Tissue. Principles of Regenerative Medicine. Elsevier; 2019. pp. 1073-99. [DOI: 10.1016/b978-0-12-809880-6.00061-8] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
378 . Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Discov Today Technol 2008;5:e105-48. [PMID: 24125542 DOI: 10.1016/j.ddtec.2008.10.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
379 Lee CS, Cho HJ, Lee JW, Son H, Chai J, Kim HS. Adhesion GPCR Latrophilin-2 Specifies Cardiac Lineage Commitment through CDK5, Src, and P38MAPK. Stem Cell Reports 2021;16:868-82. [PMID: 33798451 DOI: 10.1016/j.stemcr.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
380 Zimmermann WH. Embryonic and embryonic-like stem cells in heart muscle engineering. J Mol Cell Cardiol 2011;50:320-6. [PMID: 21040727 DOI: 10.1016/j.yjmcc.2010.10.027] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
381 Ruan H, Liao Y, Ren Z, Mao L, Yao F, Yu P, Ye Y, Zhang Z, Li S, Xu H, Liu J, Diao L, Zhou B, Han L, Wang L. Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol 2019;17:89. [PMID: 31722692 DOI: 10.1186/s12915-019-0709-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
382 Gu M. Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Cells. Curr Protoc Hum Genet 2018;:e64. [PMID: 29979824 DOI: 10.1002/cphg.64] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
383 Wyles SP, Faustino RS, Li X, Terzic A, Nelson TJ. Systems-based technologies in profiling the stem cell molecular framework for cardioregenerative medicine. Stem Cell Rev Rep 2015;11:501-10. [PMID: 25218144 DOI: 10.1007/s12015-014-9557-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
384 Hsiao C, Tomai M, Glynn J, Palecek SP. Effects of 3D microwell culture on initial fate specification in human embryonic stem cells. AIChE J 2014;60:1225-35. [PMID: 25505348 DOI: 10.1002/aic.14351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
385 Kim MS, Horst A, Blinka S, Stamm K, Mahnke D, Schuman J, Gundry R, Tomita-Mitchell A, Lough J. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS One 2015;10:e0118670. [PMID: 25706534 DOI: 10.1371/journal.pone.0118670] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
386 Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2020;100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
387 Kim YY, Ku SY, Liu HC, Cho HJ, Oh SK, Moon SY, Choi YM. Cryopreservation of human embryonic stem cells derived-cardiomyocytes induced by BMP2 in serum-free condition. Reprod Sci 2011;18:252-60. [PMID: 21266662 DOI: 10.1177/1933719110385130] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
388 Suh CY, Wang Z, Bártulos O, Qyang Y. Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine. J Cardiovasc Pharmacol Ther 2014;19:330-9. [PMID: 24651517 DOI: 10.1177/1074248414523676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
389 Gu Y, Yi F, Liu G, Belmonte JCI. Beating in a dish: new hopes for cardiomyocyte regeneration. Cell Res 2013;23:314-6. [DOI: 10.1038/cr.2012.163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
390 Bautch VL, Caron KM. Blood and lymphatic vessel formation. Cold Spring Harb Perspect Biol 2015;7:a008268. [PMID: 25731762 DOI: 10.1101/cshperspect.a008268] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
391 Reischauer S, Stone OA, Villasenor A, Chi N, Jin SW, Martin M, Lee MT, Fukuda N, Marass M, Witty A, Fiddes I, Kuo T, Chung WS, Salek S, Lerrigo R, Alsiö J, Luo S, Tworus D, Augustine SM, Mucenieks S, Nystedt B, Giraldez AJ, Schroth GP, Andersson O, Stainier DY. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 2016;535:294-8. [PMID: 27411634 DOI: 10.1038/nature18614] [Cited by in Crossref: 97] [Cited by in F6Publishing: 67] [Article Influence: 19.4] [Reference Citation Analysis]
392 Li Calzi S, Cook T, Della Rocca DG, Zhang J, Shenoy V, Yan Y, Espejo A, Rathinasabapathy A, Jacobsen MH, Salazar T, Sandusky GE, Shaw LC, March K, Raizada MK, Pepine CJ, Katovich MJ, Grant MB. Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model. Stem Cells Int 2019;2019:3945850. [PMID: 31781239 DOI: 10.1155/2019/3945850] [Reference Citation Analysis]
393 Serena E, Cimetta E, Zatti S, Zaglia T, Zagallo M, Keller G, Elvassore N. Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay. PLoS One 2012;7:e48483. [PMID: 23152776 DOI: 10.1371/journal.pone.0048483] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
394 Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol. 2018;58:83-103. [PMID: 28992430 DOI: 10.1146/annurev-pharmtox-010617-053110] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
395 Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR. Id genes are essential for early heart formation. Genes Dev 2017;31:1325-38. [PMID: 28794185 DOI: 10.1101/gad.300400.117] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
396 Tan Y, Kong CW, Chen S, Cheng SH, Li RA, Sun D. Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. J Biomech 2012;45:123-8. [PMID: 22104169 DOI: 10.1016/j.jbiomech.2011.09.007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
397 Später D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development 2014;141:4418-31. [PMID: 25406392 DOI: 10.1242/dev.091538] [Cited by in Crossref: 87] [Cited by in F6Publishing: 72] [Article Influence: 12.4] [Reference Citation Analysis]
398 Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014;345:1247391. [PMID: 25146295 DOI: 10.1126/science.1247391] [Cited by in Crossref: 195] [Cited by in F6Publishing: 162] [Article Influence: 27.9] [Reference Citation Analysis]
399 Cordeiro JM, Nesterenko VV, Sicouri S, Goodrow RJ Jr, Treat JA, Desai M, Wu Y, Doss MX, Antzelevitch C, Di Diego JM. Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2013;60:36-46. [PMID: 23542310 DOI: 10.1016/j.yjmcc.2013.03.014] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
400 Feng L, Cook B, Tsai SY, Zhou T, LaFlamme B, Evans T, Chen S. Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation. Cell Rep 2016;15:2063-75. [PMID: 27210748 DOI: 10.1016/j.celrep.2016.04.066] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
401 Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D. Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 2015;8:81-101. [PMID: 25999743 DOI: 10.2147/SCCAA.S54204] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
402 Kolanowski T, Rozwadowska N, Malcher A, Szymczyk E, Kasprzak J, Mietkiewski T, Kurpisz M. In vitro and in vivo characteristics of connexin 43-modified human skeletal myoblasts as candidates for prospective stem cell therapy for the failing heart. International Journal of Cardiology 2014;173:55-64. [DOI: 10.1016/j.ijcard.2014.02.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
403 Kempf H, Zweigerdt R. Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. Adv Biochem Eng Biotechnol 2018;163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
404 Li G, Plonowska K, Kuppusamy R, Sturzu A, Wu SM. Identification of cardiovascular lineage descendants at single-cell resolution. Development 2015;142:846-57. [PMID: 25633351 DOI: 10.1242/dev.116897] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
405 Cui C, Geng L, Shi J, Zhu Y, Yang G, Wang Z, Wang J, Chen M. Structural and electrophysiological dysfunctions due to increased endoplasmic reticulum stress in a long-term pacing model using human induced pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 2017;8:109. [PMID: 28490375 DOI: 10.1186/s13287-017-0566-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
406 Doss MX, Di Diego JM, Goodrow RJ, Wu Y, Cordeiro JM, Nesterenko VV, Barajas-Martínez H, Hu D, Urrutia J, Desai M, Treat JA, Sachinidis A, Antzelevitch C. Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr). PLoS One 2012;7:e40288. [PMID: 22815737 DOI: 10.1371/journal.pone.0040288] [Cited by in Crossref: 103] [Cited by in F6Publishing: 90] [Article Influence: 11.4] [Reference Citation Analysis]
407 Slukvin II, Kumar A. The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cell Mol Life Sci 2018;75:3507-20. [PMID: 29992471 DOI: 10.1007/s00018-018-2871-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
408 Wu B, Zhang Z, Lui W, Chen X, Wang Y, Chamberlain AA, Moreno-Rodriguez RA, Markwald RR, O'Rourke BP, Sharp DJ, Zheng D, Lenz J, Baldwin HS, Chang CP, Zhou B. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 2012;151:1083-96. [PMID: 23178125 DOI: 10.1016/j.cell.2012.10.023] [Cited by in Crossref: 244] [Cited by in F6Publishing: 200] [Article Influence: 30.5] [Reference Citation Analysis]
409 Pasquier J, Gupta R, Rioult D, Hoarau-Véchot J, Courjaret R, Machaca K, Al Suwaidi J, Stanley EG, Rafii S, Elliott DA, Abi Khalil C, Rafii A. Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes. J Heart Lung Transplant 2017;36:684-93. [PMID: 28169114 DOI: 10.1016/j.healun.2017.01.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
410 Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim. 2019;68:35-47. [PMID: 30089733 DOI: 10.1538/expanim.18-0074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
411 Lee LH, Peerani R, Ungrin M, Joshi C, Kumacheva E, Zandstra P. Micropatterning of human embryonic stem cells dissects the mesoderm and endoderm lineages. Stem Cell Res 2009;2:155-62. [PMID: 19383420 DOI: 10.1016/j.scr.2008.11.004] [Cited by in Crossref: 80] [Cited by in F6Publishing: 62] [Article Influence: 6.2] [Reference Citation Analysis]
412 Liau B, Zhang D, Bursac N. Functional cardiac tissue engineering. Regen Med 2012;7:187-206. [PMID: 22397609 DOI: 10.2217/rme.11.122] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 9.0] [Reference Citation Analysis]
413 Jiang J, Han P, Zhang Q, Zhao J, Ma Y. Cardiac differentiation of human pluripotent stem cells. J Cell Mol Med 2012;16:1663-8. [PMID: 22248065 DOI: 10.1111/j.1582-4934.2012.01528.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
414 Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med. 2015;9:1363-1375. [PMID: 23728860 DOI: 10.1002/term.1761] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
415 Laposa RR. Stem Cells for Drug Screening: . Journal of Cardiovascular Pharmacology 2011;58:240-5. [DOI: 10.1097/fjc.0b013e31821823f5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
416 Cimetta E, Sirabella D, Yeager K, Davidson K, Simon J, Moon RT, Vunjak-Novakovic G. Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab Chip. 2013;13:355-364. [PMID: 23232509 DOI: 10.1039/c2lc40836h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
417 Josowitz R, Lu J, Falce C, D'Souza SL, Wu M, Cohen N, Dubois NC, Zhao Y, Sobie EA, Fishman GI, Gelb BD. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PLoS One 2014;9:e101316. [PMID: 25010565 DOI: 10.1371/journal.pone.0101316] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
418 Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 2014;:52010. [PMID: 25286293 DOI: 10.3791/52010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
419 Hidalgo A, Glass N, Ovchinnikov D, Yang SK, Zhang X, Mazzone S, Chen C, Wolvetang E, Cooper-White J. Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes. APL Bioeng 2018;2:026102. [PMID: 31069299 DOI: 10.1063/1.5000746] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
420 Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-860. [PMID: 24930130 DOI: 10.1038/nmeth.2999] [Cited by in Crossref: 824] [Cited by in F6Publishing: 668] [Article Influence: 117.7] [Reference Citation Analysis]
421 He Z, Grunewald M, Dor Y, Keshet E. VEGF regulates relative allocation of Isl1+ cardiac progenitors to myocardial and endocardial lineages. Mech Dev 2016;142:40-9. [PMID: 27794491 DOI: 10.1016/j.mod.2016.10.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
422 Park SW, Jun Koh Y, Jeon J, Cho YH, Jang MJ, Kang Y, Kim MJ, Choi C, Sook Cho Y, Chung HM, Koh GY, Han YM. Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood 2010;116:5762-72. [PMID: 20884805 DOI: 10.1182/blood-2010-04-280719] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 7.2] [Reference Citation Analysis]
423 Wanjare M, Huang NF. Regulation of the microenvironment for cardiac tissue engineering. Regen Med 2017;12:187-201. [PMID: 28244821 DOI: 10.2217/rme-2016-0132] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
424 Gonzales C, Ullrich ND, Gerber S, Berthonneche C, Niggli E, Pedrazzini T. Isolation of cardiovascular precursor cells from the human fetal heart. Tissue Eng Part A. 2012;18:198-207. [PMID: 21902604 DOI: 10.1089/ten.tea.2011.0022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
425 Huang J, Sun L, Mennigen JA, Liu Y, Liu S, Zhang M, Wang Q, Tu W. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. Journal of Hazardous Materials 2021;409:124491. [DOI: 10.1016/j.jhazmat.2020.124491] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
426 Hudson JE, Zimmermann WH. Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. J Mol Cell Cardiol 2011;51:277-9. [PMID: 21723872 DOI: 10.1016/j.yjmcc.2011.06.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
427 Ishitobi H, Wakamatsu A, Liu F, Azami T, Hamada M, Matsumoto K, Kataoka H, Kobayashi M, Choi K, Nishikawa S, Takahashi S, Ema M. Molecular basis for Flk1 expression in hemato-cardiovascular progenitors in the mouse. Development 2011;138:5357-68. [PMID: 22071109 DOI: 10.1242/dev.065565] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 3.8] [Reference Citation Analysis]
428 Takasato M, Little MH. A strategy for generating kidney organoids: Recapitulating the development in human pluripotent stem cells. Dev Biol 2016;420:210-20. [PMID: 27565022 DOI: 10.1016/j.ydbio.2016.08.024] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
429 Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019;20:E5760. [PMID: 31744081 DOI: 10.3390/ijms20225760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
430 Sugawa F, Araúzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, Stehling M, Psathaki OE, Hübner K, Schöler HR. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 2015;34:1009-24. [PMID: 25750208 DOI: 10.15252/embj.201488049] [Cited by in Crossref: 90] [Cited by in F6Publishing: 72] [Article Influence: 15.0] [Reference Citation Analysis]
431 Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 2010;107:776-86. [PMID: 20671236 DOI: 10.1161/CIRCRESAHA.110.223917] [Cited by in Crossref: 165] [Cited by in F6Publishing: 94] [Article Influence: 15.0] [Reference Citation Analysis]
432 Lin B, Lu T, Yang L. Hear the beat: decellularized mouse heart regenerated with human induced pluripotent stem cells. Expert Review of Cardiovascular Therapy 2014;12:135-7. [DOI: 10.1586/14779072.2014.879039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
433 Cheung C, Bernardo AS, Pedersen RA, Sinha S. Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells. Nat Protoc 2014;9:929-38. [PMID: 24675733 DOI: 10.1038/nprot.2014.059] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
434 Budniatzky I, Gepstein L. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med. 2014;3:448-457. [PMID: 24591731 DOI: 10.5966/sctm.2013-0163] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
435 Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev 2016;96:253-73. [PMID: 26788696 DOI: 10.1016/j.addr.2015.12.023] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
436 Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018;9:201. [PMID: 30053890 DOI: 10.1186/s13287-018-0947-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
437 Tian S, Liu Q, Gnatovskiy L, Ma PX, Wang Z. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. J Stem Cell Transplant Biol 2015;1:104. [PMID: 26744736 DOI: 10.19104/jstb.2015.104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
438 Nsair A, Schenke-Layland K, Van Handel B, Evseenko D, Kahn M, Zhao P, Mendelis J, Heydarkhan S, Awaji O, Vottler M, Geist S, Chyu J, Gago-Lopez N, Crooks GM, Plath K, Goldhaber J, Mikkola HK, MacLellan WR. Characterization and therapeutic potential of induced pluripotent stem cell-derived cardiovascular progenitor cells. PLoS One 2012;7:e45603. [PMID: 23056209 DOI: 10.1371/journal.pone.0045603] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
439 Bratt-Leal AM, Nguyen AH, Hammersmith KA, Singh A, McDevitt TC. A microparticle approach to morphogen delivery within pluripotent stem cell aggregates. Biomaterials 2013;34:7227-35. [PMID: 23827184 DOI: 10.1016/j.biomaterials.2013.05.079] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 6.4] [Reference Citation Analysis]
440 Aicher A, Kollet O, Heeschen C, Liebner S, Urbich C, Ihling C, Orlandi A, Lapidot T, Zeiher AM, Dimmeler S. The Wnt Antagonist Dickkopf-1 Mobilizes Vasculogenic Progenitor Cells via Activation of the Bone Marrow Endosteal Stem Cell Niche. Circulation Research 2008;103:796-803. [DOI: 10.1161/circresaha.107.172718] [Cited by in Crossref: 64] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
441 Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020;8:955. [PMID: 32850768 DOI: 10.3389/fbioe.2020.00955] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
442 Wong WT, Huang NF, Botham CM, Sayed N, Cooke JP. Endothelial cells derived from nuclear reprogramming. Circ Res 2012;111:1363-75. [PMID: 23104878 DOI: 10.1161/CIRCRESAHA.111.247213] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
443 Jarrige M, Frank E, Herardot E, Martineau S, Darle A, Benabides M, Domingues S, Chose O, Habeler W, Lorant J, Baldeschi C, Martinat C, Monville C, Morizur L, Ben M'Barek K. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021;10:240. [PMID: 33513719 DOI: 10.3390/cells10020240] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
444 Shiba Y, Hauch KD, Laflamme MA. Cardiac applications for human pluripotent stem cells. Curr Pharm Des 2009;15:2791-806. [PMID: 19689350 DOI: 10.2174/138161209788923804] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]
445 Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, Nishikawa M, Takei I, Oishi A, Narita M, Hoshijima M, Kimura T, Yamanaka S, Yoshida Y. Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep. 2016;6:19111. [PMID: 26743035 DOI: 10.1038/srep19111] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 18.4] [Reference Citation Analysis]
446 Zhang Z, Zhou B. Accelerated coronary angiogenesis by vegfr1-knockout endocardial cells. PLoS One 2013;8:e70570. [PMID: 23894673 DOI: 10.1371/journal.pone.0070570] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
447 Wierson WA, Simone BW, WareJoncas Z, Mann C, Welker JM, Kar B, Emch MJ, Friedberg I, Gendron WAC, Barry MA, Clark KJ, Dobbs DL, McGrail MA, Ekker SC, Essner JJ. Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells. CRISPR J 2019;2:417-33. [PMID: 31742435 DOI: 10.1089/crispr.2019.0026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
448 Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10:16-28. [PMID: 22226352 DOI: 10.1016/j.stem.2011.12.013] [Cited by in Crossref: 438] [Cited by in F6Publishing: 376] [Article Influence: 48.7] [Reference Citation Analysis]
449 Boheler KR, Poon EN. Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Arch 2021;473:1023-39. [PMID: 33928456 DOI: 10.1007/s00424-021-02549-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
450 Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 2013;4:2307. [PMID: 23942048 DOI: 10.1038/ncomms3307] [Cited by in Crossref: 226] [Cited by in F6Publishing: 191] [Article Influence: 32.3] [Reference Citation Analysis]
451 Nandkishore N, Vyas B, Javali A, Ghosh S, Sambasivan R. Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 2018;145:dev160945. [PMID: 30237317 DOI: 10.1242/dev.160945] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
452 Leschik J, Stefanovic S, Brinon B, Pucéat M. Cardiac commitment of primate embryonic stem cells. Nat Protoc 2008;3:1381-7. [DOI: 10.1038/nprot.2008.116] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 3.6] [Reference Citation Analysis]
453 Metallo CM, Ji L, de Pablo JJ, Palecek SP. Directed differentiation of human embryonic stem cells to epidermal progenitors. Methods Mol Biol 2010;585:83-92. [PMID: 19907998 DOI: 10.1007/978-1-60761-380-0_7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
454 Ishizuka T, Goshima H, Ozawa A, Watanabe Y. Involvement of β-adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. Eur J Pharmacol 2014;740:28-34. [PMID: 25014757 DOI: 10.1016/j.ejphar.2014.06.056] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
455 Mun-Fun H, Ferdaos N, Hamzah SN, Ridzuan N, Hisham NA, Abdullah S, Ramasamy R, Cheah PS, Thilakavathy K, Yazid MN, Nordin N. Rat full term amniotic fluid harbors highly potent stem cells. Res Vet Sci 2015;102:89-99. [PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
456 Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells. 2015;33:2643-2651. [PMID: 26033645 DOI: 10.1002/stem.2070] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
457 Schade D, Plowright AT. Medicinal Chemistry Approaches to Heart Regeneration. J Med Chem 2015;58:9451-79. [DOI: 10.1021/acs.jmedchem.5b00446] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
458 Parveen S, Singh SP, Panicker MM, Gupta PK. Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis. In Vitro Cell Dev Biol Anim 2019;55:272-84. [PMID: 30798515 DOI: 10.1007/s11626-019-00321-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
459 Outten JT, Cheng X, Gadue P, French DL, Diamond SL. A high-throughput multiplexed screening assay for optimizing serum-free differentiation protocols of human embryonic stem cells. Stem Cell Res 2011;6:129-42. [PMID: 21169079 DOI: 10.1016/j.scr.2010.11.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
460 Mercola M, Ruiz-Lozano P, Schneider MD. Cardiac muscle regeneration: lessons from development. Genes Dev 2011;25:299-309. [PMID: 21325131 DOI: 10.1101/gad.2018411] [Cited by in Crossref: 129] [Cited by in F6Publishing: 112] [Article Influence: 12.9] [Reference Citation Analysis]
461 Ahmed RE, Anzai T, Chanthra N, Uosaki H. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Front Cell Dev Biol 2020;8:178. [PMID: 32266260 DOI: 10.3389/fcell.2020.00178] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 34.0] [Reference Citation Analysis]
462 Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2019;25:311-27. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 45.0] [Reference Citation Analysis]
463 Zhang Y, Nuglozeh E, Touré F, Schmidt AM, Vunjak-Novakovic G. Controllable expansion of primary cardiomyocytes by reversible immortalization. Hum Gene Ther 2009;20:1687-96. [PMID: 19708763 DOI: 10.1089/hum.2009.057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
464 Narsinh K, Narsinh KH, Wu JC. Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circ Res 2011;108:1146-56. [PMID: 21527744 DOI: 10.1161/CIRCRESAHA.111.240374] [Cited by in Crossref: 52] [Cited by in F6Publishing: 37] [Article Influence: 5.2] [Reference Citation Analysis]
465 Gu Y, Liu GH, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban CR, Zhang K, Izpisua Belmonte JC. Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell 2014;5:59-68. [PMID: 24474197 DOI: 10.1007/s13238-013-0016-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
466 Salick MR, Napiwocki BN, Kruepke RA, Knight GT, Ashton RS, Crone WC. The scanning gradient Fourier transform (SGFT) method for assessing sarcomere organization and alignment. Journal of Applied Physics 2020;127:194701. [DOI: 10.1063/1.5129347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
467 Brenner C, Franz WM. The use of stem cells for the repair of cardiac tissue in ischemic heart disease. Expert Rev Med Devices 2011;8:209-25. [PMID: 21381911 DOI: 10.1586/erd.10.78] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
468 Perdomini M, Hick A, Puccio H, Pook MA. Animal and cellular models of Friedreich ataxia. J Neurochem 2013;126:65-79. [DOI: 10.1111/jnc.12219] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
469 Rallapalli S, Guhathakurta S, Korrapati PS. Isolation, growth kinetics, and immunophenotypic characterization of adult human cardiac progenitor cells. J Cell Physiol 2021;236:1840-53. [PMID: 33242343 DOI: 10.1002/jcp.29965] [Reference Citation Analysis]
470 Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4:130ra47. [PMID: 22517884 DOI: 10.1126/scitranslmed.3003552] [Cited by in Crossref: 423] [Cited by in F6Publishing: 394] [Article Influence: 47.0] [Reference Citation Analysis]
471 Zhang X, Cao H, Bai S, Huo W, Ma Y. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells. Stem Cell Res. 2017;20:21-29. [PMID: 28249229 DOI: 10.1016/j.scr.2017.02.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
472 Wang K, Terrenoire C, Sampson KJ, Iyer V, Osteen JD, Lu J, Keller G, Kotton DN, Kass RS. Biophysical properties of slow potassium channels in human embryonic stem cell derived cardiomyocytes implicate subunit stoichiometry. J Physiol 2011;589:6093-104. [PMID: 22025662 DOI: 10.1113/jphysiol.2011.220863] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
473 Liu F, Bhang SH, Arentson E, Sawada A, Kim CK, Kang I, Yu J, Sakurai N, Kim SH, Yoo JJ, Kim P, Pahng SH, Xia Y, Solnica-Krezel L, Choi K. Enhanced hemangioblast generation and improved vascular repair and regeneration from embryonic stem cells by defined transcription factors. Stem Cell Reports 2013;1:166-82. [PMID: 24052951 DOI: 10.1016/j.stemcr.2013.06.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
474 Titmarsh DM, Hudson JE, Hidalgo A, Elefanty AG, Stanley EG, Wolvetang EJ, Cooper-White JJ. Microbioreactor arrays for full factorial screening of exogenous and paracrine factors in human embryonic stem cell differentiation. PLoS One. 2012;7:e52405. [PMID: 23300662 DOI: 10.1371/journal.pone.0052405] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 4.8] [Reference Citation Analysis]
475 Taylor RE, Kim K, Sun N, Park SJ, Sim JY, Fajardo G, Bernstein D, Wu JC, Pruitt BL. Sacrificial layer technique for axial force post assay of immature cardiomyocytes. Biomed Microdevices 2013;15:171-81. [PMID: 23007494 DOI: 10.1007/s10544-012-9710-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
476 Yamauchi K, Li J, Morikawa K, Liu L, Shirayoshi Y, Nakatsuji N, Elliott DA, Hisatome I, Suemori H. Isolation and characterization of ventricular-like cells derived from NKX2-5eGFP/w and MLC2vmCherry/w double knock-in human pluripotent stem cells. Biochem Biophys Res Commun 2018;495:1278-84. [PMID: 29175323 DOI: 10.1016/j.bbrc.2017.11.133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
477 Yang L. From fibroblast cells to cardiomyocytes: direct lineage reprogramming. Stem Cell Res Ther 2011;2:1. [PMID: 21241459 DOI: 10.1186/scrt42] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
478 Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2018;10:eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
479 Blauwkamp TA, Nigam S, Ardehali R, Weissman IL, Nusse R. Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun 2012;3:1070. [PMID: 22990866 DOI: 10.1038/ncomms2064] [Cited by in Crossref: 138] [Cited by in F6Publishing: 121] [Article Influence: 17.3] [Reference Citation Analysis]
480 Hirose S, Makiyama T, Melgari D, Yamamoto Y, Wuriyanghai Y, Yokoi F, Nishiuchi S, Harita T, Hayano M, Kohjitani H, Gao J, Kashiwa A, Nishikawa M, Wu J, Yoshimoto J, Chonabayashi K, Ohno S, Yoshida Y, Horie M, Kimura T. Propranolol Attenuates Late Sodium Current in a Long QT Syndrome Type 3-Human Induced Pluripotent Stem Cell Model. Front Cell Dev Biol 2020;8:761. [PMID: 32903469 DOI: 10.3389/fcell.2020.00761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
481 Moon S, Kang S, Park S, Bae D, Kim SJ, Lee H, Kim KS, Hong K, Kim JS, Do JT, Byun KH, Chung H. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 2013;34:4013-26. [DOI: 10.1016/j.biomaterials.2013.02.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
482 Xu XL, Yi F, Pan HZ, Duan SL, Ding ZC, Yuan GH, Qu J, Zhang HC, Liu GH. Progress and prospects in stem cell therapy. Acta Pharmacol Sin 2013;34:741-6. [PMID: 23736002 DOI: 10.1038/aps.2013.77] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
483 Mehta A, Shim W. Cardiac stem cell therapy: stemness or commitment? Cell Transplant 2013;22:1-14. [PMID: 22943934 DOI: 10.3727/096368912X653282] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
484 Yap L, Wang JW, Moreno-Moral A, Chong LY, Sun Y, Harmston N, Wang X, Chong SY, Vanezis K, Öhman MK, Wei H, Bunte R, Gosh S, Cook S, Hovatta O, de Kleijn DPV, Petretto E, Tryggvason K. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep 2019;26:3231-3245.e9. [PMID: 30893597 DOI: 10.1016/j.celrep.2019.02.083] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 19.0] [Reference Citation Analysis]
485 Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rücker-Martin C, Barbry P, Bel A, Bruneval P, Cowan C, Pouly J, Mitalipov S, Gouadon E, Binder P, Hagège A, Desnos M, Renaud JF, Menasché P, Pucéat M. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 2010;120:1125-39. [PMID: 20335662 DOI: 10.1172/JCI40120] [Cited by in Crossref: 236] [Cited by in F6Publishing: 119] [Article Influence: 21.5] [Reference Citation Analysis]
486 Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012;5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
487 Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021;8:78. [PMID: 34064445 DOI: 10.3390/vetsci8050078] [Reference Citation Analysis]
488 Lee MY, Sun B, Schliffke S, Yue Z, Ye M, Paavola J, Bozkulak EC, Amos PJ, Ren Y, Ju R, Jung YW, Ge X, Yue L, Ehrlich BE, Qyang Y. Derivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells. Stem Cell Res 2012;8:49-57. [PMID: 22099020 DOI: 10.1016/j.scr.2011.08.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
489 Williams IM, Wu JC. Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arterioscler Thromb Vasc Biol 2019;39:1317-29. [PMID: 31242035 DOI: 10.1161/ATVBAHA.119.312265] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 15.5] [Reference Citation Analysis]
490 Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, Kuwahara K, Harada M, Matsuda H, Matsuoka S, Okita K, Takahashi K, Nakagawa M, Ikeda T, Sakata R, Mummery CL, Nakatsuji N, Yamanaka S, Nakao K, Yamashita JK. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One 2011;6:e16734. [PMID: 21364991 DOI: 10.1371/journal.pone.0016734] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 9.2] [Reference Citation Analysis]
491 Bolli P, Chaudhry HW. Molecular physiology of cardiac regeneration. Ann N Y Acad Sci 2010;1211:113-26. [PMID: 21062300 DOI: 10.1111/j.1749-6632.2010.05814.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
492 Moon SH, Ban K, Kim C, Kim SS, Byun J, Song MK, Park IH, Yu SP, Yoon YS. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol 2013;168:41-52. [PMID: 23044428 DOI: 10.1016/j.ijcard.2012.09.077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
493 Chow MZ, Geng L, Kong CW, Keung W, Fung JC, Boheler KR, Li RA. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev 2013;22:2678-90. [PMID: 23656529 DOI: 10.1089/scd.2013.0125] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
494 Papapetrou EP, Schambach A. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy. Mol Ther 2016;24:678-84. [PMID: 26867951 DOI: 10.1038/mt.2016.38] [Cited by in Crossref: 102] [Cited by in F6Publishing: 74] [Article Influence: 20.4] [Reference Citation Analysis]
495 Moreno PR, Sanz J, Fuster V. Promoting mechanisms of vascular health: circulating progenitor cells, angiogenesis, and reverse cholesterol transport. J Am Coll Cardiol. 2009;53:2315-2323. [PMID: 19539140 DOI: 10.1016/j.jacc.2009.02.057] [Cited by in Crossref: 83] [Cited by in F6Publishing: 62] [Article Influence: 6.9] [Reference Citation Analysis]
496 Sofla A, Cirkovic B, Hsieh A, Miklas JW, Filipovic N, Radisic M. Enrichment of live unlabelled cardiomyocytes from heterogeneous cell populations using manipulation of cell settling velocity by magnetic field. Biomicrofluidics 2013;7:14110. [PMID: 24404002 DOI: 10.1063/1.4791649] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
497 Neri T, Stefanovic S, Pucéat M. Cardiac regeneration: still a 21st century challenge in search for cardiac progenitors from stem cells and embryos. J Cardiovasc Pharmacol 2010;56:16-21. [PMID: 20631550 DOI: 10.1097/FJC.0b013e3181d8bc6d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
498 Nelson TJ, Chiriac A, Faustino RS, Crespo-Diaz RJ, Behfar A, Terzic A. Lineage specification of Flk-1+ progenitors is associated with divergent Sox7 expression in cardiopoiesis. Differentiation 2009;77:248-55. [PMID: 19272523 DOI: 10.1016/j.diff.2008.10.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
499 Lauschke K, Volpini L, Liu Y, Vinggaard AM, Hall VJ. A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells Dev 2021;30:374-85. [PMID: 33599158 DOI: 10.1089/scd.2020.0184] [Reference Citation Analysis]
500 Ting S, Lecina M, Chan YC, Tse HF, Reuveny S, Oh SK. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells. World J Stem Cells 2013;5:86-97. [PMID: 23904910 DOI: 10.4252/wjsc.v5.i3.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
501 Song L, Ahmed MF, Li Y, Bejoy J, Zeng C, Li Y. PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells. Tissue Eng Part C Methods 2017;23:627-40. [PMID: 28826352 DOI: 10.1089/ten.TEC.2017.0307] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
502 Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv. 2013;31:1600-1623. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 8.1] [Reference Citation Analysis]
503 Lu J, Kaestle K, Huang J, Liu Q, Zhang P, Gao L, Gardiner J, Thissen H, Yang HT. Interactions of human embryonic stem cell-derived cardiovascular progenitor cells with immobilized extracellular matrix proteins. J Biomed Mater Res A 2017;105:1094-104. [PMID: 28085215 DOI: 10.1002/jbm.a.36005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
504 Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS, Wu H, Beygui RE, Wu SM, Robbins RC, Bers DM, Wu JC. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 2013;128:S3-13. [PMID: 24030418 DOI: 10.1161/circulationaha.112.000570] [Cited by in Crossref: 215] [Cited by in F6Publishing: 104] [Article Influence: 26.9] [Reference Citation Analysis]
505 Nakahama H, Di Pasquale E. Generation of Cardiomyocytes from Pluripotent Stem Cells. Methods Mol Biol 2016;1353:181-90. [PMID: 25523811 DOI: 10.1007/7651_2014_173] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
506 Li Y, Xu C, Ma T. In vitro organogenesis from pluripotent stem cells. Organogenesis 2014;10:159-63. [PMID: 24762764 DOI: 10.4161/org.28918] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
507 Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326-335. [PMID: 21593865 DOI: 10.1038/nature10147] [Cited by in Crossref: 796] [Cited by in F6Publishing: 685] [Article Influence: 79.6] [Reference Citation Analysis]
508 Zhang M, Schulte JS, Heinick A, Piccini I, Rao J, Quaranta R, Zeuschner D, Malan D, Kim KP, Röpke A, Sasse P, Araúzo-Bravo M, Seebohm G, Schöler H, Fabritz L, Kirchhof P, Müller FU, Greber B. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells 2015;33:1456-69. [PMID: 25639979 DOI: 10.1002/stem.1964] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 11.4] [Reference Citation Analysis]
509 Puri PL, Mercola M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 2012;26:2673-83. [PMID: 23222103 DOI: 10.1101/gad.207415.112] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
510 King WJ, Toepke MW, Murphy WL. Facile formation of dynamic hydrogel microspheres for triggered growth factor delivery. Acta Biomater 2011;7:975-85. [PMID: 21029793 DOI: 10.1016/j.actbio.2010.10.026] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
511 Lanier M, Schade D, Willems E, Tsuda M, Spiering S, Kalisiak J, Mercola M, Cashman JR. Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: a structure-activity relationship study based on inhibitors for the Wnt response. J Med Chem 2012;55:697-708. [PMID: 22191557 DOI: 10.1021/jm2010223] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 5.9] [Reference Citation Analysis]
512 Jeziorowska D, Korniat A, Salem JE, Fish K, Hulot JS. Generating patient-specific induced pluripotent stem cells-derived cardiomyocytes for the treatment of cardiac diseases. Expert Opin Biol Ther 2015;15:1399-409. [PMID: 26134098 DOI: 10.1517/14712598.2015.1064109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
513 Miyamoto M, Nam L, Kannan S, Kwon C. Heart organoids and tissue models for modeling development and disease. Seminars in Cell & Developmental Biology 2021;118:119-28. [DOI: 10.1016/j.semcdb.2021.03.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
514 Zhao Y, Feric NT, Thavandiran N, Nunes SS, Radisic M. The role of tissue engineering and biomaterials in cardiac regenerative medicine. Can J Cardiol 2014;30:1307-22. [PMID: 25442432 DOI: 10.1016/j.cjca.2014.08.027] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
515 Negro A, Boehm M. Cardiomyocyte maturation: It takes a village to raise a kid. J Mol Cell Cardiol 2014;74:193-5. [PMID: 24874422 DOI: 10.1016/j.yjmcc.2014.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
516 Martins AM, Vunjak-Novakovic G, Reis RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 2014;10:177-90. [PMID: 24425421 DOI: 10.1007/s12015-013-9487-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 5.9] [Reference Citation Analysis]
517 Lin J, Li MR, Ti DD, Chen MX, Hao HJ, Zhao YL, Fu XB, Han WD. Microenvironment-evoked cell lineage conversion: Shifting the focus from internal reprogramming to external forcing. Ageing Res Rev 2013;12:29-38. [PMID: 22561469 DOI: 10.1016/j.arr.2012.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
518 Adler ED, Chen VC, Bystrup A, Kaplan AD, Giovannone S, Briley-Saebo K, Young W, Kattman S, Mani V, Laflamme M, Zhu WZ, Fayad Z, Keller G. The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction. FASEB J 2010;24:1073-81. [PMID: 19940262 DOI: 10.1096/fj.09-135426] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
519 Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, Cheng T, Li Y, Lo CW, Yang L. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res 2012;95:327-35. [PMID: 22673369 DOI: 10.1093/cvr/cvs185] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 7.1] [Reference Citation Analysis]
520 Tulloch NL, Pabon L, Murry CE. Get with the (re)program: cardiovascular potential of skin-derived induced pluripotent stem cells. Circulation 2008;118:472-5. [PMID: 18663099 DOI: 10.1161/CIRCULATIONAHA.108.791442] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
521 Jing D, Parikh A, Canty JM Jr, Tzanakakis ES. Stem cells for heart cell therapies. Tissue Eng Part B Rev 2008;14:393-406. [PMID: 18821841 DOI: 10.1089/ten.teb.2008.0262] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 4.9] [Reference Citation Analysis]
522 Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, Boström KI. A role for the endothelium in vascular calcification. Circ Res. 2013;113:495-504. [PMID: 23852538 DOI: 10.1161/circresaha.113.301792] [Cited by in Crossref: 124] [Cited by in F6Publishing: 81] [Article Influence: 15.5] [Reference Citation Analysis]
523 Eschenhagen T. The Beat Goes On: Human Heart Muscle From Pluripotent Stem Cells. Circ Res 2011;109:2-4. [DOI: 10.1161/circresaha.111.248039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
524 Pacheco-Leyva I, Matias AC, Oliveira DV, Santos JM, Nascimento R, Guerreiro E, Michell AC, van De Vrugt AM, Machado-Oliveira G, Ferreira G, Domian I, Bragança J. CITED2 Cooperates with ISL1 and Promotes Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports 2016;7:1037-49. [PMID: 27818139 DOI: 10.1016/j.stemcr.2016.10.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
525 Patel P, Mital S. Stem cells in pediatric cardiology. Eur J Pediatr. 2013;172:1287-1292. [PMID: 23292032 DOI: 10.1007/s00431-012-1920-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
526 Egashira T, Yuasa S, Fukuda K. Induced pluripotent stem cells in cardiovascular medicine. Stem Cells Int 2011;2011:348960. [PMID: 21977041 DOI: 10.4061/2011/348960] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
527 Zwi-Dantsis L, Huber I, Habib M, Winterstern A, Gepstein A, Arbel G, Gepstein L. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J. 2013;34:1575-1586. [PMID: 22621821 DOI: 10.1093/eurheartj/ehs096] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
528 Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C. Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays. 2013;35:281-298. [PMID: 22886688 DOI: 10.1002/bies.201200053] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 8.1] [Reference Citation Analysis]
529 Rahman N, Brauer PM, Ho L, Usenko T, Tewary M, Zúñiga-Pflücker JC, Zandstra PW. Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nat Commun 2017;8:15380. [PMID: 28541275 DOI: 10.1038/ncomms15380] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
530 Hesse M, Fleischmann BK, Kotlikoff MI. Concise Review: The Role of C-kit Expressing Cells in Heart Repair at the Neonatal and Adult Stage: C-kit + Cells in Heart Repair. Stem Cells 2014;32:1701-12. [DOI: 10.1002/stem.1696] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
531 de Peppo GM, Marolt D. State of the art in stem cell research: human embryonic stem cells, induced pluripotent stem cells, and transdifferentiation. J Blood Transfus 2012;2012:317632. [PMID: 24089646 DOI: 10.1155/2012/317632] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
532 Mascheck L, Sharifpanah F, Tsang SY, Wartenberg M, Sauer H. Stimulation of cardiomyogenesis from mouse embryonic stem cells by nuclear translocation of cardiotrophin-1. Int J Cardiol 2015;193:23-33. [PMID: 26005169 DOI: 10.1016/j.ijcard.2015.05.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
533 Xuan W, Wang Y, Tang Y, Ali A, Hu H, Maienschein-Cline M, Ashraf M. Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis. Shock 2018;50:627-39. [PMID: 29485473 DOI: 10.1097/SHK.0000000000001133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
534 Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors. Stem Cells. 2015;33:2148-2157. [PMID: 25865043 DOI: 10.1002/stem.2036] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 12.2] [Reference Citation Analysis]
535 Yodmuang S, Marolt D, Marcos-Campos I, Gadjanski I, Vunjak-Novakovic G. Synergistic effects of hypoxia and morphogenetic factors on early chondrogenic commitment of human embryonic stem cells in embryoid body culture. Stem Cell Rev Rep 2015;11:228-41. [PMID: 25618295 DOI: 10.1007/s12015-015-9584-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
536 Kara RJ, Bolli P, Karakikes I, Matsunaga I, Tripodi J, Tanweer O, Altman P, Shachter NS, Nakano A, Najfeld V, Chaudhry HW. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circ Res. 2012;110:82-93. [PMID: 22082491 DOI: 10.1161/circresaha.111.249037] [Cited by in Crossref: 74] [Cited by in F6Publishing: 34] [Article Influence: 7.4] [Reference Citation Analysis]
537 Choe JY, Hun Kim J, Park KY, Choi CH, Kim SK. Activation of dickkopf-1 and focal adhesion kinase pathway by tumour necrosis factor α induces enhanced migration of fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology (Oxford) 2016;55:928-38. [PMID: 26715774 DOI: 10.1093/rheumatology/kev422] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
538 Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2017;11:1658-74. [PMID: 26777594 DOI: 10.1002/term.2117] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
539 Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human iPSCs in Cardiovascular Research: Current Approaches in Cardiac Differentiation, Maturation Strategies, and Scalable Production. Cardiovasc Res 2021:cvab115. [PMID: 33757124 DOI: 10.1093/cvr/cvab115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
540 Yazawa M, Dolmetsch RE. Modeling Timothy syndrome with iPS cells. J Cardiovasc Transl Res. 2013;6:1-9. [PMID: 23299782 DOI: 10.1007/s12265-012-9444-x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
541 Liu YH, Karra R, Wu SM. Cardiovascular Stem Cells in Regenerative Medicine: Ready for Prime Time? Drug Discov Today Ther Strateg 2008;5:201-7. [PMID: 20054428 DOI: 10.1016/j.ddstr.2008.12.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
542 Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis Model Mech. 2009;2:344-358. [PMID: 19553696 DOI: 10.1242/dmm.000240] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 4.9] [Reference Citation Analysis]
543 Sobral-Reyes MF, Lemos DR. Recapitulating human tissue damage, repair, and fibrosis with human pluripotent stem cell-derived organoids. Stem Cells 2020;38:318-29. [PMID: 31778256 DOI: 10.1002/stem.3131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
544 Gálvez-montón C, Prat-vidal C, Roura S, Soler-botija C, Bayes-genis A. Ingeniería tisular cardiaca y corazón bioartificial. Revista Española de Cardiología 2013;66:391-9. [DOI: 10.1016/j.recesp.2012.11.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
545 Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016;96:1093-126. [PMID: 27335446 DOI: 10.1152/physrev.00036.2015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 17.3] [Reference Citation Analysis]
546 Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 2013;5:a008292. [PMID: 23457256 DOI: 10.1101/cshperspect.a008292] [Cited by in Crossref: 142] [Cited by in F6Publishing: 113] [Article Influence: 17.8] [Reference Citation Analysis]
547 Liu BH, Yeh HY, Lin YC, Wang MH, Chen DC, Lee BH, Hsu SH. Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan. Biores Open Access 2013;2:28-39. [PMID: 23514754 DOI: 10.1089/biores.2012.0285] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
548 Yamauchi K, Sumi T, Minami I, Otsuji TG, Kawase E, Nakatsuji N, Suemori H. Cardiomyocytes develop from anterior primitive streak cells induced by β-catenin activation and the blockage of BMP signaling in hESCs. Genes Cells 2010;15:1216-27. [PMID: 21050342 DOI: 10.1111/j.1365-2443.2010.01455.x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
549 Chu LF, Leng N, Zhang J, Hou Z, Mamott D, Vereide DT, Choi J, Kendziorski C, Stewart R, Thomson JA. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol 2016;17:173. [PMID: 27534536 DOI: 10.1186/s13059-016-1033-x] [Cited by in Crossref: 192] [Cited by in F6Publishing: 120] [Article Influence: 38.4] [Reference Citation Analysis]
550 Vunjak Novakovic G, Eschenhagen T, Mummery C. Myocardial tissue engineering: in vitro models. Cold Spring Harb Perspect Med 2014;4:a014076. [PMID: 24591534 DOI: 10.1101/cshperspect.a014076] [Cited by in Crossref: 68] [Cited by in F6Publishing: 57] [Article Influence: 9.7] [Reference Citation Analysis]
551 Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30:165-173. [PMID: 22252507 DOI: 10.1038/nbt.2107] [Cited by in Crossref: 248] [Cited by in F6Publishing: 212] [Article Influence: 27.6] [Reference Citation Analysis]
552 Gregoire S, Karra R, Passer D, Deutsch MA, Krane M, Feistritzer R, Sturzu A, Domian I, Saga Y, Wu SM. Essential and unexpected role of Yin Yang 1 to promote mesodermal cardiac differentiation. Circ Res 2013;112:900-10. [PMID: 23307821 DOI: 10.1161/CIRCRESAHA.113.259259] [Cited by in Crossref: 40] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
553 Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon RT, Stamatoyannopoulos J, Murry CE. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 2012;151:221-32. [PMID: 22981225 DOI: 10.1016/j.cell.2012.08.027] [Cited by in Crossref: 242] [Cited by in F6Publishing: 210] [Article Influence: 26.9] [Reference Citation Analysis]
554 Xu C. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol. 2012;52:1203-1212. [PMID: 22484618 DOI: 10.1016/j.yjmcc.2012.03.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
555 Yeo HC, Ting S, Brena RM, Koh G, Chen A, Toh SQ, Lim YM, Oh SK, Lee DY. Genome-Wide Transcriptome and Binding Sites Analyses Identify Early FOX Expressions for Enhancing Cardiomyogenesis Efficiency of hESC Cultures. Sci Rep 2016;6:31068. [PMID: 27501774 DOI: 10.1038/srep31068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
556 Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 2012;28:719-41. [PMID: 23057748 DOI: 10.1146/annurev-cellbio-101011-155739] [Cited by in Crossref: 185] [Cited by in F6Publishing: 164] [Article Influence: 23.1] [Reference Citation Analysis]
557 Chen A, Lee E, Tu R, Santiago K, Grosberg A, Fowlkes C, Khine M. Integrated platform for functional monitoring of biomimetic heart sheets derived from human pluripotent stem cells. Biomaterials 2014;35:675-83. [DOI: 10.1016/j.biomaterials.2013.10.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
558 Qin H, Zhao A, Fu X. Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 2017;74:3553-75. [DOI: 10.1007/s00018-017-2586-x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
559 Hall ZW, Kahler D, Manganiello M, Egli D, James D, Marolt D, Fasano C, Ichida J, Noggle S, Solomon SL, McKeon D, Smith K, Marshall C. Breaking ground on translational stem cell research. Ann N Y Acad Sci 2010;1189 Suppl 1:E1-15. [PMID: 20233361 DOI: 10.1111/j.1749-6632.2010.05495.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
560 Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465:808-812. [PMID: 20535210 DOI: 10.1038/nature09005] [Cited by in Crossref: 514] [Cited by in F6Publishing: 437] [Article Influence: 46.7] [Reference Citation Analysis]
561 Zeng J, Yi D, Sun W, Liu Y, Chang J, Zhu L, Zhang Y, Pan X, Dong Y, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. Overexpression of HOXA9 upregulates NF-κB signaling to promote human hematopoiesis and alter the hematopoietic differentiation potentials. Cell Regen 2021;10:9. [PMID: 33426581 DOI: 10.1186/s13619-020-00066-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
562 Pearson S, Cuvertino S, Fleury M, Lacaud G, Kouskoff V. In vivo repopulating activity emerges at the onset of hematopoietic specification during embryonic stem cell differentiation. Stem Cell Reports 2015;4:431-44. [PMID: 25660408 DOI: 10.1016/j.stemcr.2015.01.003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
563 Karakikes I, Senyei GD, Hansen J, Kong CW, Azeloglu EU, Stillitano F, Lieu DK, Wang J, Ren L, Hulot JS. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med. 2014;3:18-31. [PMID: 24324277 DOI: 10.5966/sctm.2013-0110] [Cited by in Crossref: 100] [Cited by in F6Publishing: 81] [Article Influence: 12.5] [Reference Citation Analysis]
564 Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021;9:639699. [PMID: 34262897 DOI: 10.3389/fcell.2021.639699] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
565 Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med. 2017;23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
566 Li Z, Chen Y. Functions of BMP signaling in embryonic stem cell fate determination. Experimental Cell Research 2013;319:113-9. [DOI: 10.1016/j.yexcr.2012.09.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
567 Cimetta E, Cannizzaro C, James R, Biechele T, Moon RT, Elvassore N, Vunjak-Novakovic G. Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 2010;10:3277-83. [PMID: 20936235 DOI: 10.1039/c0lc00033g] [Cited by in Crossref: 74] [Cited by in F6Publishing: 66] [Article Influence: 6.7] [Reference Citation Analysis]
568 Rao J, Pfeiffer MJ, Frank S, Adachi K, Piccini I, Quaranta R, Araúzo-Bravo M, Schwarz J, Schade D, Leidel S, Schöler HR, Seebohm G, Greber B. Stepwise Clearance of Repressive Roadblocks Drives Cardiac Induction in Human ESCs. Cell Stem Cell 2016;18:341-53. [PMID: 26748419 DOI: 10.1016/j.stem.2015.11.019] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
569 Sasaki K, Makiyama T, Yoshida Y, Wuriyanghai Y, Kamakura T, Nishiuchi S, Hayano M, Harita T, Yamamoto Y, Kohjitani H, Hirose S, Chen J, Kawamura M, Ohno S, Itoh H, Takeuchi A, Matsuoka S, Miura M, Sumitomo N, Horie M, Yamanaka S, Kimura T. Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia. PLoS One. 2016;11:e0164795. [PMID: 27764147 DOI: 10.1371/journal.pone.0164795] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
570 Cao N, Liao J, Liu Z, Zhu W, Wang J, Liu L, Yu L, Xu P, Cui C, Xiao L. In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes. Cell Res. 2011;21:1316-1331. [PMID: 21423272 DOI: 10.1038/cr.2011.48] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
571 Martewicz S, Serena E, Zatti S, Keller G, Elvassore N. Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Res 2017;25:107-14. [PMID: 29125993 DOI: 10.1016/j.scr.2017.10.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
572 Yang PC. Is reliable in vivo detection of stem cell viability possible in a large animal model of myocardial injury? Circulation 2012;126:388-90. [PMID: 22767660 DOI: 10.1161/CIRCULATIONAHA.112.119305] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
573 Nelson TJ, Martinez-Fernandez A, Terzic A. Induced pluripotent stem cells: developmental biology to regenerative medicine. Nat Rev Cardiol 2010;7:700-10. [PMID: 20956984 DOI: 10.1038/nrcardio.2010.159] [Cited by in Crossref: 102] [Cited by in F6Publishing: 80] [Article Influence: 9.3] [Reference Citation Analysis]
574 Dar A, Itskovitz-Eldor J. Therapeutic potential of perivascular cells from human pluripotent stem cells. J Tissue Eng Regen Med 2015;9:977-87. [PMID: 23365073 DOI: 10.1002/term.1698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
575 Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 2012;6:e12-23. [PMID: 22170772 DOI: 10.1002/term.525] [Cited by in Crossref: 86] [Cited by in F6Publishing: 67] [Article Influence: 8.6] [Reference Citation Analysis]
576 Tan X, Dai Q, Guo T, Xu J, Dai Q. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes. Biochemical and Biophysical Research Communications 2018;495:2490-7. [DOI: 10.1016/j.bbrc.2017.12.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
577 Green MD, Huang SX, Snoeck HW. Stem cells of the respiratory system: from identification to differentiation into functional epithelium. Bioessays 2013;35:261-70. [PMID: 23175215 DOI: 10.1002/bies.201200090] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
578 Okubo C, Narita M, Inagaki A, Nishikawa M, Hotta A, Yamanaka S, Yoshida Y. Expression dynamics of HAND1/2 in in vitro human cardiomyocyte differentiation. Stem Cell Reports 2021;16:1906-22. [PMID: 34297940 DOI: 10.1016/j.stemcr.2021.06.014] [Reference Citation Analysis]
579 Sturzu AC, Wu SM. Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ Res 2011;108:353-64. [PMID: 21293007 DOI: 10.1161/CIRCRESAHA.110.227066] [Cited by in Crossref: 60] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
580 Yoshida Y, Yamanaka S. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications. Circ Res 2017;120:1958-68. [DOI: 10.1161/circresaha.117.311080] [Cited by in Crossref: 132] [Cited by in F6Publishing: 73] [Article Influence: 33.0] [Reference Citation Analysis]
581 Tulloch NL, Murry CE. Trends in cardiovascular engineering: organizing the human heart. Trends Cardiovasc Med 2013;23:282-6. [PMID: 23722092 DOI: 10.1016/j.tcm.2013.04.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
582 Spiering S, Davidovics H, Bushway PJ, Mercola M, Willems E. High content screening for modulators of cardiac differentiation in human pluripotent stem cells. Methods Mol Biol 2015;1263:43-61. [PMID: 25618335 DOI: 10.1007/978-1-4939-2269-7_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
583 Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 7.5] [Reference Citation Analysis]
584 Blüguermann C, Romorini L, Evseenko D, Garate X, Neiman G, Sevlever GE, Scassa ME, Miriuka SG. Leukemia Inhibitory Factor Increases Survival of Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Transl Res 2018;11:1-13. [PMID: 29019149 DOI: 10.1007/s12265-017-9769-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
585 Lu TY, Yang L. Uses of cardiomyocytes generated from induced pluripotent stem cells. Stem Cell Res Ther 2011;2:44. [PMID: 22099214 DOI: 10.1186/scrt85] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
586 Sun X, Nunes SS. Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2017;5:19. [PMID: 28337437 DOI: 10.3389/fcell.2017.00019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
587 Marchianò S, Bertero A, Murry CE. Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr Cardiol 2019;40:1367-87. [PMID: 31388700 DOI: 10.1007/s00246-019-02165-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
588 Horton RE, Auguste DT. Synergistic effects of hypoxia and extracellular matrix cues in cardiomyogenesis. Biomaterials 2012;33:6313-9. [PMID: 22717366 DOI: 10.1016/j.biomaterials.2012.05.063] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
589 Alexander JM, Bruneau BG. Lessons for cardiac regeneration and repair through development. Trends Mol Med 2010;16:426-34. [PMID: 20692205 DOI: 10.1016/j.molmed.2010.06.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
590 Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016;143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 10.2] [Reference Citation Analysis]
591 Lin Y, Liu H, Klein M, Ostrominski J, Hong SG, Yada RC, Chen G, Navarengom K, Schwartzbeck R, San H, Yu ZX, Liu C, Linask K, Beers J, Qiu L, Dunbar CE, Boehm M, Zou J. Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Sci Rep 2018;8:5907. [PMID: 29651156 DOI: 10.1038/s41598-018-24074-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
592 Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 2009;120:1513-1523. [PMID: 19786631 DOI: 10.1161/circulationaha.109.868885] [Cited by in Crossref: 299] [Cited by in F6Publishing: 150] [Article Influence: 24.9] [Reference Citation Analysis]
593 Mazzotta S, Lynch AT, Hoppler S. Cardiomyocyte Differentiation from Human Embryonic Stem Cells. In: Ishikawa K, editor. Experimental Models of Cardiovascular Diseases. New York: Springer; 2018. pp. 67-78. [DOI: 10.1007/978-1-4939-8597-5_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
594 Ding S, Kingshott P, Thissen H, Pera M, Wang P. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review: Modulation of Human Stem Cell Behavior: A Review. Biotechnol Bioeng 2017;114:260-80. [DOI: 10.1002/bit.26075] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
595 Hazeltine LB, Selekman JA, Palecek SP. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 2013;31:1002-19. [PMID: 23510904 DOI: 10.1016/j.biotechadv.2013.03.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
596 Smith AJ, Lewis FC, Aquila I, Waring CD, Nocera A, Agosti V, Nadal-ginard B, Torella D, Ellison GM. Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nat Protoc 2014;9:1662-81. [DOI: 10.1038/nprot.2014.113] [Cited by in Crossref: 76] [Cited by in F6Publishing: 65] [Article Influence: 10.9] [Reference Citation Analysis]
597 Shabani P, Ghazizadeh Z, Gorgani-Firuzjaee S, Molazem M, Rajabi S, Vahdat S, Azizi Y, Doosti M, Aghdami N, Baharvand H. Cardioprotective effects of omega-3 fatty acids and ascorbic acid improve regenerative capacity of embryonic stem cell-derived cardiac lineage cells. Biofactors 2019;45:427-38. [PMID: 30907984 DOI: 10.1002/biof.1501] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
598 Hanson KP, Jung JP, Tran QA, Hsu SP, Iida R, Ajeti V, Campagnola PJ, Eliceiri KW, Squirrell JM, Lyons GE, Ogle BM. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A 2013;19:1132-43. [PMID: 23273220 DOI: 10.1089/ten.TEA.2012.0316] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
599 Ishida M, El-Mounayri O, Kattman S, Zandstra P, Sakamoto H, Ogawa M, Keller G, Husain M. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells. Circ Res 2012;110:253-64. [PMID: 22116818 DOI: 10.1161/CIRCRESAHA.111.259499] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
600 Gonzales C, Pedrazzini T. Progenitor cell therapy for heart disease. Experimental Cell Research 2009;315:3077-85. [DOI: 10.1016/j.yexcr.2009.09.006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 4.2] [Reference Citation Analysis]
601 Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018;17:927-46. [PMID: 29862928 DOI: 10.1080/15384101.2018.1464852] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
602 Kikuchi K. Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Res 2014;13:542-55. [PMID: 25127427 DOI: 10.1016/j.scr.2014.07.003] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
603 Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015;24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
604 Wang J, Cui C, Nan H, Yu Y, Xiao Y, Poon E, Yang G, Wang X, Wang C, Li L, Boheler KR, Ma X, Cheng X, Ni Z, Chen M. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. ACS Appl Mater Interfaces 2017;9:25929-40. [DOI: 10.1021/acsami.7b08777] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
605 Shen N, Knopf A, Westendorf C, Kraushaar U, Riedl J, Bauer H, Pöschel S, Layland SL, Holeiter M, Knolle S, Brauchle E, Nsair A, Hinderer S, Schenke-Layland K. Steps toward Maturation of Embryonic Stem Cell-Derived Cardiomyocytes by Defined Physical Signals. Stem Cell Reports 2017;9:122-35. [PMID: 28528699 DOI: 10.1016/j.stemcr.2017.04.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
606 Kinnear C, Chang WY, Khattak S, Hinek A, Thompson T, de Carvalho Rodrigues D, Kennedy K, Mahmut N, Pasceri P, Stanford WL, Ellis J, Mital S. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Transl Med 2013;2:2-15. [PMID: 23283491 DOI: 10.5966/sctm.2012-0054] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 6.1] [Reference Citation Analysis]
607 Chen JX, Plonowska K, Wu SM. Somatic Cell Reprogramming into Cardiovascular Lineages. J Cardiovasc Pharmacol Ther 2014;19:340-9. [PMID: 24764131 DOI: 10.1177/1074248414527641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
608 Little MH, Takasato M. Generating a self-organizing kidney from pluripotent cells. Curr Opin Organ Transplant 2015;20:178-86. [PMID: 25856180 DOI: 10.1097/MOT.0000000000000174] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
609 Djuric U, Ellis J. Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Res Ther 2010;1:3. [PMID: 20504284 DOI: 10.1186/scrt3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
610 Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisén J, Giacca M, Hare JM, Houser S, Lee RT, Marbán E, Martin JF, Molkentin JD, Murry CE, Riley PR, Ruiz-Lozano P, Sadek HA, Sussman MA, Hill JA. Cardiomyocyte Regeneration: A Consensus Statement. Circulation 2017;136:680-6. [PMID: 28684531 DOI: 10.1161/CIRCULATIONAHA.117.029343] [Cited by in Crossref: 248] [Cited by in F6Publishing: 144] [Article Influence: 62.0] [Reference Citation Analysis]
611 Pei F, Jiang J, Bai S, Cao H, Tian L, Zhao Y, Yang C, Dong H, Ma Y. Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Stem Cell Res 2017;19:94-103. [PMID: 28110125 DOI: 10.1016/j.scr.2017.01.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 10.5] [Reference Citation Analysis]
612 Sahara M, Hansson EM, Wernet O, Lui KO, Später D, Chien KR. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res 2014;24:820-41. [PMID: 24810299 DOI: 10.1038/cr.2014.59] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 7.7] [Reference Citation Analysis]
613 Mizuno M, Yamada M, Mitamura R, Ike K, Toyama K, Seki M. Magnetophoresis-Integrated Hydrodynamic Filtration System for Size- and Surface Marker-Based Two-Dimensional Cell Sorting. Anal Chem 2013;85:7666-73. [DOI: 10.1021/ac303336f] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
614 Kibschull M, Lye SJ, Okino ST, Sarras H. Quantitative large scale gene expression profiling from human stem cell culture micro samples using multiplex pre-amplification. Syst Biol Reprod Med 2016;62:84-91. [PMID: 26237078 DOI: 10.3109/19396368.2015.1062578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
615 Soler-botija C, Bagó JR, Bayes-genis A. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration: Soler-Botija et al. Annals of the New York Academy of Sciences 2012;1254:57-65. [DOI: 10.1111/j.1749-6632.2012.06519.x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
616 Kadota S, Shiba Y. Pluripotent Stem Cell-Derived Cardiomyocyte Transplantation for Heart Disease Treatment. Curr Cardiol Rep 2019;21:73. [PMID: 31228011 DOI: 10.1007/s11886-019-1171-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
617 Liu J, Li Y, Lin B, Sheng Y, Yang L. HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1. Dev Cell. 2017;42:333-348.e5. [PMID: 28829943 DOI: 10.1016/j.devcel.2017.07.023] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
618 Musa S, Xin LZ, Govindasamy V, Fuen FW, Kasim NHA. Global search for right cell type as a treatment modality for cardiovascular disease. Expert Opinion on Biological Therapy 2013;14:63-73. [DOI: 10.1517/14712598.2014.858694] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
619 Alcon A, Cagavi Bozkulak E, Qyang Y. Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 2012;69:2635-56. [PMID: 22388688 DOI: 10.1007/s00018-012-0942-4] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
620 Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. Br Biotechnol J. 2013;3:424-457. [PMID: 24926434 DOI: 10.9734/bbj/2013/4309#sthash.6d8rulbv.dpuf] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
621 Ting S, Lecina M, Reuveny S, Oh S. Differentiation of human embryonic stem cells to cardiomyocytes on microcarrier cultures. Curr Protoc Stem Cell Biol. 2012;Chapter 1:Unit1D.7. [PMID: 22605644 DOI: 10.1002/9780470151808.sc01d07s21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
622 Bongiorno T, Gura J, Talwar P, Chambers D, Young KM, Arafat D, Wang G, Jackson-Holmes EL, Qiu P, McDevitt TC, Sulchek T. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures. PLoS One 2018;13:e0192631. [PMID: 29518080 DOI: 10.1371/journal.pone.0192631] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
623 Mehta A, Chung YY, Ng A, Iskandar F, Atan S, Wei H, Dusting G, Sun W, Wong P, Shim W. Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovascular Research 2011;91:577-86. [DOI: 10.1093/cvr/cvr132] [Cited by in Crossref: 77] [Cited by in F6Publishing: 55] [Article Influence: 7.7] [Reference Citation Analysis]
624 Yeghiazarians Y, Gaur M, Zhang Y, Sievers RE, Ritner C, Prasad M, Boyle A, Bernstein HS. Myocardial improvement with human embryonic stem cell-derived cardiomyocytes enriched by p38MAPK inhibition. Cytotherapy 2012;14:223-31. [PMID: 22040108 DOI: 10.3109/14653249.2011.623690] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
625 Jadon DR, Sengupta R, Nightingale A, Lu H, Dunphy J, Green A, Elder JT, Nair RP, Korendowych E, Lindsay MA, McHugh NJ. Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res Ther 2017;19:210. [PMID: 28934972 DOI: 10.1186/s13075-017-1417-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
626 Bondue A, Tännler S, Chiapparo G, Chabab S, Ramialison M, Paulissen C, Beck B, Harvey R, Blanpain C. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. J Cell Biol 2011;192:751-65. [PMID: 21383076 DOI: 10.1083/jcb.201007063] [Cited by in Crossref: 98] [Cited by in F6Publishing: 91] [Article Influence: 9.8] [Reference Citation Analysis]
627 Kusuma S, Peijnenburg E, Patel P, Gerecht S. Low oxygen tension enhances endothelial fate of human pluripotent stem cells. Arterioscler Thromb Vasc Biol 2014;34:913-20. [PMID: 24526696 DOI: 10.1161/ATVBAHA.114.303274] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
628 Takeda M, Kanki Y, Masumoto H, Funakoshi S, Hatani T, Fukushima H, Izumi-Taguchi A, Matsui Y, Shimamura T, Yoshida Y, Yamashita JK. Identification of Cardiomyocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. Cell Rep. 2018;22:546-556. [PMID: 29320747 DOI: 10.1016/j.celrep.2017.12.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
629 Feng Y, Wang Y, Cao N, Yang H, Wang Y. Progenitor/stem cell transplantation for repair of myocardial infarction: Hype or hope? Ann Palliat Med 2012;1:65-77. [PMID: 22833840 DOI: 10.3978/j.issn.2224-5820.2012.04.01] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
630 Uosaki H, Andersen P, Shenje LT, Fernandez L, Christiansen SL, Kwon C. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells. PLoS One 2012;7:e46413. [PMID: 23056302 DOI: 10.1371/journal.pone.0046413] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
631 Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 2017;144:2104-22. [PMID: 28634270 DOI: 10.1242/dev.151035] [Cited by in Crossref: 253] [Cited by in F6Publishing: 184] [Article Influence: 63.3] [Reference Citation Analysis]
632 Lee YK, Ng KM, Lai WH, Chan YC, Lau YM, Lian Q, Tse HF, Siu CW. Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev Rep 2011;7:976-86. [PMID: 21614516 DOI: 10.1007/s12015-011-9273-3] [Cited by in Crossref: 103] [Cited by in F6Publishing: 92] [Article Influence: 11.4] [Reference Citation Analysis]
633 Kawaguchi N, Nakanishi T. Cardiomyocyte regeneration. Cells 2013;2:67-82. [PMID: 24709645 DOI: 10.3390/cells2010067] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
634 Malecki M. Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies. J Stem Cell Res Ther 2013;3:138. [PMID: 23956947 DOI: 10.4172/2157-7633.1000138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
635 Sequiera GL, Mehta A, Ooi TH, Shim W. Ontogenic development of cardiomyocytes derived from transgene-free human induced pluripotent stem cells and its homology with human heart. Life Sciences 2013;92:63-71. [DOI: 10.1016/j.lfs.2012.10.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
636 Lieu DK, Turnbull IC, Costa KD, Li RA. Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. Drug Discov Today Dis Models 2012;9:e209-17. [PMID: 29422934 DOI: 10.1016/j.ddmod.2012.06.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
637 Deimling SJ, Drysdale TA. Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm. Mech Dev 2011;128:327-41. [PMID: 21763769 DOI: 10.1016/j.mod.2011.06.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
638 Peters A, Burridge PW, Pryzhkova MV, Levine MA, Park TS, Roxbury C, Yuan X, Péault B, Zambidis ET. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. Int J Dev Biol 2010;54:965-90. [PMID: 20563986 DOI: 10.1387/ijdb.093043ap] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
639 Bailey DJ, Rose CM, McAlister GC, Brumbaugh J, Yu P, Wenger CD, Westphall MS, Thomson JA, Coon JJ. Instant spectral assignment for advanced decision tree-driven mass spectrometry. Proc Natl Acad Sci U S A 2012;109:8411-6. [PMID: 22586074 DOI: 10.1073/pnas.1205292109] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
640 Nam KH, Smith AS, Lone S, Kwon S, Kim DH. Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening. J Lab Autom 2015;20:201-15. [PMID: 25385716 DOI: 10.1177/2211068214557813] [Cited by in Crossref: 92] [Cited by in F6Publishing: 80] [Article Influence: 13.1] [Reference Citation Analysis]
641 Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, Yang HT. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23:1119-1132. [PMID: 23896987 DOI: 10.1038/cr.2013.102] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 11.6] [Reference Citation Analysis]
642 Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, Wu J, Hsu D, Carpenter MK, Couture LA. Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res. 2012;8:388-402. [PMID: 22459095 DOI: 10.1016/j.scr.2012.02.001] [Cited by in Crossref: 110] [Cited by in F6Publishing: 87] [Article Influence: 12.2] [Reference Citation Analysis]
643 Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 2020;11:4283. [PMID: 32883967 DOI: 10.1038/s41467-020-18031-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
644 Zhu Z, Huangfu D. Human pluripotent stem cells: an emerging model in developmental biology. Development 2013;140:705-17. [PMID: 23362344 DOI: 10.1242/dev.086165] [Cited by in Crossref: 104] [Cited by in F6Publishing: 89] [Article Influence: 13.0] [Reference Citation Analysis]
645 Lieu DK, Fu JD, Chiamvimonvat N, Tung KC, McNerney GP, Huser T, Keller G, Kong CW, Li RA. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol. 2013;6:191-201. [PMID: 23392582 DOI: 10.1161/circep.111.973420] [Cited by in Crossref: 130] [Cited by in F6Publishing: 96] [Article Influence: 16.3] [Reference Citation Analysis]
646 Geraets IME, Chanda D, van Tienen FHJ, van den Wijngaard A, Kamps R, Neumann D, Liu Y, Glatz JFC, Luiken JJFP, Nabben M. Human embryonic stem cell-derived cardiomyocytes as an in vitro model to study cardiac insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018;1864:1960-7. [PMID: 29277329 DOI: 10.1016/j.bbadis.2017.12.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
647 Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li RK, Kattman SJ, Keller G. Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 2014;32:1026-1035. [PMID: 25240927 DOI: 10.1038/nbt.3002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 92] [Article Influence: 15.7] [Reference Citation Analysis]
648 Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation: Materials Design for Cardiac Differentiation. Stem Cells 2015;33:1021-35. [DOI: 10.1002/stem.1929] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
649 Eggenberger J, Blanco-Melo D, Panis M, Brennand KJ, tenOever BR. Type I interferon response impairs differentiation potential of pluripotent stem cells. Proc Natl Acad Sci U S A 2019;116:1384-93. [PMID: 30606801 DOI: 10.1073/pnas.1812449116] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
650 Cheng IF, Kaiser D, Huebscher D, Hasenfuss G, Guan K, Schäfer K. Differentiation of multipotent adult germline stem cells derived from mouse testis into functional endothelial cells. J Vasc Res 2012;49:207-20. [PMID: 22433575 DOI: 10.1159/000332910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
651 Pallotta I, Sun B, Wrona EA, Freytes DO. BMP protein-mediated crosstalk between inflammatory cells and human pluripotent stem cell-derived cardiomyocytes. J Tissue Eng Regen Med 2017;11:1466-78. [PMID: 26103914 DOI: 10.1002/term.2045] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
652 Erdmann G, Volz C, Boutros M. Systematic approaches to dissect biological processes in stem cells by image-based screening. Biotechnology Journal 2012;7:768-78. [DOI: 10.1002/biot.201200117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
653 Li J, Huang NF, Zou J, Laurent TJ, Lee JC, Okogbaa J, Cooke JP, Ding S. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol 2013;33:1366-75. [PMID: 23520160 DOI: 10.1161/ATVBAHA.112.301167] [Cited by in Crossref: 90] [Cited by in F6Publishing: 59] [Article Influence: 11.3] [Reference Citation Analysis]
654 Fernandes TG, Duarte ST, Ghazvini M, Gaspar C, Santos DC, Porteira AR, Rodrigues GMC, Haupt S, Rombo DM, Armstrong J, Sebastião AM, Gribnau J, Garcia-cazorla À, Brüstle O, Henrique D, Cabral JMS, Diogo MM. Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patient-specific neural cells. Biotechnology Journal 2015;10:1578-88. [DOI: 10.1002/biot.201400751] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
655 Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M, Drzymalski M, Wagner S, Maier LS, Hehr U, Baessler A, Fischer M, Hengstenberg C. Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 2015;10:e0126596. [PMID: 25970162 DOI: 10.1371/journal.pone.0126596] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
656 Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020;163:103617. [PMID: 32473204 DOI: 10.1016/j.mod.2020.103617] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
657 Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Functional cardiomyocytes from human stem cells: a tool for determining the cardiotoxic potential of preclinical drugs. Future Med Chem 2013;5:363-6. [PMID: 23495680 DOI: 10.4155/fmc.13.22] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
658 Tandon N, Marsano A, Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, Vunjak-Novakovic G. Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip 2010;10:692-700. [PMID: 20221556 DOI: 10.1039/b917743d] [Cited by in Crossref: 77] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
659 Barnett P, van den Hoff MJ. Cardiac regeneration: different cells same goal. Med Biol Eng Comput 2011;49:723-32. [PMID: 21499802 DOI: 10.1007/s11517-011-0776-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
660 Ni TT, Rellinger EJ, Mukherjee A, Xie S, Stephens L, Thorne CA, Kim K, Hu J, Lee E, Marnett L. Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signaling. Chem Biol. 2011;18:1658-1668. [PMID: 22195568 DOI: 10.1016/j.chembiol.2011.09.015] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
661 Chen CH, Sereti KI, Wu BM, Ardehali R. Translational aspects of cardiac cell therapy. J Cell Mol Med 2015;19:1757-72. [PMID: 26119413 DOI: 10.1111/jcmm.12632] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
662 Lian X, Xu J, Li J, Chien KR. Next-generation models of human cardiogenesis via genome editing. Cold Spring Harb Perspect Med 2014;4:a013920. [PMID: 25237142 DOI: 10.1101/cshperspect.a013920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
663 Lambers E, Kume T. Navigating the labyrinth of cardiac regeneration. Dev Dyn 2016;245:751-61. [PMID: 26890576 DOI: 10.1002/dvdy.24397] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
664 Waas M, Weerasekera R, Kropp EM, Romero-Tejeda M, Poon EN, Boheler KR, Burridge PW, Gundry RL. Are These Cardiomyocytes? Protocol Development Reveals Impact of Sample Preparation on the Accuracy of Identifying Cardiomyocytes by Flow Cytometry. Stem Cell Reports 2019;12:395-410. [PMID: 30686762 DOI: 10.1016/j.stemcr.2018.12.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
665 Di Baldassarre A, D'Amico MA, Izzicupo P, Gaggi G, Guarnieri S, Mariggiò MA, Antonucci I, Corneo B, Sirabella D, Stuppia L, Ghinassi B. Cardiomyocytes Derived from Human CardiopoieticAmniotic Fluids. Sci Rep 2018;8:12028. [PMID: 30104705 DOI: 10.1038/s41598-018-30537-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
666 Moretti A, Bellin M, Jung CB, Thies TM, Takashima Y, Bernshausen A, Schiemann M, Fischer S, Moosmang S, Smith AG, Lam JT, Laugwitz KL. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J 2010;24:700-11. [PMID: 19850773 DOI: 10.1096/fj.09-139477] [Cited by in Crossref: 91] [Cited by in F6Publishing: 74] [Article Influence: 7.6] [Reference Citation Analysis]
667 Chiu LL, Radisic M. Cardiac tissue engineering. Current Opinion in Chemical Engineering 2013;2:41-52. [DOI: 10.1016/j.coche.2013.01.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
668 Tandon V, Zhang B, Radisic M, Murthy SK. Generation of tissue constructs for cardiovascular regenerative medicine: from cell procurement to scaffold design. Biotechnol Adv 2013;31:722-35. [PMID: 22951918 DOI: 10.1016/j.biotechadv.2012.08.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
669 Wang X, Liu X, Zhang H, Nie L, Chen M, Ding Z. Reconstitute the damaged heart via the dual reparative roles of pericardial adipose-derived flk-1+ stem cells. Int J Cardiol 2016;202:256-6