BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ. 2013;20:21-30. [PMID: 22722335 DOI: 10.1038/cdd.2012.72] [Cited by in Crossref: 382] [Cited by in F6Publishing: 366] [Article Influence: 38.2] [Reference Citation Analysis]
Number Citing Articles
1 Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF. Autophagy in bone: Self-eating to stay in balance. Ageing Res Rev 2015;24:206-17. [PMID: 26318060 DOI: 10.1016/j.arr.2015.08.004] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 9.3] [Reference Citation Analysis]
2 Sainani SR, Pansare PA, Rode K, Bhalchim V, Doke R, Desai S. Emendation of autophagic dysfuction in neurological disorders: a potential therapeutic target. Int J Neurosci 2020;:1-17. [PMID: 32924706 DOI: 10.1080/00207454.2020.1822356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Thomas JM, Wang X, Guo G, Li T, Dai B, Nucifora LG, Nucifora FC Jr, Liu Z, Xue F, Liu C, Ross CA, Smith WW. GTP-binding inhibitors increase LRRK2-linked ubiquitination and Lewy body-like inclusions. J Cell Physiol 2020;235:7309-20. [PMID: 32180220 DOI: 10.1002/jcp.29632] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Jarosińska OD, Rüdiger SGD. Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Front Mol Biosci 2021;8:769184. [PMID: 34869596 DOI: 10.3389/fmolb.2021.769184] [Reference Citation Analysis]
5 Miao Q, Xu Y, Zhang H, Xu P, Ye J. Cigarette smoke induces ROS mediated autophagy impairment in human corneal epithelial cells. Environmental Pollution 2019;245:389-97. [DOI: 10.1016/j.envpol.2018.11.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
6 Lai LTF, Yu C, Wong JSK, Lo HS, Benlekbir S, Jiang L, Lau WCY. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9. Autophagy 2020;16:575-83. [PMID: 31276439 DOI: 10.1080/15548627.2019.1639300] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
7 Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Angeletti M, Keller JN, Eleuteri AM. The fine-tuning of proteolytic pathways in Alzheimer's disease. Cell Mol Life Sci 2016;73:3433-51. [PMID: 27120560 DOI: 10.1007/s00018-016-2238-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
8 Mylka V, Deckers J, Ratman D, De Cauwer L, Thommis J, De Rycke R, Impens F, Libert C, Tavernier J, Vanden Berghe W, Gevaert K, De Bosscher K. The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages. Autophagy 2018;14:2049-64. [PMID: 30215534 DOI: 10.1080/15548627.2018.1495681] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
9 Fenton RA, Murali SK, Moeller HB. Advances in aquaporin-2 trafficking mechanisms and their implications for treatment of water balance disorders. American Journal of Physiology-Cell Physiology 2020;319:C1-C10. [DOI: 10.1152/ajpcell.00150.2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
10 Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, Wang W, Han L, Chen Z, Wang Z, Zhang B, Chen H, Lei CQ, Zhu Q. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog 2021;17:e1009300. [PMID: 33577621 DOI: 10.1371/journal.ppat.1009300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hu M, Wang R, Chen X, Zheng M, Zheng P, Boz Z, Tang R, Zheng K, Yu Y, Huang XF. Resveratrol prevents haloperidol-induced mitochondria dysfunction through the induction of autophagy in SH-SY5Y cells. Neurotoxicology 2021;87:231-42. [PMID: 34688786 DOI: 10.1016/j.neuro.2021.10.007] [Reference Citation Analysis]
12 Nagy P, Hegedűs K, Pircs K, Varga Á, Juhász G. Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila. FEBS Lett 2014;588:408-13. [PMID: 24374083 DOI: 10.1016/j.febslet.2013.12.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
13 Ma SM, Mao Q, Yi L, Zhao MQ, Chen JD. Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens 2019;8:E239. [PMID: 31744077 DOI: 10.3390/pathogens8040239] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
14 Tian X, Wu C. The role of ubiquitin-mediated pathways in regulating synaptic development, axonal degeneration and regeneration: insights from fly and worm. J Physiol 2013;591:3133-43. [PMID: 23613532 DOI: 10.1113/jphysiol.2012.247940] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
15 Gao F, Zhang Y, Hou X, Tao Z, Ren H, Wang G. Dependence of PINK1 accumulation on mitochondrial redox system. Aging Cell 2020;19:e13211. [PMID: 32779864 DOI: 10.1111/acel.13211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Sandri M, Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol 2014;71:3-10. [PMID: 24380730 DOI: 10.1016/j.yjmcc.2013.12.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 4.7] [Reference Citation Analysis]
17 Warnsmann V, Meisterknecht J, Wittig I, Osiewacz HD. Aging of Podospora anserina Leads to Alterations of OXPHOS and the Induction of Non-Mitochondrial Salvage Pathways. Cells 2021;10:3319. [PMID: 34943827 DOI: 10.3390/cells10123319] [Reference Citation Analysis]
18 Meßling S, Matthias J, Xiong Q, Fischer S, Eichinger L. The two Dictyostelium discoideum autophagy 8 proteins have distinct autophagic functions. Eur J Cell Biol 2017;96:312-24. [PMID: 28413119 DOI: 10.1016/j.ejcb.2017.03.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
19 Rout MK, Lee BL, Lin A, Xiao W, Spyracopoulos L. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K. Sci Rep 2018;8:7002. [PMID: 29725124 DOI: 10.1038/s41598-018-25476-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
20 Navarro-Yepes J, Anandhan A, Bradley E, Bohovych I, Yarabe B, de Jong A, Ovaa H, Zhou Y, Khalimonchuk O, Quintanilla-Vega B, Franco R. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Mol Neurobiol 2016;53:5229-51. [PMID: 26409479 DOI: 10.1007/s12035-015-9414-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
21 Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 2012;14:1314-21. [PMID: 23143396 DOI: 10.1038/ncb2611] [Cited by in Crossref: 165] [Cited by in F6Publishing: 162] [Article Influence: 18.3] [Reference Citation Analysis]
22 Delou JM, Biasoli D, Borges HL. The Complex Link between Apoptosis and Autophagy: a Promising New Role for RB. An Acad Bras Cienc. 2016;88:2257-2275. [PMID: 27991962 DOI: 10.1590/0001-3765201620160127] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
23 Sakuma K, Aoi W, Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch 2017;469:573-91. [PMID: 28101649 DOI: 10.1007/s00424-016-1933-3] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 12.4] [Reference Citation Analysis]
24 Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017;7:51. [PMID: 28409123 DOI: 10.3389/fonc.2017.00051] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 15.6] [Reference Citation Analysis]
25 Wu ZX, Yang Y, Wang JQ, Narayanan S, Lei ZN, Teng QX, Zeng L, Chen ZS. Overexpression of ABCG2 Confers Resistance to MLN7243, a Ubiquitin-Activating Enzyme (UAE) Inhibitor. Front Cell Dev Biol 2021;9:697927. [PMID: 34336849 DOI: 10.3389/fcell.2021.697927] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Qu J, Zou T, Lin Z. The Roles of the Ubiquitin-Proteasome System in the Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2021;22:1526. [PMID: 33546413 DOI: 10.3390/ijms22041526] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
27 Langeberg LK, Scott JD. Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol 2015;16:232-44. [PMID: 25785716 DOI: 10.1038/nrm3966] [Cited by in Crossref: 176] [Cited by in F6Publishing: 161] [Article Influence: 25.1] [Reference Citation Analysis]
28 Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the Ubiquitin Proteasome System and Ubiquitin-Mediated Autophagy in Plants. Cells 2020;9:E2219. [PMID: 33019500 DOI: 10.3390/cells9102219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Sakai H, Ikeno Y, Tsukimura Y, Inomata M, Suzuki Y, Kon R, Ikarashi N, Chiba Y, Yamada T, Kamei J. Upregulation of ubiquitinated proteins and their degradation pathway in muscle atrophy induced by cisplatin in mice. Toxicol Appl Pharmacol 2020;403:115165. [PMID: 32738330 DOI: 10.1016/j.taap.2020.115165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
30 Lei Y, Zhang X, Xu Q, Liu S, Li C, Jiang H, Lin H, Kong E, Liu J, Qi S, Li H, Xu W, Lu K. Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility. Dev Cell 2021;56:2313-2328.e7. [PMID: 34428398 DOI: 10.1016/j.devcel.2021.07.015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014;15:81-94. [PMID: 24401948 DOI: 10.1038/nrm3735] [Cited by in Crossref: 1201] [Cited by in F6Publishing: 1173] [Article Influence: 150.1] [Reference Citation Analysis]
32 Ryter SW, Mizumura K, Choi AM. The impact of autophagy on cell death modalities. Int J Cell Biol. 2014;2014:502676. [PMID: 24639873 DOI: 10.1155/2014/502676] [Cited by in Crossref: 134] [Cited by in F6Publishing: 140] [Article Influence: 16.8] [Reference Citation Analysis]
33 Gomes LC, Dikic I. Autophagy in antimicrobial immunity. Mol Cell 2014;54:224-33. [PMID: 24766886 DOI: 10.1016/j.molcel.2014.03.009] [Cited by in Crossref: 221] [Cited by in F6Publishing: 209] [Article Influence: 27.6] [Reference Citation Analysis]
34 Wang X, Yang P, Jiang Y, Xu Y, Wang N, Rao P, Yang L, Sun L, Lu D. UBE2D3 contributes to myocardial ischemia-reperfusion injury by regulating autophagy in dependence of p62/SQSTM1. Cell Signal 2021;:110118. [PMID: 34391873 DOI: 10.1016/j.cellsig.2021.110118] [Reference Citation Analysis]
35 Liu X, Liu R, Bai Y, Jiang H, Fu X, Ma S. Post-translational modifications of protein in response to ionizing radiation. Cell Biochem Funct 2020;38:283-9. [PMID: 31943290 DOI: 10.1002/cbf.3467] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Yuan L, Yin P, Yan H, Zhong X, Ren C, Li K, Heng BC, Zhang W, Tong G. Single-cell transcriptome analysis of human oocyte ageing. J Cell Mol Med 2021. [PMID: 34037315 DOI: 10.1111/jcmm.16594] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Piya S, Kornblau SM, Ruvolo VR, Mu H, Ruvolo PP, McQueen T, Davis RE, Hail N Jr, Kantarjian H, Andreeff M, Borthakur G. Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia. Blood 2016;128:1260-9. [PMID: 27268264 DOI: 10.1182/blood-2016-01-692244] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 9.8] [Reference Citation Analysis]
38 Panagaki D, Croft JT, Keuenhof K, Larsson Berglund L, Andersson S, Kohler V, Büttner S, Tamás MJ, Nyström T, Neutze R, Höög JL. Nuclear envelope budding is a response to cellular stress. Proc Natl Acad Sci U S A 2021;118:e2020997118. [PMID: 34290138 DOI: 10.1073/pnas.2020997118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Goru SK, Pandey A, Gaikwad AB. E3 ubiquitin ligases as novel targets for inflammatory diseases. Pharmacol Res. 2016;106:1-9. [PMID: 26875639 DOI: 10.1016/j.phrs.2016.02.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
40 Wade BE, Wang CE, Yan S, Bhat K, Huang B, Li S, Li XJ. Ubiquitin-activating enzyme activity contributes to differential accumulation of mutant huntingtin in brain and peripheral tissues. J Neurosci 2014;34:8411-22. [PMID: 24948797 DOI: 10.1523/JNEUROSCI.0775-14.2014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
41 Grasso D, Vaccaro MI. Macroautophagy and the oncogene-induced senescence. Front Endocrinol (Lausanne) 2014;5:157. [PMID: 25324830 DOI: 10.3389/fendo.2014.00157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
42 Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015;349:aaa5612. [PMID: 26404840 DOI: 10.1126/science.aaa5612] [Cited by in Crossref: 392] [Cited by in F6Publishing: 370] [Article Influence: 56.0] [Reference Citation Analysis]
43 Ulbricht A, Arndt V, Höhfeld J. Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells. Commun Integr Biol 2013;6:e24925. [PMID: 23986815 DOI: 10.4161/cib.24925] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
44 Ryter SW, Cloonan SM, Choi AM. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 2013;36:7-16. [PMID: 23708729 DOI: 10.1007/s10059-013-0140-8] [Cited by in Crossref: 186] [Cited by in F6Publishing: 181] [Article Influence: 20.7] [Reference Citation Analysis]
45 Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, Ahmed T, Ishaq N, Hashim R, Sobarzo-sánchez E, Daglia M, Braidy N, Volpicella M, Vacca RA, Nabavi SM. Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnology Advances 2018;36:1768-78. [DOI: 10.1016/j.biotechadv.2017.12.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
46 Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol 2013;32:220-7. [PMID: 23530606 DOI: 10.1089/dna.2012.1915] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 9.2] [Reference Citation Analysis]
47 Boyer-Guittaut M, Poillet L, Liang Q, Bôle-Richard E, Ouyang X, Benavides GA, Chakrama FZ, Fraichard A, Darley-Usmar VM, Despouy G, Jouvenot M, Delage-Mourroux R, Zhang J. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014;10:986-1003. [PMID: 24879149 DOI: 10.4161/auto.28390] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 7.4] [Reference Citation Analysis]
48 Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014;171:1917-42. [PMID: 24720258 DOI: 10.1111/bph.12503] [Cited by in Crossref: 127] [Cited by in F6Publishing: 134] [Article Influence: 15.9] [Reference Citation Analysis]
49 Vainshtein A, Grumati P. Selective Autophagy by Close Encounters of the Ubiquitin Kind. Cells 2020;9:E2349. [PMID: 33114389 DOI: 10.3390/cells9112349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
50 Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S. A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ 2019;42:1054-64. [PMID: 30136402 DOI: 10.1111/pce.13426] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
51 Hurley JH, Young LN. Mechanisms of Autophagy Initiation. Annu Rev Biochem 2017;86:225-44. [PMID: 28301741 DOI: 10.1146/annurev-biochem-061516-044820] [Cited by in Crossref: 277] [Cited by in F6Publishing: 265] [Article Influence: 55.4] [Reference Citation Analysis]
52 Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-iratxeta C, Lagace D, Gibbings D. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun 2014;5. [DOI: 10.1038/ncomms6276] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
53 Hanamata S, Sawada J, Ono S, Ogawa K, Fukunaga T, Nonomura KI, Kimura S, Kurusu T, Kuchitsu K. Impact of Autophagy on Gene Expression and Tapetal Programmed Cell Death During Pollen Development in Rice. Front Plant Sci 2020;11:172. [PMID: 32210988 DOI: 10.3389/fpls.2020.00172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
54 Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020;7:585309. [PMID: 33195472 DOI: 10.3389/fcvm.2020.585309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
55 Sadeghi A, Shabani M, Alizadeh S, Meshkani R. Interplay between oxidative stress and autophagy function and its role in inflammatory cytokine expression induced by palmitate in skeletal muscle cells. Cytokine 2020;125:154835. [PMID: 31479873 DOI: 10.1016/j.cyto.2019.154835] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
56 D'Adamo S, Cetrullo S, Minguzzi M, Silvestri Y, Borzì RM, Flamigni F. MicroRNAs and Autophagy: Fine Players in the Control of Chondrocyte Homeostatic Activities in Osteoarthritis. Oxid Med Cell Longev 2017;2017:3720128. [PMID: 28713485 DOI: 10.1155/2017/3720128] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
57 Chen X, Lin Z, Su L, Cui X, Zhao B, Miao J. Discovery of a fluorescigenic pyrazoline derivative targeting ubiquitin. Biochem Biophys Res Commun 2020;528:256-60. [PMID: 32473753 DOI: 10.1016/j.bbrc.2020.05.142] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Zhang Z, Liu P, Wang J, Gong T, Zhang F, Ma J, Han N. Ubiquitin-conjugating enzyme E2C regulates apoptosis-dependent tumor progression of non-small cell lung cancer via ERK pathway. Med Oncol 2015;32:149. [PMID: 25832867 DOI: 10.1007/s12032-015-0609-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
59 Mao B, Tsai J, Chen C, Yan S, Wang Y. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016;10:1021-40. [DOI: 10.1080/17435390.2016.1189614] [Cited by in Crossref: 101] [Cited by in F6Publishing: 89] [Article Influence: 16.8] [Reference Citation Analysis]
60 Nakashima A, Aoki A, Kusabiraki T, Shima T, Yoshino O, Cheng SB, Sharma S, Saito S. Role of autophagy in oocytogenesis, embryogenesis, implantation, and pathophysiology of pre-eclampsia. J Obstet Gynaecol Res 2017;43:633-43. [PMID: 28418212 DOI: 10.1111/jog.13292] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
61 Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021;10:1798. [PMID: 34359967 DOI: 10.3390/cells10071798] [Reference Citation Analysis]
62 Altuntas S, Rossin F, Marsella C, D'Eletto M, Diaz-Hidalgo L, Farrace MG, Campanella M, Antonioli M, Fimia GM, Piacentini M. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget 2015;6:44941-54. [PMID: 26702927 DOI: 10.18632/oncotarget.6759] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
63 Zhang Q, Xie H, Chen D, Yu B, Huang Z, Zheng P, Mao X, Yu J, Luo Y, Luo J, He J. Dietary Daidzein Supplementation During Pregnancy Facilitates Fetal Growth in Rats. Mol Nutr Food Res 2018;62:e1800921. [PMID: 30365232 DOI: 10.1002/mnfr.201800921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
64 Bassil F, Brown HJ, Pattabhiraman S, Iwasyk JE, Maghames CM, Meymand ES, Cox TO, Riddle DM, Zhang B, Trojanowski JQ, Lee VM. Amyloid-Beta (Aβ) Plaques Promote Seeding and Spreading of Alpha-Synuclein and Tau in a Mouse Model of Lewy Body Disorders with Aβ Pathology. Neuron 2020;105:260-275.e6. [PMID: 31759806 DOI: 10.1016/j.neuron.2019.10.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 14.7] [Reference Citation Analysis]
65 Xu M, Moresco JJ, Chang M, Mukim A, Smith D, Diedrich JK, Yates JR 3rd, Jones KA. SHMT2 and the BRCC36/BRISC deubiquitinase regulate HIV-1 Tat K63-ubiquitylation and destruction by autophagy. PLoS Pathog 2018;14:e1007071. [PMID: 29791506 DOI: 10.1371/journal.ppat.1007071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
66 Ossareh-Nazari B, Niño CA, Bengtson MH, Lee JW, Joazeiro CA, Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol 2014;204:909-17. [PMID: 24616224 DOI: 10.1083/jcb.201308139] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 7.0] [Reference Citation Analysis]
67 O Farrell F, Rusten TE, Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 2013;280:6322-37. [PMID: 23953235 DOI: 10.1111/febs.12486] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 6.2] [Reference Citation Analysis]
68 Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Cells 2015;4:596-621. [PMID: 26445063 DOI: 10.3390/cells4040596] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
69 Vaites LP, Paulo JA, Huttlin EL, Harper JW. Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux. Mol Cell Biol 2018;38:e00392-17. [PMID: 29038162 DOI: 10.1128/MCB.00392-17] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
70 Zhang M, Liu W, Zhang Q, Hu H. miR-101-3p Contributes to α-Synuclein Aggregation in Neural Cells through the miR-101-3p/SKP1/PLK2 Pathway. J Healthc Eng 2021;2021:6147434. [PMID: 34234930 DOI: 10.1155/2021/6147434] [Reference Citation Analysis]
71 Jacomin AC, Bescond A, Soleilhac E, Gallet B, Schoehn G, Fauvarque MO, Taillebourg E. The Deubiquitinating Enzyme UBPY Is Required for Lysosomal Biogenesis and Productive Autophagy in Drosophila. PLoS One 2015;10:e0143078. [PMID: 26571504 DOI: 10.1371/journal.pone.0143078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
72 Morgan MJ, Liu ZG. Programmed cell death with a necrotic-like phenotype. Biomol Concepts 2013;4:259-75. [PMID: 25436579 DOI: 10.1515/bmc-2012-0056] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
73 Wu H, Hao A, Cui H, Wu W, Yang H, Hu B, Li P. TRAF6 expression is associated with poorer prognosis and high recurrence in urothelial bladder cancer. Oncol Lett 2017;14:2432-8. [PMID: 28781679 DOI: 10.3892/ol.2017.6427] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
74 Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ 2020;27:1023-35. [PMID: 31337872 DOI: 10.1038/s41418-019-0395-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
75 Slobodkin MR, Elazar Z. The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 2013;55:51-64. [PMID: 24070471 DOI: 10.1042/bse0550051] [Cited by in Crossref: 155] [Cited by in F6Publishing: 149] [Article Influence: 19.4] [Reference Citation Analysis]
76 Kwon Y, Kim JW, Jeoung JA, Kim MS, Kang C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol Cells 2017;40:607-12. [PMID: 28927262 DOI: 10.14348/molcells.2017.0151] [Cited by in Crossref: 13] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
77 Weil R. Does antigen masking by ubiquitin chains protect from the development of autoimmune diseases? Front Immunol 2014;5:262. [PMID: 24917867 DOI: 10.3389/fimmu.2014.00262] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
78 David CAW, Del Castillo Busto ME, Cuello-Nuñez S, Goenaga-Infante H, Barrow M, Fernig DG, Murray P, Rosseinsky MJ, Owen A, Liptrott NJ. Assessment of changes in autophagic vesicles in human immune cell lines exposed to nano particles. Cell Biosci 2021;11:133. [PMID: 34271993 DOI: 10.1186/s13578-021-00648-8] [Reference Citation Analysis]
79 Nakagawa Y, Yamada S. Metal homeostasis disturbances in neurodegenerative disorders, with special emphasis on Creutzfeldt-Jakob disease - Potential pathogenetic mechanism and therapeutic implications. Pharmacol Ther 2020;207:107455. [PMID: 31863817 DOI: 10.1016/j.pharmthera.2019.107455] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Ryter SW, Choi AM. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol 2015;4:215-25. [PMID: 25617802 DOI: 10.1016/j.redox.2014.12.010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 69] [Article Influence: 10.1] [Reference Citation Analysis]
81 Dökümcü K, Farahani RM. Evolution of Resistance in Cancer: A Cell Cycle Perspective. Front Oncol 2019;9:376. [PMID: 31143706 DOI: 10.3389/fonc.2019.00376] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
82 Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021;26:512-33. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Reference Citation Analysis]
83 Qie B, Lyu Z, Lyu L, Liu J, Gao X, Liu Y, Duan W, Zhang N, Du L, Liu K. Sch9 regulates intracellular protein ubiquitination by controlling stress responses. Redox Biol 2015;5:290-300. [PMID: 26087116 DOI: 10.1016/j.redox.2015.06.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
84 Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15:713-720. [PMID: 23817233 DOI: 10.1038/ncb2788] [Cited by in Crossref: 675] [Cited by in F6Publishing: 679] [Article Influence: 75.0] [Reference Citation Analysis]
85 Subramani S. A mammalian pexophagy target. Nat Cell Biol 2015;17:1371-3. [PMID: 26458245 DOI: 10.1038/ncb3253] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
86 Xiao L, Wei F, Zhou Y, Anderson GJ, Frazer DM, Lim YC, Liu T, Xiao Y. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Lett 2020;20:478-95. [DOI: 10.1021/acs.nanolett.9b04216] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
87 Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol 2015;7:a006080. [PMID: 26626938 DOI: 10.1101/cshperspect.a006080] [Cited by in Crossref: 460] [Cited by in F6Publishing: 426] [Article Influence: 65.7] [Reference Citation Analysis]
88 Kono Y, Colley T, To M, Papaioannou AI, Mercado N, Baker JR, To Y, Abe S, Haruki K, Ito K, Barnes PJ. Cigarette smoke-induced impairment of autophagy in macrophages increases galectin-8 and inflammation. Sci Rep 2021;11:335. [PMID: 33432024 DOI: 10.1038/s41598-020-79848-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Nombela I, Requena-Platek R, Morales-Lange B, Chico V, Puente-Marin S, Ciordia S, Mena MC, Coll J, Perez L, Mercado L, Ortega-Villaizan MDM. Rainbow Trout Red Blood Cells Exposed to Viral Hemorrhagic Septicemia Virus Up-Regulate Antigen-Processing Mechanisms and MHC I&II, CD86, and CD83 Antigen-presenting Cell Markers. Cells 2019;8:E386. [PMID: 31035565 DOI: 10.3390/cells8050386] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
90 Morales I, Sanchez A, Puertas-Avendaño R, Rodriguez-Sabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia 2020;68:2277-99. [PMID: 32415886 DOI: 10.1002/glia.23839] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
91 Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020;10:E17. [PMID: 33374212 DOI: 10.3390/cells10010017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
92 Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. Turk J Biol 2021;45:235-52. [PMID: 34377049 DOI: 10.3906/biy-2103-51] [Reference Citation Analysis]
93 Rocchi A, He C. Regulation of Exercise-Induced Autophagy in Skeletal Muscle. Curr Pathobiol Rep 2017;5:177-86. [PMID: 29057166 DOI: 10.1007/s40139-017-0135-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
94 Ryan TA, Tumbarello DA. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018;9:1024. [PMID: 29867991 DOI: 10.3389/fimmu.2018.01024] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
95 Liu X, Yamashita T, Shang J, Shi X, Morihara R, Huang Y, Sato K, Takemoto M, Hishikawa N, Ohta Y, Abe K. Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke model. J Cereb Blood Flow Metab 2020;40:214-24. [PMID: 30375939 DOI: 10.1177/0271678X18810617] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
96 Sera Y, Hanamata S, Sakamoto S, Ono S, Kaneko K, Mitsui Y, Koyano T, Fujita N, Sasou A, Masumura T, Saji H, Nonomura KI, Mitsuda N, Mitsui T, Kurusu T, Kuchitsu K. Essential roles of autophagy in metabolic regulation in endosperm development during rice seed maturation. Sci Rep 2019;9:18544. [PMID: 31811157 DOI: 10.1038/s41598-019-54361-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
97 Wilde L, Tanson K, Curry J, Martinez-outschoorn U. Autophagy in cancer: a complex relationship. Biochemical Journal 2018;475:1939-54. [DOI: 10.1042/bcj20170847] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 8.8] [Reference Citation Analysis]
98 Vishnupriya S, Priya Dharshini LC, Sakthivel KM, Rasmi RR. Autophagy markers as mediators of lung injury-implication for therapeutic intervention. Life Sci 2020;260:118308. [PMID: 32828942 DOI: 10.1016/j.lfs.2020.118308] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Li X, Li G, Du X, Sun X, Peng Z, Zhao C, Xu Q, Abdelatty A, Mohamed F, Wang Z, Liu G. Increased autophagy mediates the adaptive mechanism of the mammary gland in dairy cows with hyperketonemia. Journal of Dairy Science 2020;103:2545-55. [DOI: 10.3168/jds.2019-16910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
100 Koerver L, Papadopoulos C, Liu B, Kravic B, Rota G, Brecht L, Veenendaal T, Polajnar M, Bluemke A, Ehrmann M, Klumperman J, Jäättelä M, Behrends C, Meyer H. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 2019;20:e48014. [PMID: 31432621 DOI: 10.15252/embr.201948014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
101 Zheng J, Wei S, Xiao T, Li G. LC3B/p62-mediated mitophagy protects A549 cells from resveratrol-induced apoptosis. Life Sci 2021;271:119139. [PMID: 33539914 DOI: 10.1016/j.lfs.2021.119139] [Reference Citation Analysis]
102 Brooks D, Naeem F, Stetsiv M, Goetting SC, Bawa S, Green N, Clark C, Bashirullah A, Geisbrecht ER. Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet 2020;16:e1008700. [PMID: 32320396 DOI: 10.1371/journal.pgen.1008700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
103 Li L, Xu J, He L, Peng L, Zhong Q, Chen L, Jiang Z. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2016;48:491-500. [PMID: 27084518 DOI: 10.1093/abbs/gmw025] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
104 Cao K, Wang H, Fang Y, Wang Y, Wei L, Chen X, Jiang Z, Wei X, Hu Y. Histone Deacetylase 4 Promotes Osteosarcoma Cell Proliferation and Invasion by Regulating Expression of Proliferating Cell Nuclear Antigen. Front Oncol 2019;9:870. [PMID: 31552187 DOI: 10.3389/fonc.2019.00870] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
105 Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016;6:240. [PMID: 27896217 DOI: 10.3389/fonc.2016.00240] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
106 Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020;190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
107 Mcmanus S, Bisson M, Chamberland R, Roy M, Nazari S, Roux S. Autophagy and 3-Phosphoinositide-Dependent Kinase 1 (PDK1)-Related Kinome in Pagetic Osteoclasts: ROLE OF PDK1 IN OC-RELATED KINOME REGULATION. J Bone Miner Res 2016;31:1334-43. [DOI: 10.1002/jbmr.2806] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
108 Jiang S, Park DW, Gao Y, Ravi S, Darley-Usmar V, Abraham E, Zmijewski JW. Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase. Cell Signal 2015;27:1186-97. [PMID: 25728513 DOI: 10.1016/j.cellsig.2015.02.024] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
109 Khan MM, Strack S, Wild F, Hanashima A, Gasch A, Brohm K, Reischl M, Carnio S, Labeit D, Sandri M, Labeit S, Rudolf R. Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 2014;10:123-36. [PMID: 24220501 DOI: 10.4161/auto.26841] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 6.7] [Reference Citation Analysis]
110 Liu K, Kong L, Graham DB, Carey KL, Xavier RJ. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. Cell Rep 2021;36:109434. [PMID: 34320354 DOI: 10.1016/j.celrep.2021.109434] [Reference Citation Analysis]
111 Heckmann BL, Zhang X, Saarinen AM, Liu J. Regulation of G0/G1 Switch Gene 2 (G0S2) Protein Ubiquitination and Stability by Triglyceride Accumulation and ATGL Interaction. PLoS One 2016;11:e0156742. [PMID: 27248498 DOI: 10.1371/journal.pone.0156742] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
112 Xu T, Song Q, Zhou L, Yang W, Wu X, Qian Q, Chai H, Han Q, Pan H, Dou X, Li S. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. Nutr Metab (Lond) 2021;18:13. [PMID: 33468182 DOI: 10.1186/s12986-021-00540-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
113 Kwon DH, Park OH, Kim L, Jung YO, Park Y, Jeong H, Hyun J, Kim YK, Song HK. Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter. Nat Commun 2018;9:3291. [PMID: 30120248 DOI: 10.1038/s41467-018-05825-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
114 Riffelmacher T, Simon AK. Mechanistic roles of autophagy in hematopoietic differentiation. FEBS J 2017;284:1008-20. [PMID: 27860274 DOI: 10.1111/febs.13962] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
115 Edosa TT, Jo YH, Keshavarz M, Park KB, Cho JH, Bae YM, Kim B, Lee YS, Han YS. TmAtg6 Plays an Important Role in Anti-Microbial Defense Against Listeria monocytogenes in the Mealworm, Tenebrio molitor. Int J Mol Sci 2020;21:E1232. [PMID: 32059408 DOI: 10.3390/ijms21041232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Choi GE, Oh JY, Lee HJ, Chae CW, Kim JS, Jung YH, Han HJ. Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization. Cell Death Dis 2018;9:1137. [PMID: 30429451 DOI: 10.1038/s41419-018-1172-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
117 Jeong K, Kwon HY, Jeong MS, Sohn EJ, Kim SH. CNOT2 promotes degradation of p62/SQSTM1 as a negative regulator in ATG5 dependent autophagy. Oncotarget 2017;8:46034-46. [PMID: 28537904 DOI: 10.18632/oncotarget.17682] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
118 Tokuda E, Brännström T, Andersen PM, Marklund SL. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun 2016;4:6. [PMID: 26810478 DOI: 10.1186/s40478-016-0274-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
119 Bisaro B, Sciortino M, Colombo S, Camacho Leal MP, Costamagna A, Castellano I, Montemurro F, Rossi V, Valabrega G, Turco E, Defilippi P, Cabodi S. p130Cas scaffold protein regulates ErbB2 stability by altering breast cancer cell sensitivity to autophagy. Oncotarget 2016;7:4442-53. [PMID: 26716506 DOI: 10.18632/oncotarget.6710] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
120 Rao L, Mak VCY, Zhou Y, Zhang D, Li X, Fung CCY, Sharma R, Gu C, Lu Y, Tipoe GL, Cheung ANY, Mills GB, Cheung LWT. p85β regulates autophagic degradation of AXL to activate oncogenic signaling. Nat Commun 2020;11:2291. [PMID: 32385243 DOI: 10.1038/s41467-020-16061-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
121 Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. Adv Exp Med Biol 2020;1233:117-51. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
122 Upadhyay A, Anjum B, Godbole NM, Rajak S, Shukla P, Tiwari S, Sinha RA, Godbole MM. Time-restricted feeding reduces high-fat diet associated placental inflammation and limits adverse effects on fetal organ development. Biochem Biophys Res Commun 2019;514:415-21. [PMID: 31053302 DOI: 10.1016/j.bbrc.2019.04.154] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
123 Kim BW, Kwon DH, Song HK. Structure biology of selective autophagy receptors. BMB Rep 2016;49:73-80. [PMID: 26698872 DOI: 10.5483/bmbrep.2016.49.2.265] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
124 Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson ES, Das BB, Saha A. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog 2020;16:e1008105. [PMID: 32092124 DOI: 10.1371/journal.ppat.1008105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
125 Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021;78:4305-33. [PMID: 33630111 DOI: 10.1007/s00018-021-03787-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
126 Ma Y, Yuan S, Tian X, Lin S, Wei S, Hu T, Chen S, Li X, Chen S, Wu D, Wang M, Guo D. ABIN1 inhibits HDAC1 ubiquitination and protects it from both proteasome- and lysozyme-dependent degradation. J Cell Biochem 2018;119:3030-43. [PMID: 29058807 DOI: 10.1002/jcb.26428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
127 Kim J, Lee S, Kim H, Lee H, Seong KM, Youn H, Youn B. Autophagic Organelles in DNA Damage Response. Front Cell Dev Biol 2021;9:668735. [PMID: 33912571 DOI: 10.3389/fcell.2021.668735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Juris L, Montino M, Rube P, Schlotterhose P, Thumm M, Krick R. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J 2015;34:955-73. [PMID: 25691244 DOI: 10.15252/embj.201488957] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
129 Zhang Y, Min H, Shi C, Xia G, Lai Z. Transcriptome analysis of the role of autophagy in plant response to heat stress. PLoS One 2021;16:e0247783. [PMID: 33635879 DOI: 10.1371/journal.pone.0247783] [Reference Citation Analysis]
130 Tanner K, Brzovic P, Rohde JR. The bacterial pathogen-ubiquitin interface: lessons learned from Shigella. Cell Microbiol 2015;17:35-44. [PMID: 25355173 DOI: 10.1111/cmi.12390] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
131 Li F, Xu D, Wang Y, Zhou Z, Liu J, Hu S, Gong Y, Yuan J, Pan L. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Autophagy 2018;14:66-79. [PMID: 29394115 DOI: 10.1080/15548627.2017.1391970] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 12.8] [Reference Citation Analysis]
132 Chen S, Jing Y, Kang X, Yang L, Wang DL, Zhang W, Zhang L, Chen P, Chang JF, Yang XM, Sun FL. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res 2017;45:1144-58. [PMID: 28180298 DOI: 10.1093/nar/gkw1025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
133 Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci 2020;21:E2685. [PMID: 32294899 DOI: 10.3390/ijms21082685] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 21.0] [Reference Citation Analysis]
134 Han D, Li S, Xia Q, Meng X, Dong L. Overexpressed Smurf1 is degraded in glioblastoma cells through autophagy in a p62-dependent manner. FEBS Open Bio 2021. [PMID: 34614303 DOI: 10.1002/2211-5463.13310] [Reference Citation Analysis]
135 Neumann Y, Bruns SA, Rohde M, Prajsnar TK, Foster SJ, Schmitz I. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy. 2016;12:2069-2084. [PMID: 27629870 DOI: 10.1080/15548627.2016.1226732] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 8.5] [Reference Citation Analysis]
136 Jia X, Gong X, Jia X, Li X, Wang Y, Wang P, Huo L, Sun X, Che R, Li T, Zou Y, Ma F. Overexpression of MdATG8i Enhances Drought Tolerance by Alleviating Oxidative Damage and Promoting Water Uptake in Transgenic Apple. Int J Mol Sci 2021;22:5517. [PMID: 34073724 DOI: 10.3390/ijms22115517] [Reference Citation Analysis]
137 Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, Cantwell J, Luu C, Cornella-Taracido I, Harrington E, Fekkes P, Lei H, Fang Q, Digan ME, Burdick D, Powers AF, Helliwell SB, D'Aquin S, Bastien J, Wang H, Wiederschain D, Kuerth J, Bergman P, Schwalb D, Thomas J, Ugwonali S, Harbinski F, Tallarico J, Wilson CJ, Myer VE, Porter JA, Bussiere DE, Finan PM, Labow MA, Mao X, Hamann LG, Manning BD, Valdez RA, Nicholson T, Schirle M, Knapp MS, Keaney EP, Murphy LO. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16:1069-1079. [PMID: 25327288 DOI: 10.1038/ncb3053] [Cited by in Crossref: 307] [Cited by in F6Publishing: 302] [Article Influence: 38.4] [Reference Citation Analysis]
138 Lenzi P, Lazzeri G, Biagioni F, Busceti CL, Gambardella S, Salvetti A, Fornai F. The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions. Front Neuroanat 2016;10:78. [PMID: 27493626 DOI: 10.3389/fnana.2016.00078] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
139 Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, Xu J, Xu C, Boulais PE, Zhang D, Maryanovich M, Cuervo AM, Frenette PS. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat Commun 2021;12:2522. [PMID: 33947846 DOI: 10.1038/s41467-021-22749-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Si H, Ma P, Liang Q, Yin Y, Wang P, Zhang Q, Wang S, Deng H. Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster. PLoS One 2019;14:e0225214. [PMID: 31714929 DOI: 10.1371/journal.pone.0225214] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
141 Jimenez-Moreno N, Lane JD. Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. Oxid Med Cell Longev 2020;2020:8865611. [PMID: 33224433 DOI: 10.1155/2020/8865611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
142 Hurley JH, Schulman BA. Atomistic autophagy: the structures of cellular self-digestion. Cell 2014;157:300-11. [PMID: 24725401 DOI: 10.1016/j.cell.2014.01.070] [Cited by in Crossref: 125] [Cited by in F6Publishing: 122] [Article Influence: 15.6] [Reference Citation Analysis]
143 Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2014;98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
144 Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021;14:10. [PMID: 33413496 DOI: 10.1186/s13045-020-01027-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
145 Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. Adv Neurobiol 2019;23:17-81. [PMID: 31667805 DOI: 10.1007/978-3-030-27480-1_2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
146 Kim BW, Hong SB, Kim JH, Kwon DH, Song HK. Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat Commun 2013;4:1613. [PMID: 23511477 DOI: 10.1038/ncomms2606] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 6.9] [Reference Citation Analysis]
147 Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood). 2013;238:525-538. [PMID: 23856904 DOI: 10.1177/1535370213489446] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 8.8] [Reference Citation Analysis]
148 Zhong C, Pu LY, Fang MM, Gu Z, Rao JH, Wang XH. Retinoic acid receptor α promotes autophagy to alleviate liver ischemia and reperfusion injury. World J Gastroenterol 2015; 21(43): 12381-12391 [PMID: 26604645 DOI: 10.3748/wjg.v21.i43.12381] [Cited by in CrossRef: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
149 Gu H, Shi X, Liu C, Wang C, Sui N, Zhao Y, Gong J, Wang F, Zhang H, Li W, Zhao T. USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat Commun. 2019;10:1465. [PMID: 30931944 DOI: 10.1038/s41467-019-09430-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
150 Wu Y, Cui J. Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network. In: Cui J, editor. Autophagy Regulation of Innate Immunity. Singapore: Springer; 2019. pp. 145-66. [DOI: 10.1007/978-981-15-0606-2_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
151 Kwon DH, Kim S, Jung YO, Roh KH, Kim L, Kim BW, Hong SB, Lee IY, Song JH, Lee WC, Choi EJ, Hwang KY, Song HK. The 1:2 complex between RavZ and LC3 reveals a mechanism for deconjugation of LC3 on the phagophore membrane. Autophagy 2017;13:70-81. [PMID: 27791457 DOI: 10.1080/15548627.2016.1243199] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
152 Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest. 2015;125:14-24. [PMID: 25654546 DOI: 10.1172/jci73938] [Cited by in Crossref: 211] [Cited by in F6Publishing: 111] [Article Influence: 30.1] [Reference Citation Analysis]
153 Zhao F, Xie X, Tan X, Yu H, Tian M, Lv H, Qin C, Qi J, Zhu Q. The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Front Immunol 2021;12:691766. [PMID: 34456908 DOI: 10.3389/fimmu.2021.691766] [Reference Citation Analysis]
154 Aillaud M, Schulte LN. Emerging Roles of Long Noncoding RNAs in the Cytoplasmic Milieu. Noncoding RNA 2020;6:E44. [PMID: 33182489 DOI: 10.3390/ncrna6040044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
155 Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G. Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 2013;23:310-22. [PMID: 23726895 DOI: 10.1016/j.semcancer.2013.05.008] [Cited by in Crossref: 171] [Cited by in F6Publishing: 167] [Article Influence: 19.0] [Reference Citation Analysis]
156 Gohel R, Kournoutis A, Petridi S, Nezis IP. Molecular mechanisms of selective autophagy in Drosophila. Elsevier; 2020. pp. 63-105. [DOI: 10.1016/bs.ircmb.2019.08.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
157 Xu W, Cai S, Zhang Y, Wang Y, Ahammed GJ, Xia X, Shi K, Zhou Y, Yu J, Reiter RJ, Zhou J. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 2016;61:457-69. [DOI: 10.1111/jpi.12359] [Cited by in Crossref: 121] [Cited by in F6Publishing: 100] [Article Influence: 20.2] [Reference Citation Analysis]
158 Luo H, Han L, Xu J. Apelin/APJ system: A novel promising target for neurodegenerative diseases. J Cell Physiol 2020;235:638-57. [DOI: 10.1002/jcp.29001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
159 Weihl CC. Monitoring autophagy in the treatment of protein aggregate diseases: steps toward identifying autophagic biomarkers. Neurotherapeutics 2013;10:383-90. [PMID: 23408309 DOI: 10.1007/s13311-013-0180-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
160 Wang Y, Cai S, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy 2015;11:2033-47. [PMID: 26649940 DOI: 10.1080/15548627.2015.1098798] [Cited by in Crossref: 91] [Cited by in F6Publishing: 80] [Article Influence: 13.0] [Reference Citation Analysis]
161 Nakagawa I. Streptococcus pyogenes escapes from autophagy. Cell Host Microbe 2013;14:604-6. [PMID: 24331458 DOI: 10.1016/j.chom.2013.11.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
162 Lai SC, Devenish R. Peering into the 'black box' of pathogen recognition by cellular autophagy systems. Microb Cell 2015;2:322-8. [PMID: 28357309 DOI: 10.15698/mic2015.09.225] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
163 Ribeiro-rodrigues T, Catarino S, Pinho M, Pereira P, Girao H. Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive. Biochemical Society Transactions 2015;43:471-5. [DOI: 10.1042/bst20150036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
164 Patra T, Meyer K, Ray RB, Ray R. A combination of AZD5363 and FH5363 induces lethal autophagy in transformed hepatocytes. Cell Death Dis 2020;11:540. [PMID: 32681102 DOI: 10.1038/s41419-020-02741-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
165 Xu Y, Wan W. TP 53 INP 2 mediates autophagic degradation of ubiquitinated proteins through its ubiquitin‐interacting motif. FEBS Lett 2019;593:1974-82. [DOI: 10.1002/1873-3468.13467] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
166 Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 2014;21:336-45. [PMID: 24699082 DOI: 10.1038/nsmb.2787] [Cited by in Crossref: 182] [Cited by in F6Publishing: 175] [Article Influence: 22.8] [Reference Citation Analysis]
167 Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, Wagstaff JL, Freund SM, Komander D. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell 2015;58:95-109. [PMID: 25752577 DOI: 10.1016/j.molcel.2015.01.042] [Cited by in Crossref: 112] [Cited by in F6Publishing: 101] [Article Influence: 16.0] [Reference Citation Analysis]
168 Nunes P, Ernandez T, Roth I, Qiao X, Strebel D, Bouley R, Charollais A, Ramadori P, Foti M, Meda P, Féraille E, Brown D, Hasler U. Hypertonic stress promotes autophagy and microtubule-dependent autophagosomal clusters. Autophagy 2013;9:550-67. [PMID: 23380587 DOI: 10.4161/auto.23662] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
169 Boridy S, Le PU, Petrecca K, Maysinger D. Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 2014;5:e1216. [PMID: 24810052 DOI: 10.1038/cddis.2014.182] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 6.1] [Reference Citation Analysis]
170 Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a Potential Target for Sarcopenia: AUTOPHAGY REGULATION IN SARCOPENIA. J Cell Physiol 2016;231:1450-9. [DOI: 10.1002/jcp.25260] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 8.0] [Reference Citation Analysis]
171 Papaleo E, Saladino G, Lambrughi M, Lindorff-larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016;116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Cited by in Crossref: 189] [Cited by in F6Publishing: 157] [Article Influence: 31.5] [Reference Citation Analysis]
172 Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157:65-75. [PMID: 24679527 DOI: 10.1016/j.cell.2014.02.049] [Cited by in Crossref: 433] [Cited by in F6Publishing: 416] [Article Influence: 54.1] [Reference Citation Analysis]
173 Khadka VS, Vaughn K, Xie J, Swaminathan P, Ma Q, Cramer GR, Fennell AY. Transcriptomic response is more sensitive to water deficit in shoots than roots of Vitis riparia (Michx.). BMC Plant Biol 2019;19:72. [PMID: 30760212 DOI: 10.1186/s12870-019-1664-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
174 Zhou J, Wang Z, Wang X, Li X, Zhang Z, Fan B, Zhu C, Chen Z. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. Autophagy 2018;14:487-504. [PMID: 29313416 DOI: 10.1080/15548627.2017.1422856] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
175 Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, Alhoot MA. Autophagy and senescence: A new insight in selected human diseases. J Cell Physiol 2019;234:21485-92. [PMID: 31144309 DOI: 10.1002/jcp.28895] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
176 Chaurasia M, Bhatt AN, Das A, Dwarakanath BS, Sharma K. Radiation-induced autophagy: mechanisms and consequences. Free Radical Research 2016;50:273-90. [DOI: 10.3109/10715762.2015.1129534] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 6.8] [Reference Citation Analysis]
177 Lu SL, Kawabata T, Cheng YL, Omori H, Hamasaki M, Kusaba T, Iwamoto R, Arimoto H, Noda T, Lin YS, Yoshimori T. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathog 2017;13:e1006444. [PMID: 28683091 DOI: 10.1371/journal.ppat.1006444] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
178 Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020;9:E1131. [PMID: 32375321 DOI: 10.3390/cells9051131] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 15.0] [Reference Citation Analysis]
179 Lee SH, Lee S, Du J, Jain K, Ding M, Kadado AJ, Atteya G, Jaji Z, Tyagi T, Kim WH, Herzog RI, Patel A, Ionescu CN, Martin KA, Hwa J. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol Med 2019;11:e10409. [PMID: 31282614 DOI: 10.15252/emmm.201910409] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
180 Fan S, Wu K, Luo C, Li X, Zhao M, Song D, Ma S, Zhu E, Chen Y, Ding H, Yi L, Li J, Zhao M, Chen J. Dual NDP52 Function in Persistent CSFV Infection. Front Microbiol 2019;10:2962. [PMID: 31969869 DOI: 10.3389/fmicb.2019.02962] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
181 Härtlova A, Link M, Balounova J, Benesova M, Resch U, Straskova A, Sobol M, Philimonenko A, Hozak P, Krocova Z, Gekara N, Filipp D, Stulik J. Quantitative proteomics analysis of macrophage-derived lipid rafts reveals induction of autophagy pathway at the early time of Francisella tularensis LVS infection. J Proteome Res 2014;13:796-804. [PMID: 24364512 DOI: 10.1021/pr4008656] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
182 [DOI: 10.1101/413153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
183 Baillet N, Krieger S, Journeaux A, Caro V, Tangy F, Vidalain PO, Baize S. Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses 2019;11:E293. [PMID: 30909570 DOI: 10.3390/v11030293] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
184 Duan R, Xie H, Liu ZZ. The Role of Autophagy in Osteoarthritis. Front Cell Dev Biol 2020;8:608388. [PMID: 33324654 DOI: 10.3389/fcell.2020.608388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
185 Demishtein A, Fraiberg M, Berko D, Tirosh B, Elazar Z, Navon A. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy 2017;13:1697-708. [PMID: 28792301 DOI: 10.1080/15548627.2017.1356549] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 9.6] [Reference Citation Analysis]
186 Sartori R, Gregorevic P, Sandri M. TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 2014;25:464-71. [PMID: 25042839 DOI: 10.1016/j.tem.2014.06.002] [Cited by in Crossref: 101] [Cited by in F6Publishing: 93] [Article Influence: 12.6] [Reference Citation Analysis]
187 Yan J, Li J, Zhang L, Sun Y, Jiang J, Huang Y, Xu H, Jiang H, Hu R. Nrf2 protects against acute lung injury and inflammation by modulating TLR4 and Akt signaling. Free Radic Biol Med. 2018;121:78-85. [PMID: 29678610 DOI: 10.1016/j.freeradbiomed.2018.04.557] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 10.0] [Reference Citation Analysis]
188 Horikawa I, Park KY, Isogaya K, Hiyoshi Y, Li H, Anami K, Robles AI, Mondal AM, Fujita K, Serrano M, Harris CC. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ 2017;24:1017-28. [PMID: 28362428 DOI: 10.1038/cdd.2017.48] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
189 Bhattacharjee S, Bose P, Patel K, Roy SG, Gain C, Gowda H, Robertson ES, Saha A. Transcriptional and epigenetic modulation of autophagy promotes EBV oncoprotein EBNA3C induced B-cell survival. Cell Death Dis 2018;9:605. [PMID: 29789559 DOI: 10.1038/s41419-018-0668-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
190 Franco ML, Melero C, Sarasola E, Acebo P, Luque A, Calatayud-Baselga I, García-Barcina M, Vilar M. Mutations in TrkA Causing Congenital Insensitivity to Pain with Anhidrosis (CIPA) Induce Misfolding, Aggregation, and Mutation-dependent Neurodegeneration by Dysfunction of the Autophagic Flux. J Biol Chem 2016;291:21363-74. [PMID: 27551041 DOI: 10.1074/jbc.M116.722587] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
191 Sridevi Gurubaran I, Viiri J, Koskela A, Hyttinen JMT, Paterno JJ, Kis G, Antal M, Urtti A, Kauppinen A, Felszeghy S, Kaarniranta K. Mitophagy in the Retinal Pigment Epithelium of Dry Age-Related Macular Degeneration Investigated in the NFE2L2/PGC-1α-/- Mouse Model. Int J Mol Sci 2020;21:E1976. [PMID: 32183173 DOI: 10.3390/ijms21061976] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
192 Yang H, Ni HM, Guo F, Ding Y, Shi YH, Lahiri P, Fröhlich LF, Rülicke T, Smole C, Schmidt VC, Zatloukal K, Cui Y, Komatsu M, Fan J, Ding WX. Sequestosome 1/p62 Protein Is Associated with Autophagic Removal of Excess Hepatic Endoplasmic Reticulum in Mice. J Biol Chem 2016;291:18663-74. [PMID: 27325701 DOI: 10.1074/jbc.M116.739821] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
193 Watanabe Y, Tsujimura A, Taguchi K, Tanaka M. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis. Autophagy 2017;13:133-48. [PMID: 27846364 DOI: 10.1080/15548627.2016.1248018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
194 Guo W, Wong S, Li M, Liang W, Liesa M, Serra C, Jasuja R, Bartke A, Kirkland JL, Shirihai O, Bhasin S. Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice. PLoS One 2012;7:e51180. [PMID: 23240002 DOI: 10.1371/journal.pone.0051180] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
195 Bianchi-Smiraglia A, Lipchick BC, Nikiforov MA. The Immortal Senescence. Methods Mol Biol 2017;1534:1-15. [PMID: 27812863 DOI: 10.1007/978-1-4939-6670-7_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
196 Deehan M, Lin W, Blum B, Emili A, Frydman H. Intracellular Density of Wolbachia Is Mediated by Host Autophagy and the Bacterial Cytoplasmic Incompatibility Gene cifB in a Cell Type-Dependent Manner in Drosophila melanogaster. mBio 2021;12:e02205-20. [PMID: 33436431 DOI: 10.1128/mBio.02205-20] [Cited by in Crossref: 21] [Article Influence: 21.0] [Reference Citation Analysis]
197 Xie Y, Li S, Sun L, Liu S, Wang F, Wen B, Sun L, Fang X, Chai Y, Cao H, Jia N, Gu T, Lou X, Xin F. Fungal Immunomodulatory Protein from Nectria haematococca Suppresses Growth of Human Lung Adenocarcinoma by Inhibiting the PI3K/Akt Pathway. Int J Mol Sci 2018;19:E3429. [PMID: 30388826 DOI: 10.3390/ijms19113429] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
198 Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016;13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
199 Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Münch J, Kirchhoff F, Simonsen A, Wei Y, Levine B, Johansen T, Deretic V. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 2014;30:394-409. [PMID: 25127057 DOI: 10.1016/j.devcel.2014.06.013] [Cited by in Crossref: 197] [Cited by in F6Publishing: 190] [Article Influence: 24.6] [Reference Citation Analysis]
200 Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2015;1852:252-61. [DOI: 10.1016/j.bbadis.2014.05.020] [Cited by in Crossref: 113] [Cited by in F6Publishing: 108] [Article Influence: 16.1] [Reference Citation Analysis]
201 Vara-Perez M, Felipe-Abrio B, Agostinis P. Mitophagy in Cancer: A Tale of Adaptation. Cells 2019;8:E493. [PMID: 31121959 DOI: 10.3390/cells8050493] [Cited by in Crossref: 68] [Cited by in F6Publishing: 57] [Article Influence: 22.7] [Reference Citation Analysis]
202 Fang DF, He K, Wang J, Mu R, Tan B, Jian Z, Li HY, Song W, Chang Y, Gong WL, Li WH, Wang GJ. RAD23A negatively regulates RIG-I/MDA5 signaling through promoting TRAF2 polyubiquitination and degradation. Biochem Biophys Res Commun 2013;431:686-92. [PMID: 23357418 DOI: 10.1016/j.bbrc.2013.01.059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
203 Pandey A, Goru SK, Kadakol A, Malek V, Sharma N, Gaikwad AB. H2AK119 monoubiquitination regulates Angiotensin II receptor mediated macrophage infiltration and renal fibrosis in type 2 diabetic rats. Biochimie 2016;131:68-76. [PMID: 27693081 DOI: 10.1016/j.biochi.2016.09.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
204 Liu B, Wang T, Wang H, Zhang L, Xu F, Fang R, Li L, Cai X, Wu Y, Zhang W, Ye L. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol 2018;11:26. [PMID: 29471853 DOI: 10.1186/s13045-018-0577-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
205 Mrakovcic M, Kleinheinz J, Fröhlich LF. p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int J Mol Sci 2019;20:E2415. [PMID: 31096697 DOI: 10.3390/ijms20102415] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
206 Zientara-Rytter K, Subramani S. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Cells 2019;8:E40. [PMID: 30634694 DOI: 10.3390/cells8010040] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 14.0] [Reference Citation Analysis]
207 Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis 2020;11:817. [PMID: 32999282 DOI: 10.1038/s41419-020-03032-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
208 Wan R, Yuan P, Guo L, Shao J, Liu X, Lai W, Kong Q, Chen L, Ge J, Xu Z, Xie J, Shen Y, Hu J, Zhou Q, Yu J, Jiang Z, Jiang X, Hong K. Ubiquitin-like protein FAT10 suppresses SIRT1-mediated autophagy to protect against ischemic myocardial injury. J Mol Cell Cardiol 2021;153:1-13. [PMID: 33307094 DOI: 10.1016/j.yjmcc.2020.11.007] [Reference Citation Analysis]
209 Zhang Q, Yang L, Guan G, Cheng P, Cheng W, Wu A. LOXL2 Upregulation in Gliomas Drives Tumorigenicity by Activating Autophagy to Promote TMZ Resistance and Trigger EMT. Front Oncol 2020;10:569584. [PMID: 33194658 DOI: 10.3389/fonc.2020.569584] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
210 Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 2014;6:99. [PMID: 24904412 DOI: 10.3389/fnagi.2014.00099] [Cited by in Crossref: 93] [Cited by in F6Publishing: 95] [Article Influence: 11.6] [Reference Citation Analysis]
211 Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 2014;205:435-45. [PMID: 24862571 DOI: 10.1083/jcb.201402054] [Cited by in Crossref: 136] [Cited by in F6Publishing: 127] [Article Influence: 17.0] [Reference Citation Analysis]
212 Kundu M, Basu J. The Role of microRNAs and Long Non-Coding RNAs in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Front Immunol 2021;12:687962. [PMID: 34248974 DOI: 10.3389/fimmu.2021.687962] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
213 Ito C, Saito Y, Nozawa T, Fujii S, Sawa T, Inoue H, Matsunaga T, Khan S, Akashi S, Hashimoto R, Aikawa C, Takahashi E, Sagara H, Komatsu M, Tanaka K, Akaike T, Nakagawa I, Arimoto H. Endogenous nitrated nucleotide is a key mediator of autophagy and innate defense against bacteria. Mol Cell 2013;52:794-804. [PMID: 24268578 DOI: 10.1016/j.molcel.2013.10.024] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 7.4] [Reference Citation Analysis]
214 Duong BH, Onizawa M, Oses-Prieto JA, Advincula R, Burlingame A, Malynn BA, Ma A. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 2015;42:55-67. [PMID: 25607459 DOI: 10.1016/j.immuni.2014.12.031] [Cited by in Crossref: 158] [Cited by in F6Publishing: 155] [Article Influence: 22.6] [Reference Citation Analysis]
215 Booth LA, Roberts JL, Dent P. The role of cell signaling in the crosstalk between autophagy and apoptosis in the regulation of tumor cell survival in response to sorafenib and neratinib. Semin Cancer Biol 2020;66:129-39. [PMID: 31644944 DOI: 10.1016/j.semcancer.2019.10.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
216 Ebner P, Poetsch I, Deszcz L, Hoffmann T, Zuber J, Ikeda F. The IAP family member BRUCE regulates autophagosome-lysosome fusion. Nat Commun 2018;9:599. [PMID: 29426817 DOI: 10.1038/s41467-018-02823-x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 11.8] [Reference Citation Analysis]
217 Chang HY, Huang TC, Chen NN, Huang HC, Juan HF. Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis 2014;5:e1540. [PMID: 25429617 DOI: 10.1038/cddis.2014.504] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
218 Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial Dysfunction: a Potential Therapeutic Target to Treat Alzheimer’s Disease. Mol Neurobiol 2020;57:3075-88. [DOI: 10.1007/s12035-020-01945-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
219 Zhou MM, Zhang WY, Li RJ, Guo C, Wei SS, Tian XM, Luo J, Kong LY. Anti-inflammatory activity of Khayandirobilide A from Khaya senegalensis via NF-κB, AP-1 and p38 MAPK/Nrf2/HO-1 signaling pathways in lipopolysaccharide-stimulated RAW 264.7 and BV-2 cells. Phytomedicine 2018;42:152-63. [PMID: 29655681 DOI: 10.1016/j.phymed.2018.03.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
220 Brazee P, Dada LA, Sznajder JI. Role of Linear Ubiquitination in Health and Disease. Am J Respir Cell Mol Biol 2016;54:761-8. [PMID: 26848516 DOI: 10.1165/rcmb.2016-0014TR] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
221 Dong H, Su H, Chen L, Liu K, Hu HM, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Manag Res 2018;10:493-501. [PMID: 29588618 DOI: 10.2147/CMAR.S155914] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
222 Kaminska J, Rzepnikowska W, Polak A, Flis K, Soczewka P, Bala K, Sienko M, Grynberg M, Kaliszewski P, Urbanek A, Ayscough K, Zoladek T. Phosphatidylinositol-3-phosphate regulates response of cells to proteotoxic stress. Int J Biochem Cell Biol 2016;79:494-504. [PMID: 27498190 DOI: 10.1016/j.biocel.2016.08.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
223 Yoshida Y, Yasuda S, Fujita T, Hamasaki M, Murakami A, Kawawaki J, Iwai K, Saeki Y, Yoshimori T, Matsuda N, Tanaka K. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy. Proc Natl Acad Sci U S A 2017;114:8574-9. [PMID: 28743755 DOI: 10.1073/pnas.1702615114] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
224 Townley AR, Wheatley SP. Mitochondrial survivin reduces oxidative phosphorylation in cancer cells by inhibiting mitophagy. J Cell Sci 2020;133:jcs247379. [PMID: 33077555 DOI: 10.1242/jcs.247379] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
225 Wang L, Liu S, Pan B, Cai H, Zhou H, Yang P, Wang W. The role of autophagy in abdominal aortic aneurysm: protective but dysfunctional. Cell Cycle 2020;19:2749-59. [PMID: 32960711 DOI: 10.1080/15384101.2020.1823731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
226 Liang N, He Q, Liu X, Sun H. Multifaceted roles of ATM in autophagy: From nonselective autophagy to selective autophagy. Cell Biochem Funct 2019;37:177-84. [PMID: 30847960 DOI: 10.1002/cbf.3385] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
227 Im S, Kim D. Nkx3.2 induces oxygen concentration-independent and lysosome-dependent degradation of HIF-1α to modulate hypoxic responses in chondrocytes. Cellular Signalling 2017;36:127-38. [DOI: 10.1016/j.cellsig.2017.05.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
228 Kim S, Eun HS, Jo EK. Roles of Autophagy-Related Genes in the Pathogenesis of Inflammatory Bowel Disease. Cells. 2019;8. [PMID: 30669622 DOI: 10.3390/cells8010077] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
229 Hagiwara D, Arima H, Morishita Y, Wenjun L, Azuma Y, Ito Y, Suga H, Goto M, Banno R, Sugimura Y, Shiota A, Asai N, Takahashi M, Oiso Y. Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus. Cell Death Dis 2014;5:e1148. [PMID: 24675466 DOI: 10.1038/cddis.2014.124] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
230 Nguyen TD, Shaid S, Vakhrusheva O, Koschade SE, Klann K, Thölken M, Baker F, Zhang J, Oellerich T, Sürün D, Derlet A, Haberbosch I, Eimer S, Osiewacz HD, Behrends C, Münch C, Dikic I, Brandts CH. Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy. Blood 2019;133:168-79. [PMID: 30498063 DOI: 10.1182/blood-2018-02-833475] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 11.3] [Reference Citation Analysis]
231 Eberhart T, Kovacs WJ. Pexophagy in yeast and mammals: an update on mysteries. Histochem Cell Biol 2018;150:473-88. [PMID: 30238155 DOI: 10.1007/s00418-018-1724-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
232 Schwertz H, Rowley JW, Portier I, Middleton EA, Tolley ND, Campbell RA, Eustes AS, Chen K, Rondina MT. Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy 2021;:1-17. [PMID: 34689707 DOI: 10.1080/15548627.2021.1990669] [Reference Citation Analysis]
233 Kowalik MA, Perra A, Ledda-Columbano GM, Ippolito G, Piacentini M, Columbano A, Falasca L. Induction of autophagy promotes the growth of early preneoplastic rat liver nodules. Oncotarget. 2016;7:5788-5799. [PMID: 26735341 DOI: 10.18632/oncotarget.6810] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
234 Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy 2020;16:1506-23. [PMID: 31690173 DOI: 10.1080/15548627.2019.1688488] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
235 Wang J, Ouyang X, Zhou Z, Mao S, Niu X, Li H, Xu W, Song Y, Cao J, Lai B. RNF2 promotes the progression of colon cancer by regulating ubiquitination and degradation of IRF4. Biochim Biophys Acta Mol Cell Res 2022;1869:119162. [PMID: 34670117 DOI: 10.1016/j.bbamcr.2021.119162] [Reference Citation Analysis]
236 Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, Hashimoto S, Ryter SW, Choi AM. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 2014;124:3987-4003. [PMID: 25083992 DOI: 10.1172/JCI74985] [Cited by in Crossref: 283] [Cited by in F6Publishing: 182] [Article Influence: 35.4] [Reference Citation Analysis]
237 Majcher V, Goode A, James V, Layfield R. Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 2015;66:43-52. [PMID: 25683489 DOI: 10.1016/j.mcn.2015.01.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]
238 Fernández ÁF, López-Otín C. The functional and pathologic relevance of autophagy proteases. J Clin Invest 2015;125:33-41. [PMID: 25654548 DOI: 10.1172/JCI73940] [Cited by in Crossref: 65] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]
239 Sánchez-martín P, Romá-mateo C, Viana R, Sanz P. Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin–laforin E3-ubiquitin ligase complex. The International Journal of Biochemistry & Cell Biology 2015;69:204-14. [DOI: 10.1016/j.biocel.2015.10.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
240 D'Eletto M, Rossin F, Fedorova O, Farrace MG, Piacentini M. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019;400:125-40. [PMID: 29908126 DOI: 10.1515/hsz-2018-0217] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
241 Park NY, Jo DS, Kim YH, Bae JE, Kim JB, Park HJ, Choi JY, Lee HJ, Chang JH, Bunch H, Jeon HB, Jung YK, Cho DH. Triamterene induces autophagic degradation of lysosome by exacerbating lysosomal integrity. Arch Pharm Res 2021;44:621-31. [PMID: 34100261 DOI: 10.1007/s12272-021-01335-5] [Reference Citation Analysis]
242 Shin H, Bang S, Kim J, Jun JH, Song H, Lim HJ. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice. Sci Rep 2017;7:41986. [PMID: 28155881 DOI: 10.1038/srep41986] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
243 Hancz D, Westerlund E, Valfridsson C, Aemero GM, Bastiat-Sempe B, Orning P, Lien E, Wessels MR, Persson JJ. Streptolysin O Induces the Ubiquitination and Degradation of Pro-IL-1β. J Innate Immun 2019;11:457-68. [PMID: 30889575 DOI: 10.1159/000496403] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
244 Sakuma K, Aoi W, Yamaguchi A. Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch 2015;467:213-29. [PMID: 24797147 DOI: 10.1007/s00424-014-1527-x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 57] [Article Influence: 8.5] [Reference Citation Analysis]
245 Liu Q, Aminu B, Roscow O, Zhang W. Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2021;22:E791. [PMID: 33466790 DOI: 10.3390/ijms22020791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
246 Jo EK, Yuk JM, Shin DM, Sasakawa C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 2013;4:97. [PMID: 23653625 DOI: 10.3389/fimmu.2013.00097] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 9.3] [Reference Citation Analysis]
247 Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. Selective Autophagy and Xenophagy in Infection and Disease. Front Cell Dev Biol 2018;6:147. [PMID: 30483501 DOI: 10.3389/fcell.2018.00147] [Cited by in Crossref: 97] [Cited by in F6Publishing: 88] [Article Influence: 24.3] [Reference Citation Analysis]
248 Kim S, Lee D, Song JC, Cho SJ, Yun SM, Koh YH, Song J, Johnson GV, Jo C. NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Biochem Biophys Res Commun 2014;454:196-201. [PMID: 25450380 DOI: 10.1016/j.bbrc.2014.10.066] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
249 Zhang H, Li Y, Lai W, Huang K, Li Y, Wang Z, Chen X, Wang A. SsATG8 and SsNBR1 mediated-autophagy is required for fungal development, proteasomal stress response and virulence in Sclerotinia sclerotiorum. Fungal Genet Biol 2021;157:103632. [PMID: 34710583 DOI: 10.1016/j.fgb.2021.103632] [Reference Citation Analysis]
250 Liu H, Zang P, Lee II, Anderson B, Christiani A, Strait-Bodey L, Breckheimer BA, Storie M, Tewnion A, Krumm K, Li T, Irwin B, Garcia JM. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle 2021. [PMID: 34264027 DOI: 10.1002/jcsm.12743] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
251 Oshima R, Hasegawa T, Tamai K, Sugeno N, Yoshida S, Kobayashi J, Kikuchi A, Baba T, Futatsugi A, Sato I, Satoh K, Takeda A, Aoki M, Tanaka N. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways. Sci Rep 2016;6:24997. [PMID: 27112194 DOI: 10.1038/srep24997] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
252 Kabat AM, Pott J, Maloy KJ. The Mucosal Immune System and Its Regulation by Autophagy. Front Immunol 2016;7:240. [PMID: 27446072 DOI: 10.3389/fimmu.2016.00240] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 7.7] [Reference Citation Analysis]
253 Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 2015;38:26-35. [PMID: 25282404 DOI: 10.1016/j.tins.2014.09.003] [Cited by in Crossref: 181] [Cited by in F6Publishing: 160] [Article Influence: 22.6] [Reference Citation Analysis]
254 Maqbool A, Hughes RK, Dagdas YF, Tregidgo N, Zess E, Belhaj K, Round A, Bozkurt TO, Kamoun S, Banfield MJ. Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. J Biol Chem 2016;291:20270-82. [PMID: 27458016 DOI: 10.1074/jbc.M116.744995] [Cited by in Crossref: 43] [Cited by in F6Publishing: 22] [Article Influence: 7.2] [Reference Citation Analysis]
255 Guo J, Wu Y, Du J, Yang L, Chen W, Gong K, Dai J, Miao S, Jin D, Xi S. Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression. Oncogenesis 2018;7:49. [PMID: 29904125 DOI: 10.1038/s41389-018-0054-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
256 Buneeva OA, Medvedeva MV, Kopylov AT, Medvedev AE. Ubiquitin Subproteome of Brain Mitochondria and Its Changes Induced by Experimental Parkinsonism and Action of Neuroprotectors. Biochemistry (Mosc) 2019;84:1359-74. [PMID: 31760923 DOI: 10.1134/S0006297919110117] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
257 Svenning S, Johansen T. Selective autophagy. Essays Biochem 2013;55:79-92. [PMID: 24070473 DOI: 10.1042/bse0550079] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 9.5] [Reference Citation Analysis]
258 Vainshtein A, Grumati P, Sandri M, Bonaldo P. Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease. J Mol Med (Berl) 2014;92:127-37. [PMID: 24271008 DOI: 10.1007/s00109-013-1096-z] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 6.8] [Reference Citation Analysis]
259 Giegerich AK, Kuchler L, Sha LK, Knape T, Heide H, Wittig I, Behrends C, Brüne B, von Knethen A. Autophagy-dependent PELI3 degradation inhibits proinflammatory IL1B expression. Autophagy 2014;10:1937-52. [PMID: 25483963 DOI: 10.4161/auto.32178] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
260 Liu L, He J, Wei X, Wan G, Lao Y, Xu W, Li Z, Hu H, Hu Z, Luo X, Wu J, Xie W, Zhang Y, Xu N. MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene 2017;36:5874-84. [PMID: 28628113 DOI: 10.1038/onc.2017.193] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 6.4] [Reference Citation Analysis]
261 Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19:983-997. [PMID: 23921753 DOI: 10.1038/nm.3232] [Cited by in Crossref: 1136] [Cited by in F6Publishing: 1075] [Article Influence: 126.2] [Reference Citation Analysis]
262 Rost-Roszkowska MM, Janelt K, Poprawa I. The role of autophagy in the midgut epithelium of Parachela (Tardigrada). Zoomorphology 2018;137:501-9. [PMID: 30524174 DOI: 10.1007/s00435-018-0407-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
263 Singh R, Kuai D, Guziewicz KE, Meyer J, Wilson M, Lu J, Smith M, Clark E, Verhoeven A, Aguirre GD, Gamm DM. Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human iPS Cell Model of Inherited Macular Degeneration. Mol Ther 2015;23:1700-11. [PMID: 26300224 DOI: 10.1038/mt.2015.141] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
264 Schwarz JM, Pedrazza L, Stenzel W, Rosa JL, Schuelke M, Straussberg R. A new homozygous HERC1 gain-of-function variant in MDFPMR syndrome leads to mTORC1 hyperactivation and reduced autophagy during cell catabolism. Mol Genet Metab 2020;131:126-34. [PMID: 32921582 DOI: 10.1016/j.ymgme.2020.08.008] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
265 Park S, Han S, Choi I, Kim B, Park SP, Joe EH, Suh YH. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS One 2016;11:e0163029. [PMID: 27631370 DOI: 10.1371/journal.pone.0163029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
266 Roy M, Roux S. Rab GTPases in Osteoclastic Endomembrane Systems. Biomed Res Int 2018;2018:4541538. [PMID: 30186859 DOI: 10.1155/2018/4541538] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
267 Karmon O, Ben Aroya S. Spatial Organization of Proteasome Aggregates in the Regulation of Proteasome Homeostasis. Front Mol Biosci 2019;6:150. [PMID: 31998748 DOI: 10.3389/fmolb.2019.00150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
268 Gomes LR, Menck CFM, Leandro GS. Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci 2017;18:E2351. [PMID: 29112132 DOI: 10.3390/ijms18112351] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 8.4] [Reference Citation Analysis]
269 Chang Y, Chen Y, Liu H, Chan Y, Liu M, Hu S, Tseng W, Wu H, Wang M, Chang S. Oligonol Alleviates Sarcopenia by Regulation of Signaling Pathways Involved in Protein Turnover and Mitochondrial Quality. Mol Nutr Food Res 2019;63:1801102. [DOI: 10.1002/mnfr.201801102] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
270 Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci 2020;40:256-66. [PMID: 31744863 DOI: 10.1523/JNEUROSCI.1066-19.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
271 Zenkov NK, Chechushkov AV, Kozhin PM, Kandalintseva NV, Martinovich GG, Menshchikova EB. Plant Phenols and Autophagy. Biochemistry (Mosc) 2016;81:297-314. [PMID: 27293088 DOI: 10.1134/S0006297916040015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 3.4] [Reference Citation Analysis]
272 Li J, Johnson JA, Su H. Ubiquitin and Ubiquitin-like proteins in cardiac disease and protection. Curr Drug Targets 2018;19:989-1002. [PMID: 26648080 DOI: 10.2174/1389450117666151209114608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
273 Sakuma K, Aoi W, Yamaguchi A. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front Aging Neurosci 2014;6:230. [PMID: 25221510 DOI: 10.3389/fnagi.2014.00230] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
274 Nakashima H, Nguyen T, Goins WF, Chiocca EA. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem 2015;290:1485-95. [PMID: 25429107 DOI: 10.1074/jbc.M114.593871] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 6.1] [Reference Citation Analysis]
275 Ntsapi C, Loos B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Experimental Gerontology 2016;83:97-111. [DOI: 10.1016/j.exger.2016.07.014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
276 Kim H, Kim H, Choi J, Inn KS, Seong J. Visualization of Autophagy Progression by a Red-Green-Blue Autophagy Sensor. ACS Sens 2020;5:3850-61. [PMID: 33261316 DOI: 10.1021/acssensors.0c00809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
277 Murali SK, Aroankins TS, Moeller HB, Fenton RA. The Deubiquitylase USP4 Interacts with the Water Channel AQP2 to Modulate Its Apical Membrane Accumulation and Cellular Abundance. Cells 2019;8:E265. [PMID: 30901874 DOI: 10.3390/cells8030265] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
278 Zhou J, Wang J, Yu JQ, Chen Z. Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci 2014;5:174. [PMID: 24817875 DOI: 10.3389/fpls.2014.00174] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 9.9] [Reference Citation Analysis]
279 Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 2015;34:307-325. [PMID: 25527291 DOI: 10.15252/embj.201489847] [Cited by in Crossref: 181] [Cited by in F6Publishing: 169] [Article Influence: 22.6] [Reference Citation Analysis]
280 Thorburn A, Morgan MJ. Autophagy and Cancer Therapy. In: Wang H, editor. Autophagy and Cancer. New York: Springer; 2013. pp. 191-204. [DOI: 10.1007/978-1-4614-6561-4_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
281 Guilbert SM, Varlet A, Fuchs M, Lambert H, Landry J, Lavoie JN. Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. In: Tanguay RM, Hightower LE, editors. The Big Book on Small Heat Shock Proteins. Cham: Springer International Publishing; 2015. pp. 435-56. [DOI: 10.1007/978-3-319-16077-1_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
282 Yuan Y, Zhao J, Gong Y, Wang D, Wang X, Yun F, Liu Z, Zhang S, Li W, Zhao X, Sun L, Sheng L, Pan Z, Li Y. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel. Cell Death Dis 2018;9:873. [PMID: 30158642 DOI: 10.1038/s41419-018-0860-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
283 Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021;22:844. [PMID: 34733362 DOI: 10.3892/ol.2021.13105] [Reference Citation Analysis]
284 Meiners S, Greene CM. Protein quality control in lung disease: it’s all about cloud networking. Eur Respir J 2014;44:846-9. [DOI: 10.1183/09031936.00105214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
285 Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020;174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
286 Valori CF, Brambilla L, Martorana F, Rossi D. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 2014;71:287-97. [PMID: 23912896 DOI: 10.1007/s00018-013-1429-7] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 6.2] [Reference Citation Analysis]
287 Phadwal K, Feng D, Zhu D, MacRae VE. Autophagy as a novel therapeutic target in vascular calcification. Pharmacol Ther 2020;206:107430. [PMID: 31647975 DOI: 10.1016/j.pharmthera.2019.107430] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
288 Spänig S, Kellermann K, Dieterlen MT, Noack T, Lehmann S, Borger MA, Garbade J, Barac YD, Emrich F. The Ubiquitin Proteasome System in Ischemic and Dilated Cardiomyopathy. Int J Mol Sci 2019;20:E6354. [PMID: 31861129 DOI: 10.3390/ijms20246354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
289 Chen G, Chen L, Huang Y, Zhu X, Yu Y. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells. Bioengineered 2021. [PMID: 34699308 DOI: 10.1080/21655979.2021.1997132] [Reference Citation Analysis]
290 Zhang Y, Chen Z. Broad and Complex Roles of NBR1-Mediated Selective Autophagy in Plant Stress Responses. Cells 2020;9:E2562. [PMID: 33266087 DOI: 10.3390/cells9122562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
291 Hu Q, Wang G. Mitochondrial dysfunction in Parkinson's disease. Transl Neurodegener 2016;5:14. [PMID: 27453777 DOI: 10.1186/s40035-016-0060-6] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 12.5] [Reference Citation Analysis]
292 Müller E, Salcan S, Bongardt S, Barbosa DM, Krüger M, Kötter S. E3-ligase knock down revealed differential titin degradation by autopagy and the ubiquitin proteasome system. Sci Rep 2021;11:21134. [PMID: 34702928 DOI: 10.1038/s41598-021-00618-7] [Reference Citation Analysis]
293 Biel TG, Rao VA. Mitochondrial dysfunction activates lysosomal-dependent mitophagy selectively in cancer cells. Oncotarget 2018;9:995-1011. [PMID: 29416672 DOI: 10.18632/oncotarget.23171] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
294 Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2014;5:7988-8013. [PMID: 25237759 DOI: 10.18632/oncotarget.2431] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 8.7] [Reference Citation Analysis]
295 Sonakowska L, Włodarczyk A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska MM. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 2016;11:e0147582. [PMID: 26844766 DOI: 10.1371/journal.pone.0147582] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
296 Fernando R, Castro JP, Flore T, Deubel S, Grune T, Ott C. Age-Related Maintenance of the Autophagy-Lysosomal System Is Dependent on Skeletal Muscle Type. Oxid Med Cell Longev 2020;2020:4908162. [PMID: 32774673 DOI: 10.1155/2020/4908162] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
297 Allaway RJ, Wood MD, Downey SL, Bouley SJ, Traphagen NA, Wells JD, Batra J, Melancon SN, Ringelberg C, Seibel W, Ratner N, Sanchez Y. Exploiting mitochondrial and metabolic homeostasis as a vulnerability in NF1 deficient cells. Oncotarget 2018;9:15860-75. [PMID: 29662612 DOI: 10.18632/oncotarget.19335] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
298 Han JH, Jang KW, Myung CS. Garcinia cambogia attenuates adipogenesis by affecting CEBPB and SQSTM1/p62-mediated selective autophagic degradation of KLF3 through RPS6KA1 and STAT3 suppression. Autophagy 2021;:1-22. [PMID: 34101546 DOI: 10.1080/15548627.2021.1936356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
299 Sato D, Itami N, Tasaki H, Takeo S, Kuwayama T, Iwata H. Relationship between mitochondrial DNA copy number and SIRT1 expression in porcine oocytes. PLoS One 2014;9:e94488. [PMID: 24747689 DOI: 10.1371/journal.pone.0094488] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 7.3] [Reference Citation Analysis]
300 Sato M, Sato K. Dynamic regulation of autophagy and endocytosis for cell remodeling during early development. Traffic 2013;14:479-86. [PMID: 23356349 DOI: 10.1111/tra.12050] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
301 Li T, Zhao J, Miao S, Xu Y, Xiao X, Liu Y. Dynamic expression and roles of sequestome‑1/p62 in LPS‑induced acute kidney injury in mice. Mol Med Rep 2018;17:7618-26. [PMID: 29620262 DOI: 10.3892/mmr.2018.8809] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
302 Mitter AL, Schlotterhose P, Krick R. Gyp1 has a dual function as Ypt1 GAP and interaction partner of Atg8 in selective autophagy. Autophagy 2019;15:1031-50. [PMID: 30686108 DOI: 10.1080/15548627.2019.1569929] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
303 Yang X, Zhang L, Ye JQ, Wu XH, Zeng XX, Chen LW, Li YM. The role of ATG-7 contributes to pulmonary hypertension by impacting vascular remodeling. J Mol Cell Cardiol 2021;157:1-13. [PMID: 33819456 DOI: 10.1016/j.yjmcc.2021.03.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
304 Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, Vyas JM, Goldberg MB, Xavier RJ. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 2012;12:778-90. [PMID: 23245322 DOI: 10.1016/j.chom.2012.10.019] [Cited by in Crossref: 152] [Cited by in F6Publishing: 151] [Article Influence: 16.9] [Reference Citation Analysis]
305 Dragich JM, Kuwajima T, Hirose-Ikeda M, Yoon MS, Eenjes E, Bosco JR, Fox LM, Lystad AH, Oo TF, Yarygina O, Mita T, Waguri S, Ichimura Y, Komatsu M, Simonsen A, Burke RE, Mason CA, Yamamoto A. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. Elife 2016;5:e14810. [PMID: 27648578 DOI: 10.7554/eLife.14810] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
306 Dideriksen K, Reitelseder S, Agergaard J, Boesen AP, Aas SN, Raastad T, Holm L. Muscle protein breakdown is impaired during immobilization compared to during a subsequent retraining period in older men: no effect of anti-inflammatory medication. Pflugers Arch 2020;472:281-92. [PMID: 32025814 DOI: 10.1007/s00424-020-02353-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
307 Liu H, Zhao X, Yu M, Meng L, Zhou T, Shan Y, Liu X, Xia Z, An M, Wu Y. Transcriptomic and Functional Analyses Indicate Novel Anti-viral Mode of Actions on Tobacco Mosaic Virus of a Microbial Natural Product ε-Poly-l-lysine. J Agric Food Chem 2021;69:2076-86. [PMID: 33586965 DOI: 10.1021/acs.jafc.0c07357] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
308 Mai CT, Wu MM, Wang CL, Su ZR, Cheng YY, Zhang XJ. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol Immunol 2019;105:76-85. [PMID: 30496979 DOI: 10.1016/j.molimm.2018.10.015] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
309 Xu Z, Tito AJ, Rui YN, Zhang S. Studying polyglutamine diseases in Drosophila. Exp Neurol 2015;274:25-41. [PMID: 26257024 DOI: 10.1016/j.expneurol.2015.08.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
310 Mostowy S. Autophagy and bacterial clearance: a not so clear picture. Cell Microbiol 2013;15:395-402. [PMID: 23121192 DOI: 10.1111/cmi.12063] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 6.1] [Reference Citation Analysis]
311 Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biol 2013;1:427-32. [PMID: 24191236 DOI: 10.1016/j.redox.2013.08.005] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 8.2] [Reference Citation Analysis]
312 Li H, Liu J, Cao W, Xiao X, Liang L, Liu-Smith F, Wang W, Liu H, Zhou P, Ouyang R, Yuan Z, Liu J, Ye M, Zhang B. C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer. Theranostics 2019;9:5134-48. [PMID: 31410206 DOI: 10.7150/thno.34887] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
313 Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Helicobacter 2015;20:353-69. [PMID: 25664588 DOI: 10.1111/hel.12211] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
314 Fan S, Wu K, Zhao M, Zhu E, Ma S, Chen Y, Ding H, Yi L, Zhao M, Chen J. The Role of Autophagy and Autophagy Receptor NDP52 in Microbial Infections. Int J Mol Sci 2020;21:E2008. [PMID: 32187990 DOI: 10.3390/ijms21062008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
315 Nuttall JM, Motley AM, Hettema EH. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy 2014;10:835-45. [PMID: 24657987 DOI: 10.4161/auto.28259] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 5.5] [Reference Citation Analysis]
316 Rocchi A, He C. Emerging roles of autophagy in metabolism and metabolic disorders. Front Biol (Beijing). 2015;10:154-164. [PMID: 26989402 DOI: 10.1007/s11515-015-1354-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
317 Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020;209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
318 Cao P, Zhang Y, Huang Z, Sullivan MA, He Z, Wang J, Chen Z, Hu H, Wang K. The Preventative Effects of Procyanidin on Binge Ethanol-Induced Lipid Accumulation and ROS Overproduction via the Promotion of Hepatic Autophagy. Mol Nutr Food Res 2019;63:e1801255. [PMID: 31336037 DOI: 10.1002/mnfr.201801255] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
319 Ganesan S, Alex AA, Chendamarai E, Balasundaram N, Palani HK, David S, Kulkarni U, Aiyaz M, Mugasimangalam R, Korula A, Abraham A, Srivastava A, Padua RA, Chomienne C, George B, Balasubramanian P, Mathews V. Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 2016;30:2169-78. [PMID: 27560113 DOI: 10.1038/leu.2016.227] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
320 Narasimhan I, Murali A, Subramanian K, Ramalingam S, Parameswaran S. Autosomal dominant retinitis pigmentosa with toxic gain of function: Mechanisms and therapeutics. Eur J Ophthalmol 2021;31:304-20. [PMID: 32962414 DOI: 10.1177/1120672120957605] [Reference Citation Analysis]
321 Xue YC, Feuer R, Cashman N, Luo H. Enteroviral Infection: The Forgotten Link to Amyotrophic Lateral Sclerosis? Front Mol Neurosci 2018;11:63. [PMID: 29593492 DOI: 10.3389/fnmol.2018.00063] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
322 Chaugule VK, Walden H. Specificity and disease in the ubiquitin system. Biochem Soc Trans 2016;44:212-27. [PMID: 26862208 DOI: 10.1042/BST20150209] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 5.2] [Reference Citation Analysis]
323 Saranyan PV, Ross NW, Benfey TJ. Erythrocyte heat shock protein responses to chronic (in vivo) and acute (in vitro) temperature challenge in diploid and triploid salmonids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2017;206:95-104. [DOI: 10.1016/j.cbpa.2017.01.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.4] [Reference Citation Analysis]
324 Kalvari I, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis IP, Promponas VJ. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 2014;10:913-25. [PMID: 24589857 DOI: 10.4161/auto.28260] [Cited by in Crossref: 118] [Cited by in F6Publishing: 113] [Article Influence: 14.8] [Reference Citation Analysis]
325 Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci. 2015;72:4721-4757. [PMID: 26390974 DOI: 10.1007/s00018-015-2034-8] [Cited by in Crossref: 128] [Cited by in F6Publishing: 130] [Article Influence: 18.3] [Reference Citation Analysis]
326 Wang Z, Long Q, Chen L, Fan J, Wang Z, Li L, Wu M, Chen X. Inhibition of H3K4 demethylation induces autophagy in cancer cell lines. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2017;1864:2428-37. [DOI: 10.1016/j.bbamcr.2017.08.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
327 Kaushik S, Cuervo AM. Chaperones in autophagy. Pharmacol Res 2012;66:484-93. [PMID: 23059540 DOI: 10.1016/j.phrs.2012.10.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
328 Hadano S, Mitsui S, Pan L, Otomo A, Kubo M, Sato K, Ono S, Onodera W, Abe K, Chen X, Koike M, Uchiyama Y, Aoki M, Warabi E, Yamamoto M, Ishii T, Yanagawa T, Shang HF, Yoshii F. Functional links between SQSTM1 and ALS2 in the pathogenesis of ALS: cumulative impact on the protection against mutant SOD1-mediated motor dysfunction in mice. Hum Mol Genet 2016;25:3321-40. [PMID: 27439389 DOI: 10.1093/hmg/ddw180] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
329 Zhuang X, Jiang L. Chloroplast Degradation: Multiple Routes Into the Vacuole. Front Plant Sci 2019;10:359. [PMID: 30972092 DOI: 10.3389/fpls.2019.00359] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
330 Sakuma K, Yamaguchi A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia. Pflugers Arch - Eur J Physiol 2018;470:449-60. [DOI: 10.1007/s00424-017-2077-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
331 Papandreou ME, Tavernarakis N. Nucleophagy mediators and mechanisms. Prog Mol Biol Transl Sci 2020;172:1-14. [PMID: 32620238 DOI: 10.1016/bs.pmbts.2020.01.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
332 Ávila-Pérez G, Diaz-Beneitez E, Cubas-Gaona LL, Nieves-Molina G, Rodríguez JR, Rodríguez JF, Rodríguez D. Activation of the autophagy pathway by Torovirus infection is irrelevant for virus replication. PLoS One 2019;14:e0219428. [PMID: 31306441 DOI: 10.1371/journal.pone.0219428] [Reference Citation Analysis]
333 Cloherty APM, Rader AG, Compeer B, Ribeiro CMS. Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021;13:320. [PMID: 33669846 DOI: 10.3390/v13020320] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
334 Wu H, Huang S, Zhang D. Autophagic responses to hypoxia and anticancer therapy in head and neck cancer. Pathology - Research and Practice 2015;211:101-8. [DOI: 10.1016/j.prp.2014.11.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
335 Luo Q, Wu X, Nan Y, Chang W, Zhao P, Zhang Y, Su D, Liu Z. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep 2020;30:98-111.e5. [PMID: 31914402 DOI: 10.1016/j.celrep.2019.12.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
336 Zhou J, Zhang Y, Qi J, Chi Y, Fan B, Yu JQ, Chen Z. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet 2014;10:e1004116. [PMID: 24497840 DOI: 10.1371/journal.pgen.1004116] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 9.8] [Reference Citation Analysis]
337 Cao J, Li Q, Shen X, Yao Y, Li L, Ma H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264.7 macrophages. Mol Immunol 2021;131:97-111. [PMID: 33461765 DOI: 10.1016/j.molimm.2020.12.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
338 Xu H, Zhou J, Lin S, Deng W, Zhang Y, Xue Y. PLMD: An updated data resource of protein lysine modifications. Journal of Genetics and Genomics 2017;44:243-50. [DOI: 10.1016/j.jgg.2017.03.007] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 17.4] [Reference Citation Analysis]
339 Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, Wang H, Wang Y, Long L, Tan X, Liu D, Jin T, Wang Y, Wang Y, Liao F, Zhang C, Chen L, Gan Y, Liu Y, Yang F, Huang C, Miao H, Chen J, Cheng T, Fu X, Shi C. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun 2019;10:2538. [PMID: 31182708 DOI: 10.1038/s41467-019-10386-8] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
340 Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021;54:592-600. [DOI: 10.5483/bmbrep.2021.54.12.107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
341 Li Q, Luo T, Lu W, Yi X, Zhao Z, Liu J. Proteomic analysis of human periodontal ligament cells under hypoxia. Proteome Sci 2019;17:3. [PMID: 31496921 DOI: 10.1186/s12953-019-0151-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
342 Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol 2017;176:55-62. [PMID: 28095319 DOI: 10.1016/j.clim.2017.01.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 9.6] [Reference Citation Analysis]
343 Childs E, Henry CM, Canton J, Reis E Sousa C. Maintenance and loss of endocytic organelle integrity: mechanisms and implications for antigen cross-presentation. Open Biol 2021;11:210194. [PMID: 34753318 DOI: 10.1098/rsob.210194] [Reference Citation Analysis]
344 Lin Q, Shi Y, Liu Z, Mehrpour M, Hamaï A, Gong C. Non-coding RNAs as new autophagy regulators in cancer progression. Biochim Biophys Acta Mol Basis Dis 2022;1868:166293. [PMID: 34688868 DOI: 10.1016/j.bbadis.2021.166293] [Reference Citation Analysis]
345 Hofmann JW, Seeley WW, Huang EJ. RNA Binding Proteins and the Pathogenesis of Frontotemporal Lobar Degeneration. Annu Rev Pathol 2019;14:469-95. [PMID: 30355151 DOI: 10.1146/annurev-pathmechdis-012418-012955] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
346 Cerda-Troncoso C, Varas-Godoy M, Burgos PV. Pro-Tumoral Functions of Autophagy Receptors in the Modulation of Cancer Progression. Front Oncol 2020;10:619727. [PMID: 33634029 DOI: 10.3389/fonc.2020.619727] [Reference Citation Analysis]
347 Hsueh YS, Yen CC, Shih NY, Chiang NJ, Li CF, Chen LT. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors. Autophagy 2013;9:220-33. [PMID: 23196876 DOI: 10.4161/auto.22802] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
348 Martyna B, Małgorzata M, Nikola Z, Beniamin G, Urszula M, Grażyna J. Expression Profile of Genes Associated with the Proteins Degradation Pathways in Colorectal adenocarcinoma. CPB 2019;20:551-61. [DOI: 10.2174/1389201020666190516090744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
349 Baker F, Polat IH, Abou-El-Ardat K, Alshamleh I, Thoelken M, Hymon D, Gubas A, Koschade SE, Vischedyk JB, Kaulich M, Schwalbe H, Shaid S, Brandts CH. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers (Basel) 2021;13:6142. [PMID: 34885250 DOI: 10.3390/cancers13236142] [Reference Citation Analysis]
350 Mputhia Z, Hone E, Tripathi T, Sargeant T, Martins R, Bharadwaj P. Autophagy Modulation as a Treatment of Amyloid Diseases. Molecules 2019;24:E3372. [PMID: 31527516 DOI: 10.3390/molecules24183372] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
351 Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2020;8:595515. [PMID: 33490063 DOI: 10.3389/fcell.2020.595515] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
352 Navone F, Genevini P, Borgese N. Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS. Cells 2015;4:354-86. [PMID: 26287246 DOI: 10.3390/cells4030354] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 7.7] [Reference Citation Analysis]
353 Kimmelman AC. Metabolic Dependencies in RAS-Driven Cancers. Clin Cancer Res 2015;21:1828-34. [PMID: 25878364 DOI: 10.1158/1078-0432.CCR-14-2425] [Cited by in Crossref: 132] [Cited by in F6Publishing: 84] [Article Influence: 22.0] [Reference Citation Analysis]
354 Yin S, Cao W. Toll-Like Receptor Signaling Induces Nrf2 Pathway Activation through p62-Triggered Keap1 Degradation. Mol Cell Biol 2015;35:2673-83. [PMID: 26012548 DOI: 10.1128/MCB.00105-15] [Cited by in Crossref: 46] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
355 Wang J, Cui D, Gu S, Chen X, Bi Y, Xiong X, Zhao Y. Autophagy regulates apoptosis by targeting NOXA for degradation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2018;1865:1105-13. [DOI: 10.1016/j.bbamcr.2018.05.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
356 Young LN, Cho K, Lawrence R, Zoncu R, Hurley JH. Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex I of autophagy. Proc Natl Acad Sci U S A 2016;113:8224-9. [PMID: 27385829 DOI: 10.1073/pnas.1603650113] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]
357 Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, Wang B, Van Veldhoven PP, Azevedo JE, Fransen M. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 2015;11:1326-40. [PMID: 26086376 DOI: 10.1080/15548627.2015.1061846] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 10.0] [Reference Citation Analysis]
358 Ott C, Jung T, Brix S, John C, Betz IR, Foryst-Ludwig A, Deubel S, Kuebler WM, Grune T, Kintscher U, Grune J. Hypertrophy-Reduced Autophagy Causes Cardiac Dysfunction by Directly Impacting Cardiomyocyte Contractility. Cells 2021;10:805. [PMID: 33916597 DOI: 10.3390/cells10040805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
359 Weissenhorn W, Fauvarque MO. A small switch has a large effect on autophagy. Structure 2014;22:1-2. [PMID: 24411573 DOI: 10.1016/j.str.2013.12.006] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
360 Vural A, Kehrl JH. Autophagy in macrophages: impacting inflammation and bacterial infection. Scientifica (Cairo). 2014;2014:825463. [PMID: 24818040 DOI: 10.1155/2014/825463] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 4.1] [Reference Citation Analysis]
361 Anupama N, Sindhu G, Raghu KG. Significance of mitochondria on cardiometabolic syndromes. Fundam Clin Pharmacol 2018;32:346-56. [DOI: 10.1111/fcp.12359] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
362 Jia W, He MX, McLeod IX, Guo J, Ji D, He YW. Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy 2015;11:2335-45. [PMID: 26569626 DOI: 10.1080/15548627.2015.1110666] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 8.7] [Reference Citation Analysis]
363 Cozzo AJ, Coleman MF, Pearce JB, Pfeil AJ, Etigunta SK, Hursting SD. Dietary Energy Modulation and Autophagy: Exploiting Metabolic Vulnerabilities to Starve Cancer. Front Cell Dev Biol 2020;8:590192. [PMID: 33224954 DOI: 10.3389/fcell.2020.590192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
364 Ning S, Wang L. The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers. Curr Cancer Drug Targets 2019;19:468-78. [PMID: 30332964 DOI: 10.2174/1568009618666181016164920] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
365 Al-barakati HJ, Saigo H, Newman RH, Kc DB. RF-GlutarySite: a random forest based predictor for glutarylation sites. Mol Omics 2019;15:189-204. [DOI: 10.1039/c9mo00028c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
366 Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K, Lux V, Ehrmann M, Weihl CC, Meyer H. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 2017;36:135-50. [PMID: 27753622 DOI: 10.15252/embj.201695148] [Cited by in Crossref: 134] [Cited by in F6Publishing: 131] [Article Influence: 22.3] [Reference Citation Analysis]
367 Dahmene M, Bérard M, Oueslati A. Dissecting the Molecular Pathway Involved in PLK2 Kinase-mediated α-Synuclein-selective Autophagic Degradation. J Biol Chem 2017;292:3919-28. [PMID: 28154193 DOI: 10.1074/jbc.M116.759373] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 3.4] [Reference Citation Analysis]
368 Franz A, Ackermann L, Hoppe T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. Biochim Biophys Acta 2014;1843:205-15. [PMID: 23583830 DOI: 10.1016/j.bbamcr.2013.03.031] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
369 Müller M, Lu K, Reichert AS. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochim Biophys Acta 2015;1853:2766-74. [PMID: 25753536 DOI: 10.1016/j.bbamcr.2015.02.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
370 Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V, Lavandero S. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 2020;71:100822. [PMID: 31587811 DOI: 10.1016/j.mam.2019.09.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
371 Reventun P, Alique M, Cuadrado I, Márquez S, Toro R, Zaragoza C, Saura M. iNOS-Derived Nitric Oxide Induces Integrin-Linked Kinase Endocytic Lysosome-Mediated Degradation in the Vascular Endothelium. ATVB 2017;37:1272-81. [DOI: 10.1161/atvbaha.117.309560] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
372 Xie X, Li F, Wang Y, Wang Y, Lin Z, Cheng X, Liu J, Chen C, Pan L. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Autophagy. 2015;11:1775-1789. [PMID: 26506893 DOI: 10.1080/15548627.2015.1082025] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
373 Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021;57:131-47. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
374 Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018;78:238-70. [PMID: 28901728 DOI: 10.1002/dneu.22536] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
375 Buneeva O, Kopylov A, Kapitsa I, Ivanova E, Zgoda V, Medvedev A. The Effect of Neurotoxin MPTP and Neuroprotector Isatin on the Profile of Ubiquitinated Brain Mitochondrial Proteins. Cells 2018;7:E91. [PMID: 30065189 DOI: 10.3390/cells7080091] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
376 Fuqua JD, Mere CP, Kronemberger A, Blomme J, Bae D, Turner KD, Harris MP, Scudese E, Edwards M, Ebert SM, de Sousa LGO, Bodine SC, Yang L, Adams CM, Lira VA. ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle. FASEB J 2019;33:11735-45. [PMID: 31361156 DOI: 10.1096/fj.201900766R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
377 He X, Zhu Y, Zhang Y, Geng Y, Gong J, Geng J, Zhang P, Zhang X, Liu N, Peng Y, Wang C, Wang Y, Liu X, Wan L, Gong F, Wei C, Zhong H. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation. EMBO J 2019;38:e100978. [PMID: 31304625 DOI: 10.15252/embj.2018100978] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]