BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ste Marie EJ, Wehrle RJ, Haupt DJ, Wood NB, van der Vliet A, Previs MJ, Masterson DS, Hondal RJ. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine. Biochemistry 2020;59:3300-15. [PMID: 32845139 DOI: 10.1021/acs.biochem.0c00608] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Ralston NV. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Archives of Biochemistry and Biophysics 2022. [DOI: 10.1016/j.abb.2022.109469] [Reference Citation Analysis]
2 Mariotti M, Gladyshev VN. Selenocysteine-containing proteins. Redox Chemistry and Biology of Thiols 2022. [DOI: 10.1016/b978-0-323-90219-9.00012-1] [Reference Citation Analysis]
3 Ste. Marie EJ, Hondal RJ. Application of alpha-methyl selenocysteine as a tool for the study of selenoproteins. Methods in Enzymology 2022. [DOI: 10.1016/bs.mie.2021.10.016] [Reference Citation Analysis]
4 Liu S, Wu W, Chen Q, Zheng Z, Jiang X, Xue Y, Lin D. TXNRD1: A Key Regulator Involved in the Ferroptosis of CML Cells Induced by Cysteine Depletion In Vitro. Oxid Med Cell Longev 2021;2021:7674565. [PMID: 34917232 DOI: 10.1155/2021/7674565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sun Q, Mehl S, Renko K, Seemann P, Görlich CL, Hackler J, Minich WB, Kahaly GJ, Schomburg L. Natural Autoimmunity to Selenoprotein P Impairs Selenium Transport in Hashimoto's Thyroiditis. Int J Mol Sci 2021;22:13088. [PMID: 34884891 DOI: 10.3390/ijms222313088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
6 Bjørklund G, Zou L, Wang J, Chasapis CT, Peana M. Thioredoxin reductase as a pharmacological target. Pharmacol Res 2021;174:105854. [PMID: 34455077 DOI: 10.1016/j.phrs.2021.105854] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
7 Nogara PA, Madabeni A, Bortoli M, Teixeira Rocha JB, Orian L. Methylmercury Can Facilitate the Formation of Dehydroalanine in Selenoenzymes: Insight from DFT Molecular Modeling. Chem Res Toxicol 2021;34:1655-63. [PMID: 34077192 DOI: 10.1021/acs.chemrestox.1c00073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Oliveira CS, Piccoli BC, Nogara PA, Pereira ME, de Carvalho KAT, Skalny AV, Tinkov AA, Aschner M, da Rocha JBT. Selenium Neuroprotection in Neurodegenerative Disorders. Handbook of Neurotoxicity 2021. [DOI: 10.1007/978-3-030-71519-9_238-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ralston NVC. Neurotoxic Electrophile Interactions with Brain Selenoenzymes. Handbook of Neurotoxicity 2021. [DOI: 10.1007/978-3-030-71519-9_237-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]