BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228-240. [PMID: 21295278 DOI: 10.1016/j.stem.2010.12.008] [Cited by in Crossref: 788] [Cited by in F6Publishing: 653] [Article Influence: 78.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, Yu X, Gao S, Ouyang K, Yang HT. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol 2017;9:274-88. [PMID: 28419336 DOI: 10.1093/jmcb/mjx014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
2 Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016;5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
3 Yu MS, Spiering S, Colas AR. Generation of First Heart Field-like Cardiac Progenitors and Ventricular-like Cardiomyocytes from Human Pluripotent Stem Cells. J Vis Exp 2018. [PMID: 29985326 DOI: 10.3791/57688] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
4 Lee MS, Stebbins MJ, Jiao H, Huang HC, Leiferman EM, Walczak BE, Palecek SP, Shusta EV, Li WJ. Comparative evaluation of isogenic mesodermal and ectomesodermal chondrocytes from human iPSCs for cartilage regeneration. Sci Adv 2021;7:eabf0907. [PMID: 34138734 DOI: 10.1126/sciadv.abf0907] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Thavandiran N, Dubois N, Mikryukov A, Massé S, Beca B, Simmons CA, Deshpande VS, McGarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 2013;110:E4698-707. [PMID: 24255110 DOI: 10.1073/pnas.1311120110] [Cited by in Crossref: 190] [Cited by in F6Publishing: 160] [Article Influence: 23.8] [Reference Citation Analysis]
6 Xue Z, Hennelly S, Doyle B, Gulati AA, Novikova IV, Sanbonmatsu KY, Boyer LA. A G-Rich Motif in the lncRNA Braveheart Interacts with a Zinc-Finger Transcription Factor to Specify the Cardiovascular Lineage. Mol Cell 2016;64:37-50. [PMID: 27618485 DOI: 10.1016/j.molcel.2016.08.010] [Cited by in Crossref: 88] [Cited by in F6Publishing: 70] [Article Influence: 17.6] [Reference Citation Analysis]
7 Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016;118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
8 Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 2014;6:951-960. [PMID: 24561253 DOI: 10.1016/j.celrep.2014.01.038] [Cited by in Crossref: 123] [Cited by in F6Publishing: 101] [Article Influence: 17.6] [Reference Citation Analysis]
9 Szepes M, Melchert A, Dahlmann J, Hegermann J, Werlein C, Jonigk D, Haverich A, Martin U, Olmer R, Gruh I. Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. Int J Mol Sci 2020;21:E8947. [PMID: 33255686 DOI: 10.3390/ijms21238947] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang L, Serpooshan V, Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med 2021;8:621781. [PMID: 33718449 DOI: 10.3389/fcvm.2021.621781] [Reference Citation Analysis]
11 de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M, Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res 2012;110:578-87. [PMID: 22247485 DOI: 10.1161/CIRCRESAHA.111.261172] [Cited by in Crossref: 54] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
12 Chiti A. Reporter gene imaging "visualized" the integration of two growing technologies: CRISPR/Cas9-based genome editing and induced pluripotent stem cell therapy. Eur J Nucl Med Mol Imaging 2021;48:664-5. [PMID: 33215320 DOI: 10.1007/s00259-020-05117-x] [Reference Citation Analysis]
13 Eschenhagen T, Mummery C, Knollmann BC. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovasc Res 2015;105:424-38. [PMID: 25618410 DOI: 10.1093/cvr/cvv017] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
14 Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015;24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
15 Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, Saafir T, Song MK, Yu SP, Wagner M, Bao G, Yoon YS. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 2013;128:1897-909. [PMID: 23995537 DOI: 10.1161/CIRCULATIONAHA.113.004228] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
16 Raad FS, Khan TA, Esser TU, Hudson JE, Seth BI, Fujita B, Gandamala R, Tietze LF, Zimmermann WH. Chalcone-Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering. ChemMedChem 2021. [PMID: 34309224 DOI: 10.1002/cmdc.202100222] [Reference Citation Analysis]
17 Drowley L, Koonce C, Peel S, Jonebring A, Plowright AT, Kattman SJ, Andersson H, Anson B, Swanson BJ, Wang QD, Brolen G. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation. Stem Cells Transl Med 2016;5:164-74. [PMID: 26683871 DOI: 10.5966/sctm.2015-0114] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
18 Jin G, Palecek SP. Inductive factors for generation of pluripotent stem cell-derived cardiomyocytes. Engineering Strategies for Regenerative Medicine. Elsevier; 2020. pp. 177-242. [DOI: 10.1016/b978-0-12-816221-7.00006-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Cheng P, Andersen P, Hassel D, Kaynak BL, Limphong P, Juergensen L, Kwon C, Srivastava D. Fibronectin mediates mesendodermal cell fate decisions. Development 2013;140:2587-96. [PMID: 23715551 DOI: 10.1242/dev.089052] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 5.9] [Reference Citation Analysis]
20 Liu Y, Chen L, Diaz AD, Benham A, Xu X, Wijaya CS, Fa'ak F, Luo W, Soibam B, Azares A, Yu W, Lyu Q, Stewart MD, Gunaratne P, Cooney A, McConnell BK, Schwartz RJ. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Sci Rep. 2016;6:31457. [PMID: 27538477 DOI: 10.1038/srep31457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
21 Wang W, Lu G, Liu HB, Xiong Z, Leung HD, Cao R, Pang AL, Su X, Law PWN, Zhao Z, Chen ZJ, Chan WY. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh) 2021;:e2100849. [PMID: 34247447 DOI: 10.1002/advs.202100849] [Reference Citation Analysis]
22 Bartulos O, Zhuang ZW, Huang Y, Mikush N, Suh C, Bregasi A, Wang L, Chang W, Krause DS, Young LH, Pober JS, Qyang Y. ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction. JCI Insight. 2016;1:pii: e80920. [PMID: 27525311 DOI: 10.1172/jci.insight.80920] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
23 Slukvin II, Kumar A. The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cell Mol Life Sci 2018;75:3507-20. [PMID: 29992471 DOI: 10.1007/s00018-018-2871-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
24 Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim. 2019;68:35-47. [PMID: 30089733 DOI: 10.1538/expanim.18-0074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
25 Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, Keller GM. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 2017;35:56-68. [PMID: 27941801 DOI: 10.1038/nbt.3745] [Cited by in Crossref: 169] [Cited by in F6Publishing: 127] [Article Influence: 33.8] [Reference Citation Analysis]
26 Duelen R, Gilbert G, Patel A, de Schaetzen N, De Waele L, Roderick L, Sipido KR, Verfaillie CM, Buyse GM, Thorrez L, Sampaolesi M. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int 2017;2017:4651238. [PMID: 28163723 DOI: 10.1155/2017/4651238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
27 Tian S, Liu Q, Gnatovskiy L, Ma PX, Wang Z. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. J Stem Cell Transplant Biol 2015;1:104. [PMID: 26744736 DOI: 10.19104/jstb.2015.104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
28 Nsair A, Schenke-Layland K, Van Handel B, Evseenko D, Kahn M, Zhao P, Mendelis J, Heydarkhan S, Awaji O, Vottler M, Geist S, Chyu J, Gago-Lopez N, Crooks GM, Plath K, Goldhaber J, Mikkola HK, MacLellan WR. Characterization and therapeutic potential of induced pluripotent stem cell-derived cardiovascular progenitor cells. PLoS One 2012;7:e45603. [PMID: 23056209 DOI: 10.1371/journal.pone.0045603] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
29 Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020;8:955. [PMID: 32850768 DOI: 10.3389/fbioe.2020.00955] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Ma H, Lin Y, Zhao ZA, Lu X, Yu Y, Zhang X, Wang Q, Li L. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2. J Biol Chem 2016;291:12126-35. [PMID: 27072135 DOI: 10.1074/jbc.M116.723247] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
31 Shin WJ, Seo JH, Choi HW, Hong YJ, Lee WJ, Chae JI, Kim SJ, Lee JW, Hong K, Song H, Park C, Do JT. Derivation of primitive neural stem cells from human-induced pluripotent stem cells. J Comp Neurol 2019;527:3023-33. [PMID: 31173371 DOI: 10.1002/cne.24727] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Kwong G, Marquez HA, Yang C, Wong JY, Kotton DN. Generation of a Purified iPSC-Derived Smooth Muscle-like Population for Cell Sheet Engineering. Stem Cell Reports 2019;13:499-514. [PMID: 31422908 DOI: 10.1016/j.stemcr.2019.07.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
33 Zwi-dantsis L, Gepstein L. Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 2012;69:3285-99. [DOI: 10.1007/s00018-012-1078-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
34 Razy-Krajka F, Gravez B, Kaplan N, Racioppi C, Wang W, Christiaen L. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time. Elife 2018;7:e29656. [PMID: 29431097 DOI: 10.7554/eLife.29656] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
35 Leigh RS, Ruskoaho HJ, Kaynak BL. A novel dual reporter embryonic stem cell line for toxicological assessment of teratogen-induced perturbation of anterior-posterior patterning of the heart. Arch Toxicol 2020;94:631-45. [PMID: 31811323 DOI: 10.1007/s00204-019-02632-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
36 Ting S, Liew SJ, Japson F, Shang F, Chong WK, Reuveny S, Tham JY, Li X, Oh S. Time‐resolved video analysis and management system for monitoring cardiomyocyte differentiation processes and toxicology assays. Biotechnology Journal 2014;9:675-83. [DOI: 10.1002/biot.201300262] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
37 Hartman ME, Librande JR, Medvedev IO, Ahmad RN, Moussavi-Harami F, Gupta PP, Chien WM, Chin MT. An optimized and simplified system of mouse embryonic stem cell cardiac differentiation for the assessment of differentiation modifiers. PLoS One 2014;9:e93033. [PMID: 24667642 DOI: 10.1371/journal.pone.0093033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
38 Kathiriya IS, Nora EP, Bruneau BG. Investigating the transcriptional control of cardiovascular development. Circ Res 2015;116:700-14. [PMID: 25677518 DOI: 10.1161/CIRCRESAHA.116.302832] [Cited by in Crossref: 58] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
39 Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair. Biomed Res Int. 2013;2013:547902. [PMID: 23509740 DOI: 10.1155/2013/547902] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
40 Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2015;49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 9.2] [Reference Citation Analysis]
41 Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med. 2011;17:475-484. [PMID: 21703926 DOI: 10.1016/j.molmed.2011.05.001] [Cited by in Crossref: 92] [Cited by in F6Publishing: 77] [Article Influence: 9.2] [Reference Citation Analysis]
42 Prowse AB, Timmins NE, Yau TM, Li R, Weisel RD, Keller G, Zandstra PW. Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology 2014;30:1335-49. [DOI: 10.1016/j.cjca.2014.08.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
43 Jain R, Epstein JA. Competent for commitment: you've got to have heart! Genes Dev 2018;32:4-13. [PMID: 29440224 DOI: 10.1101/gad.308353.117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
44 Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020;165-166:60-76. [PMID: 31917972 DOI: 10.1016/j.addr.2019.12.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
45 Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H, Hanaoka K, Kakizuka A, Sehara-Fujisawa A. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 2012;7:e47078. [PMID: 23115636 DOI: 10.1371/journal.pone.0047078] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.9] [Reference Citation Analysis]
46 Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013;152:570-83. [PMID: 23352431 DOI: 10.1016/j.cell.2013.01.003] [Cited by in Crossref: 641] [Cited by in F6Publishing: 555] [Article Influence: 80.1] [Reference Citation Analysis]
47 Jain R, Li D, Gupta M, Manderfield LJ, Ifkovits JL, Wang Q, Liu F, Liu Y, Poleshko A, Padmanabhan A, Raum JC, Li L, Morrisey EE, Lu MM, Won KJ, Epstein JA. HEART DEVELOPMENT. Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science 2015;348:aaa6071. [PMID: 26113728 DOI: 10.1126/science.aaa6071] [Cited by in Crossref: 93] [Cited by in F6Publishing: 73] [Article Influence: 15.5] [Reference Citation Analysis]
48 Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020;21:E4354. [PMID: 32575374 DOI: 10.3390/ijms21124354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
49 Zhu H, Scharnhorst KS, Stieg AZ, Gimzewski JK, Minami I, Nakatsuji N, Nakano H, Nakano A. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Sci Rep 2017;7:43210. [PMID: 28266620 DOI: 10.1038/srep43210] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
50 Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells. 2015;33:2643-2651. [PMID: 26033645 DOI: 10.1002/stem.2070] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
51 Duelen R, Sampaolesi M. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine. 2017;16:30-40. [PMID: 28169191 DOI: 10.1016/j.ebiom.2017.01.029] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
52 Peng H, Abdel-Latif A. Cellular Therapy for Ischemic Heart Disease: An Update. Adv Exp Med Biol 2019;1201:195-213. [PMID: 31898788 DOI: 10.1007/978-3-030-31206-0_10] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
53 Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res. 2012;111:1125-1136. [PMID: 22912385 DOI: 10.1161/circresaha.112.273144] [Cited by in Crossref: 302] [Cited by in F6Publishing: 195] [Article Influence: 33.6] [Reference Citation Analysis]
54 Li S, Chen G, Li RA. Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J Physiol. 2013;591:5279-5290. [PMID: 24018947 DOI: 10.1113/jphysiol.2013.256495] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
55 Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech 2017;10:1039-59. [PMID: 28883014 DOI: 10.1242/dmm.030320] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 15.3] [Reference Citation Analysis]
56 Hayashi R, Ishikawa Y, Katayama T, Quantock AJ, Nishida K. CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Sci Rep 2018;8:16550. [PMID: 30410112 DOI: 10.1038/s41598-018-34845-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
57 Pecha S, Yorgan K, Röhl M, Geertz B, Hansen A, Weinberger F, Sehner S, Ehmke H, Reichenspurner H, Eschenhagen T, Schwoerer AP. Human iPS cell-derived engineered heart tissue does not affect ventricular arrhythmias in a guinea pig cryo-injury model. Sci Rep 2019;9:9831. [PMID: 31285568 DOI: 10.1038/s41598-019-46409-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
58 Hatani T, Miki K, Yoshida Y. Induction of Human Induced Pluripotent Stem Cells to Cardiomyocytes Using Embryoid Bodies. In: Ishikawa K, editor. Experimental Models of Cardiovascular Diseases. New York: Springer; 2018. pp. 79-92. [DOI: 10.1007/978-1-4939-8597-5_6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
59 Pavlovic BJ, Blake LE, Roux J, Chavarria C, Gilad Y. A Comparative Assessment of Human and Chimpanzee iPSC-derived Cardiomyocytes with Primary Heart Tissues. Sci Rep 2018;8:15312. [PMID: 30333510 DOI: 10.1038/s41598-018-33478-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 10.3] [Reference Citation Analysis]
60 Le TY, Thavapalachandran S, Kizana E, Chong JJ. New Developments in Cardiac Regeneration. Heart Lung Circ 2017;26:316-22. [PMID: 27916592 DOI: 10.1016/j.hlc.2016.11.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
61 Xu T, Liu N, Shao Y, Huang Y, Zhu D. MiR-218 regulated cardiomyocyte differentiation and migration in mouse embryonic stem cells by targeting PDGFRα. J Cell Biochem 2019;120:4355-65. [PMID: 30246400 DOI: 10.1002/jcb.27721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
62 Cao N, Liang H, Yang H. Generation, Expansion, and Differentiation of Cardiovascular Progenitor Cells from Human Pluripotent Stem Cells. In: Turksen K, editor. Stem Cell Renewal and Cell-Cell Communication. New York: Springer; 2015. pp. 113-25. [DOI: 10.1007/7651_2014_119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
63 Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 11.8] [Reference Citation Analysis]
64 Liu Y, Schwartz RJ. Transient Mesp1 expression: a driver of cardiac cell fate determination. Transcription 2013;4:92-6. [PMID: 23584093 DOI: 10.4161/trns.24588] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
65 Deshwar AR, Chng SC, Ho L, Reversade B, Scott IC. The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development. Elife 2016;5:e13758. [PMID: 27077952 DOI: 10.7554/eLife.13758] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]
66 Davis RP, Casini S, van den Berg CW, Hoekstra M, Remme CA, Dambrot C, Salvatori D, Oostwaard DW, Wilde AA, Bezzina CR, Verkerk AO, Freund C, Mummery CL. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation. 2012;125:3079-3091. [PMID: 22647976 DOI: 10.1161/circulationaha.111.066092] [Cited by in Crossref: 182] [Cited by in F6Publishing: 111] [Article Influence: 20.2] [Reference Citation Analysis]
67 Dunn KK, Palecek SP. Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Front Med (Lausanne) 2018;5:110. [PMID: 29740580 DOI: 10.3389/fmed.2018.00110] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
68 Willems E, Lanier M, Forte E, Lo F, Cashman J, Mercola M. A chemical biology approach to myocardial regeneration. J Cardiovasc Transl Res 2011;4:340-50. [PMID: 21424858 DOI: 10.1007/s12265-011-9270-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
69 Murry CE, Chong JJ, Laflamme MA. Letter by Murry et al regarding article, "Embryonic stem cell-derived cardiac myocytes are not ready for human trials". Circ Res 2014;115:e28-9. [PMID: 25342771 DOI: 10.1161/CIRCRESAHA.114.305042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
70 Lian X, Zhang J, Zhu K, Kamp TJ, Palecek SP. Insulin inhibits cardiac mesoderm, not mesendoderm, formation during cardiac differentiation of human pluripotent stem cells and modulation of canonical Wnt signaling can rescue this inhibition. Stem Cells 2013;31:447-57. [PMID: 23193013 DOI: 10.1002/stem.1289] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
71 Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53-67. [PMID: 24332837 DOI: 10.1016/j.stem.2013.11.010] [Cited by in Crossref: 471] [Cited by in F6Publishing: 344] [Article Influence: 58.9] [Reference Citation Analysis]
72 Nemade H, Acharya A, Chaudhari U, Nembo E, Nguemo F, Riet N, Abken H, Hescheler J, Papadopoulos S, Sachinidis A. Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells. Cells 2020;9:E554. [PMID: 32120775 DOI: 10.3390/cells9030554] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
73 Lee J, Park YJ, Jung H. Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019;2019:1569740. [PMID: 31428157 DOI: 10.1155/2019/1569740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Skelton RJ, Costa M, Anderson DJ, Bruveris F, Finnin BW, Koutsis K, Arasaratnam D, White AJ, Rafii A, Ng ES, Elefanty AG, Stanley EG, Pouton CW, Haynes JM, Ardehali R, Davis RP, Mummery CL, Elliott DA. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Res 2014;13:172-9. [PMID: 24968096 DOI: 10.1016/j.scr.2014.04.016] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
75 Zhang J. Engineered Tissue Patch for Cardiac Cell Therapy. Curr Treat Options Cardiovasc Med 2015;17:399. [PMID: 26122908 DOI: 10.1007/s11936-015-0399-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
76 Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, Robles-Diaz D, Coffee M, Göhring G, Dräger G, Pötz O, Joos T, Martinez-Hackert E, Haverich A, Buettner FFR, Martin U, Zweigerdt R. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun 2016;7:13602. [PMID: 27934856 DOI: 10.1038/ncomms13602] [Cited by in Crossref: 65] [Cited by in F6Publishing: 49] [Article Influence: 13.0] [Reference Citation Analysis]
77 Hudson JE, Zimmermann WH. Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. J Mol Cell Cardiol 2011;51:277-9. [PMID: 21723872 DOI: 10.1016/j.yjmcc.2011.06.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
78 Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019;20:E5760. [PMID: 31744081 DOI: 10.3390/ijms20225760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
79 Budniatzky I, Gepstein L. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med. 2014;3:448-457. [PMID: 24591731 DOI: 10.5966/sctm.2013-0163] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
80 Sa S, Mccloskey KE. Stage-Specific Cardiomyocyte Differentiation Method for H7 and H9 Human Embryonic Stem Cells. Stem Cell Rev and Rep 2012;8:1120-8. [DOI: 10.1007/s12015-012-9403-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
81 Hazeltine LB, Simmons CS, Salick MR, Lian X, Badur MG, Han W, Delgado SM, Wakatsuki T, Crone WC, Pruitt BL, Palecek SP. Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol 2012;2012:508294. [PMID: 22649451 DOI: 10.1155/2012/508294] [Cited by in Crossref: 113] [Cited by in F6Publishing: 102] [Article Influence: 12.6] [Reference Citation Analysis]
82 Nandkishore N, Vyas B, Javali A, Ghosh S, Sambasivan R. Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 2018;145:dev160945. [PMID: 30237317 DOI: 10.1242/dev.160945] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
83 Zhong Q, Laco F, Liao MC, Woo TL, Oh SKW, Chai CLL. Influencing the Fate of Cardiac and Neural Stem Cell Differentiation Using Small Molecule Inhibitors of ALK5. Stem Cells Transl Med 2018;7:709-20. [PMID: 30063296 DOI: 10.1002/sctm.17-0246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Fluri DA, Tonge PD, Song H, Baptista RP, Shakiba N, Shukla S, Clarke G, Nagy A, Zandstra PW. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods. 2012;9:509-516. [PMID: 22447133 DOI: 10.1038/nmeth.1939] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 8.9] [Reference Citation Analysis]
85 Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, Cheng T, Li Y, Lo CW, Yang L. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res 2012;95:327-35. [PMID: 22673369 DOI: 10.1093/cvr/cvs185] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
86 Wyles SP, Yamada S, Oommen S, Maleszewski JJ, Beraldi R, Martinez-Fernandez A, Terzic A, Nelson TJ. Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev 2014;23:2274-82. [PMID: 25036735 DOI: 10.1089/scd.2014.0259] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
87 Klaus A, Müller M, Schulz H, Saga Y, Martin JF, Birchmeier W. Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci U S A 2012;109:10921-6. [PMID: 22711842 DOI: 10.1073/pnas.1121236109] [Cited by in Crossref: 77] [Cited by in F6Publishing: 60] [Article Influence: 8.6] [Reference Citation Analysis]
88 Eschenhagen T. The Beat Goes On: Human Heart Muscle From Pluripotent Stem Cells. Circ Res 2011;109:2-4. [DOI: 10.1161/circresaha.111.248039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
89 Salick MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 2014;35:4454-64. [PMID: 24582552 DOI: 10.1016/j.biomaterials.2014.02.001] [Cited by in Crossref: 99] [Cited by in F6Publishing: 77] [Article Influence: 14.1] [Reference Citation Analysis]
90 Craft AM, Ahmed N, Rockel JS, Baht GS, Alman BA, Kandel RA, Grigoriadis AE, Keller GM. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development. 2013;140:2597-2610. [PMID: 23715552 DOI: 10.1242/dev.087890] [Cited by in Crossref: 75] [Cited by in F6Publishing: 60] [Article Influence: 9.4] [Reference Citation Analysis]
91 Mehta A, Ramachandra CJ, Sequiera GL, Sudibyo Y, Nandihalli M, Yong PJ, Koh CH, Shim W. Phasic modulation of Wnt signaling enhances cardiac differentiation in human pluripotent stem cells by recapitulating developmental ontogeny. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014;1843:2394-402. [DOI: 10.1016/j.bbamcr.2014.06.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
92 Steinbach SK, Husain M. Vascular smooth muscle cell differentiation from human stem/progenitor cells. Methods 2016;101:85-92. [PMID: 26678794 DOI: 10.1016/j.ymeth.2015.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
93 Szaraz P, Librach M, Maghen L, Iqbal F, Barretto TA, Kenigsberg S, Gauthier-Fisher A, Librach CL. In Vitro Differentiation of First Trimester Human Umbilical Cord Perivascular Cells into Contracting Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:7513252. [PMID: 27123009 DOI: 10.1155/2016/7513252] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
94 Brickman JM, Serup P. Properties of embryoid bodies. Wiley Interdiscip Rev Dev Biol. 2017;6. [PMID: 27911036 DOI: 10.1002/wdev.259] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
95 Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2018;373:20170213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
96 Kumar A, D'Souza SS, Thakur AS. Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019;2019:2141475. [PMID: 31198425 DOI: 10.1155/2019/2141475] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
97 Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012;22:219-236. [PMID: 22143566 DOI: 10.1038/cr.2011.195] [Cited by in Crossref: 144] [Cited by in F6Publishing: 129] [Article Influence: 14.4] [Reference Citation Analysis]
98 Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2012;2:1448-1460. [PMID: 23103164 DOI: 10.1016/j.celrep.2012.09.015] [Cited by in Crossref: 182] [Cited by in F6Publishing: 141] [Article Influence: 20.2] [Reference Citation Analysis]
99 Celiz AD, Smith JG, Patel AK, Hook AL, Rajamohan D, George VT, Flatt L, Patel MJ, Epa VC, Singh T, Langer R, Anderson DG, Allen ND, Hay DC, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR. Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Adv Mater 2015;27:4006-12. [PMID: 26033422 DOI: 10.1002/adma.201501351] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 9.8] [Reference Citation Analysis]
100 Efthymiou AG, Chen G, Rao M, Chen G, Boehm M. Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther 2014;14:1333-44. [PMID: 24881868 DOI: 10.1517/14712598.2014.922533] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
101 Teo AK, Ali Y, Wong KY, Chipperfield H, Sadasivam A, Poobalan Y, Tan EK, Wang ST, Abraham S, Tsuneyoshi N, Stanton LW, Dunn NR. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 2012;30:631-42. [PMID: 22893457 DOI: 10.1002/stem.1022] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 8.9] [Reference Citation Analysis]
102 Rubin LL, Haston KM. Stem cell biology and drug discovery. BMC Biol 2011;9:42. [PMID: 21649940 DOI: 10.1186/1741-7007-9-42] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
103 Menasché P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, Bellamy V, Farouz Y, Pouly J, Damour O, Périer MC, Desnos M, Hagège A, Agbulut O, Bruneval P, Tachdjian G, Trouvin JH, Larghero J. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 2015;36:743-50. [PMID: 24835485 DOI: 10.1093/eurheartj/ehu192] [Cited by in Crossref: 111] [Cited by in F6Publishing: 91] [Article Influence: 15.9] [Reference Citation Analysis]
104 Zanella F, Lyon RC, Sheikh F. Modeling heart disease in a dish: from somatic cells to disease-relevant cardiomyocytes. Trends Cardiovasc Med 2014;24:32-44. [PMID: 24054750 DOI: 10.1016/j.tcm.2013.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
105 Youssef AA, Ross EG, Bolli R, Pepine CJ, Leeper NJ, Yang PC. The Promise and Challenge of Induced Pluripotent Stem Cells for Cardiovascular Applications. JACC Basic Transl Sci. 2016;1:510-523. [PMID: 28580434 DOI: 10.1016/j.jacbts.2016.06.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
106 Jha R, Wu Q, Singh M, Preininger MK, Han P, Ding G, Cho HC, Jo H, Maher KO, Wagner MB, Xu C. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells. Sci Rep. 2016;6:30956. [PMID: 27492371 DOI: 10.1038/srep30956] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
107 Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells. 2012;30:673-686. [PMID: 22267304 DOI: 10.1002/stem.1037] [Cited by in Crossref: 115] [Cited by in F6Publishing: 102] [Article Influence: 12.8] [Reference Citation Analysis]
108 Doyle MJ, Magli A, Estharabadi N, Amundsen D, Mills LJ, Martin CM. Sox7 Regulates Lineage Decisions in Cardiovascular Progenitor Cells. Stem Cells Dev 2019;28:1089-103. [PMID: 31154937 DOI: 10.1089/scd.2019.0040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
109 Zhou Y, Wang L, Liu Z, Alimohamadi S, Yin C, Liu J, Qian L. Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes. Cell Rep. 2017;20:3014-3024. [PMID: 28954220 DOI: 10.1016/j.celrep.2017.09.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 11.3] [Reference Citation Analysis]
110 Almeida SO, Skelton RJ, Adigopula S, Ardehali R. Arrhythmia in stem cell transplantation. Card Electrophysiol Clin 2015;7:357-70. [PMID: 26002399 DOI: 10.1016/j.ccep.2015.03.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
111 Aguilar JS, Begum AN, Alvarez J, Zhang XB, Hong Y, Hao J. Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules. Biochem J 2015;469:235-41. [PMID: 26171831 DOI: 10.1042/BJ20150186] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
112 Atmanli A, Domian IJ. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends Cell Biol 2017;27:352-64. [PMID: 28007424 DOI: 10.1016/j.tcb.2016.11.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
113 Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012;5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
114 Salick MR, Napiwocki BN, Kruepke RA, Knight GT, Ashton RS, Crone WC. The scanning gradient Fourier transform (SGFT) method for assessing sarcomere organization and alignment. Journal of Applied Physics 2020;127:194701. [DOI: 10.1063/1.5129347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
115 Perdomini M, Hick A, Puccio H, Pook MA. Animal and cellular models of Friedreich ataxia. J Neurochem 2013;126:65-79. [DOI: 10.1111/jnc.12219] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 7.4] [Reference Citation Analysis]
116 Bao X, Lian X, Qian T, Bhute VJ, Han T, Palecek SP. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nat Protoc 2017;12:1890-900. [PMID: 28817124 DOI: 10.1038/nprot.2017.080] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
117 Luna-Zurita L, Stirnimann CU, Glatt S, Kaynak BL, Thomas S, Baudin F, Samee MA, He D, Small EM, Mileikovsky M, Nagy A, Holloway AK, Pollard KS, Müller CW, Bruneau BG. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis. Cell 2016;164:999-1014. [PMID: 26875865 DOI: 10.1016/j.cell.2016.01.004] [Cited by in Crossref: 134] [Cited by in F6Publishing: 99] [Article Influence: 26.8] [Reference Citation Analysis]
118 Serpooshan V, Liu YH, Buikema JW, Galdos FX, Chirikian O, Paige S, Venkatraman S, Kumar A, Rawnsley DR, Huang X, Pijnappels DA, Wu SM. Nkx2.5+ Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Sci Rep 2017;7:12590. [PMID: 28974782 DOI: 10.1038/s41598-017-12869-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
119 Später D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development 2014;141:4418-31. [PMID: 25406392 DOI: 10.1242/dev.091538] [Cited by in Crossref: 87] [Cited by in F6Publishing: 70] [Article Influence: 12.4] [Reference Citation Analysis]
120 Feng L, Cook B, Tsai SY, Zhou T, LaFlamme B, Evans T, Chen S. Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation. Cell Rep 2016;15:2063-75. [PMID: 27210748 DOI: 10.1016/j.celrep.2016.04.066] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
121 Antebi YE, Reich-Zeliger S, Hart Y, Mayo A, Eizenberg I, Rimer J, Putheti P, Pe'er D, Friedman N. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS Biol 2013;11:e1001616. [PMID: 23935451 DOI: 10.1371/journal.pbio.1001616] [Cited by in Crossref: 74] [Cited by in F6Publishing: 56] [Article Influence: 9.3] [Reference Citation Analysis]
122 Jin G, Li W, Song F, Zhao J, Wang M, Liu Q, Li A, Huang G, Xu F. Fluorescent conjugated polymer nanovector for in vivo tracking and regulating the fate of stem cells for restoring infarcted myocardium. Acta Biomater 2020;109:195-207. [PMID: 32294553 DOI: 10.1016/j.actbio.2020.04.010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Chan SS, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 2013;12:587-601. [PMID: 23642367 DOI: 10.1016/j.stem.2013.03.004] [Cited by in Crossref: 121] [Cited by in F6Publishing: 97] [Article Influence: 17.3] [Reference Citation Analysis]
124 Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 2012;10:398-411. [PMID: 22482505 DOI: 10.1016/j.stem.2012.01.019] [Cited by in Crossref: 269] [Cited by in F6Publishing: 218] [Article Influence: 29.9] [Reference Citation Analysis]
125 Liang W, Gasparyan L, AlQarawi W, Davis DR. Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert Opin Biol Ther 2019;19:313-33. [PMID: 30682895 DOI: 10.1080/14712598.2019.1575359] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
126 Collinson A, Collier AJ, Morgan NP, Sienerth AR, Chandra T, Andrews S, Rugg-Gunn PJ. Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells. Cell Rep 2016;17:2700-14. [PMID: 27926872 DOI: 10.1016/j.celrep.2016.11.032] [Cited by in Crossref: 68] [Cited by in F6Publishing: 48] [Article Influence: 17.0] [Reference Citation Analysis]
127 Silva ILZ, Robert AW, Cabo GC, Spangenberg L, Stimamiglio MA, Dallagiovanna B, Gradia DF, Shigunov P. Effects of PUMILIO1 and PUMILIO2 knockdown on cardiomyogenic differentiation of human embryonic stem cells culture. PLoS One 2020;15:e0222373. [PMID: 32437472 DOI: 10.1371/journal.pone.0222373] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
128 Skelton RJ, Brady B, Khoja S, Sahoo D, Engel J, Arasaratnam D, Saleh KK, Abilez OJ, Zhao P, Stanley EG, Elefanty AG, Kwon M, Elliott DA, Ardehali R. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells. Stem Cell Reports 2016;6:95-108. [PMID: 26771355 DOI: 10.1016/j.stemcr.2015.11.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
129 Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2017;11:1658-74. [PMID: 26777594 DOI: 10.1002/term.2117] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
130 Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human iPSCs in Cardiovascular Research: Current Approaches in Cardiac Differentiation, Maturation Strategies, and Scalable Production. Cardiovasc Res 2021:cvab115. [PMID: 33757124 DOI: 10.1093/cvr/cvab115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
131 Nazareth EJ, Ostblom JE, Lücker PB, Shukla S, Alvarez MM, Oh SK, Yin T, Zandstra PW. High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias. Nat Methods 2013;10:1225-31. [PMID: 24141495 DOI: 10.1038/nmeth.2684] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
132 Lin F, Shao Y, Xue X, Zheng Y, Li Z, Xiong C, Fu J. Biophysical phenotypes and determinants of anterior vs. posterior primitive streak cells derived from human pluripotent stem cells. Acta Biomater 2019;86:125-34. [PMID: 30641291 DOI: 10.1016/j.actbio.2019.01.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
133 Hirata M, Yamaoka T. Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomaterialia 2018;65:44-52. [DOI: 10.1016/j.actbio.2017.10.032] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
134 Engels MC, Rajarajan K, Feistritzer R, Sharma A, Nielsen UB, Schalij MJ, de Vries AA, Pijnappels DA, Wu SM. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells 2014;32:1493-502. [PMID: 24496962 DOI: 10.1002/stem.1660] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
135 Leung A, Nah SK, Reid W, Ebata A, Koch CM, Monti S, Genereux JC, Wiseman RL, Wolozin B, Connors LH, Berk JL, Seldin DC, Mostoslavsky G, Kotton DN, Murphy GJ. Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis. Stem Cell Reports 2013;1:451-63. [PMID: 24286032 DOI: 10.1016/j.stemcr.2013.10.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
136 Hettiaratchi MH, Guldberg RE, Mcdevitt TC. Biomaterial strategies for controlling stem cell fate via morphogen sequestration. J Mater Chem B 2016;4:3464-81. [DOI: 10.1039/c5tb02575c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 3.2] [Reference Citation Analysis]
137 Kleger A, Liebau S. Calcium-Activated Potassium Channels, Cardiogenesis of Pluripotent Stem Cells, and Enrichment of Pacemaker-Like Cells. Trends in Cardiovascular Medicine 2011;21:74-83. [DOI: 10.1016/j.tcm.2012.03.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
138 Su RJ, Baylink DJ, Neises A, Kiroyan JB, Meng X, Payne KJ, Tschudy-Seney B, Duan Y, Appleby N, Kearns-Jonker M, Gridley DS, Wang J, Lau KH, Zhang XB. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors. PLoS One 2013;8:e64496. [PMID: 23704989 DOI: 10.1371/journal.pone.0064496] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 6.6] [Reference Citation Analysis]
139 Ao A, Hao J, Hong CC. Regenerative chemical biology: current challenges and future potential. Chem Biol 2011;18:413-24. [PMID: 21513877 DOI: 10.1016/j.chembiol.2011.03.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
140 White MP, Rufaihah AJ, Liu L, Ghebremariam YT, Ivey KN, Cooke JP, Srivastava D. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells. Stem Cells 2013;31:92-103. [PMID: 23079999 DOI: 10.1002/stem.1267] [Cited by in Crossref: 83] [Cited by in F6Publishing: 81] [Article Influence: 10.4] [Reference Citation Analysis]
141 Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater 2018;3:257-78. [DOI: 10.1038/s41578-018-0034-7] [Cited by in Crossref: 324] [Cited by in F6Publishing: 112] [Article Influence: 108.0] [Reference Citation Analysis]
142 Witman N, Sahara M. Cardiac Progenitor Cells in Basic Biology and Regenerative Medicine. Stem Cells Int 2018;2018:8283648. [PMID: 29535783 DOI: 10.1155/2018/8283648] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
143 Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018;9:5375. [PMID: 30560907 DOI: 10.1038/s41467-018-07787-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
144 Hazeltine LB, Selekman JA, Palecek SP. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 2013;31:1002-19. [PMID: 23510904 DOI: 10.1016/j.biotechadv.2013.03.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
145 Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2015;33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
146 Li J, Minami I, Shiozaki M, Yu L, Yajima S, Miyagawa S, Shiba Y, Morone N, Fukushima S, Yoshioka M, Li S, Qiao J, Li X, Wang L, Kotera H, Nakatsuji N, Sawa Y, Chen Y, Liu L. Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium. Stem Cell Reports 2017;9:1546-59. [PMID: 29107590 DOI: 10.1016/j.stemcr.2017.09.007] [Cited by in Crossref: 64] [Cited by in F6Publishing: 41] [Article Influence: 16.0] [Reference Citation Analysis]
147 Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, Slukvin II. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev 2011;20:1639-47. [PMID: 21434814 DOI: 10.1089/scd.2011.0078] [Cited by in Crossref: 103] [Cited by in F6Publishing: 89] [Article Influence: 10.3] [Reference Citation Analysis]
148 Christalla P, Hudson JE, Zimmermann WH. The cardiogenic niche as a fundamental building block of engineered myocardium. Cells Tissues Organs 2012;195:82-93. [PMID: 21996934 DOI: 10.1159/000331407] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
149 Laranjeiro R, Alcobia I, Neves H, Gomes AC, Saavedra P, Carvalho CC, Duarte A, Cidadão A, Parreira L. The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS One 2012;7:e34553. [PMID: 22514637 DOI: 10.1371/journal.pone.0034553] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
150 Strano A, Tuck E, Stubbs VE, Livesey FJ. Variable Outcomes in Neural Differentiation of Human PSCs Arise from Intrinsic Differences in Developmental Signaling Pathways. Cell Rep 2020;31:107732. [PMID: 32521257 DOI: 10.1016/j.celrep.2020.107732] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
151 Hochman-Mendez C, Pereira de Campos DB, Pinto RS, Mendes BJDS, Rocha GM, Monnerat G, Weissmuller G, Sampaio LC, Carvalho AB, Taylor DA, de Carvalho ACC. Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. J Tissue Eng 2020;11:2041731420921482. [PMID: 32742631 DOI: 10.1177/2041731420921482] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
152 Lanier M, Schade D, Willems E, Tsuda M, Spiering S, Kalisiak J, Mercola M, Cashman JR. Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: a structure-activity relationship study based on inhibitors for the Wnt response. J Med Chem 2012;55:697-708. [PMID: 22191557 DOI: 10.1021/jm2010223] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
153 Ieda M. Heart regeneration using reprogramming technology. Proc Jpn Acad Ser B Phys Biol Sci 2013;89:118-28. [PMID: 23474887 DOI: 10.2183/pjab.89.118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
154 Bahmanpour S, Zarei Fard N, Talaei-Khozani T, Hosseini A, Esmaeilpour T. Effect of BMP4 preceded by retinoic acid and co-culturing ovarian somatic cells on differentiation of mouse embryonic stem cells into oocyte-like cells. Dev Growth Differ 2015;57:378-88. [PMID: 26041547 DOI: 10.1111/dgd.12217] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
155 Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016;96:1093-126. [PMID: 27335446 DOI: 10.1152/physrev.00036.2015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 17.3] [Reference Citation Analysis]
156 Wu Y(, Yu J. The role of tissue engineering in cellular therapies for myocardial infarction: a review. J Mater Chem B 2015;3:6401-10. [DOI: 10.1039/c5tb00739a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
157 Freytes DO, Santambrogio L, Vunjak-Novakovic G. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs 2012;195:171-82. [PMID: 21996612 DOI: 10.1159/000331392] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
158 He P, Fu J, Wang DA. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta Biomater 2016;35:87-97. [PMID: 26911880 DOI: 10.1016/j.actbio.2016.02.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
159 Liu Y, Li P, Liu K, He Q, Han S, Sun X, Li T, Shen L. Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS One. 2014;9:e109588. [PMID: 25313563 DOI: 10.1371/journal.pone.0109588] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
160 Leung RK, Lin Y, Liu Y. Recent Advances in Understandings Towards Pathogenesis and Treatment for Intrauterine Adhesion and Disruptive Insights from Single-Cell Analysis. Reprod Sci 2021;28:1812-26. [PMID: 33125685 DOI: 10.1007/s43032-020-00343-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
161 Miyamoto M, Nam L, Kannan S, Kwon C. Heart organoids and tissue models for modeling development and disease. Seminars in Cell & Developmental Biology 2021;118:119-28. [DOI: 10.1016/j.semcdb.2021.03.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
162 Negro A, Boehm M. Cardiomyocyte maturation: It takes a village to raise a kid. J Mol Cell Cardiol 2014;74:193-5. [PMID: 24874422 DOI: 10.1016/j.yjmcc.2014.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
163 Diederichs S, Tuan RS. Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev. 2014;23:1594-1610. [PMID: 24625206 DOI: 10.1089/scd.2013.0477] [Cited by in Crossref: 81] [Cited by in F6Publishing: 70] [Article Influence: 11.6] [Reference Citation Analysis]
164 Aguilar-Sanchez C, Michael M, Pennings S. Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018;2018:1247857. [PMID: 30034478 DOI: 10.1155/2018/1247857] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
165 Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021;17:748-76. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
166 Liang W, Han P, Kim EH, Mak J, Zhang R, Torrente AG, Goldhaber JI, Marbán E, Cho HC. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells 2020;38:352-68. [PMID: 31648393 DOI: 10.1002/stem.3106] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
167 Wang X, Tang P, Guo F, Zhang M, Chen Y, Yan Y, Tian Z, Xu P, Zhang L, Zhang L, Zhang L. RhoA regulates Activin B-induced stress fiber formation and migration of bone marrow-derived mesenchymal stromal cell through distinct signaling. Biochim Biophys Acta Gen Subj 2017;1861:3011-8. [PMID: 27693126 DOI: 10.1016/j.bbagen.2016.09.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
168 Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2013;169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
169 Steimle JD, Rankin SA, Slagle CE, Bekeny J, Rydeen AB, Chan SS, Kweon J, Yang XH, Ikegami K, Nadadur RD, Rowton M, Hoffmann AD, Lazarevic S, Thomas W, Boyle Anderson EAT, Horb ME, Luna-Zurita L, Ho RK, Kyba M, Jensen B, Zorn AM, Conlon FL, Moskowitz IP. Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 2018;115:E10615-24. [PMID: 30352852 DOI: 10.1073/pnas.1811624115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
170 Brauchle E, Knopf A, Bauer H, Shen N, Linder S, Monaghan MG, Ellwanger K, Layland SL, Brucker SY, Nsair A, Schenke-Layland K. Non-invasive Chamber-Specific Identification of Cardiomyocytes in Differentiating Pluripotent Stem Cells. Stem Cell Reports 2016;6:188-99. [PMID: 26777059 DOI: 10.1016/j.stemcr.2015.12.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
171 Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM, Cabral JMS, Diogo MM. Transcriptomic analysis of 3D Cardiac Differentiation of Human Induced Pluripotent Stem Cells Reveals Faster Cardiomyocyte Maturation Compared to 2D Culture. Sci Rep 2019;9:9229. [PMID: 31239450 DOI: 10.1038/s41598-019-45047-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
172 Xu X, Wang W, Li Z, Kratz K, Ma N, Lendlein A, Jung F, Gori T. Surface geometry of poly(ether imide) boosts mouse pluripotent stem cell spontaneous cardiomyogenesis via modulating the embryoid body formation process. CH 2017;64:367-82. [DOI: 10.3233/ch-168107] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
173 Jafarzadeh M, Mohammad Soltani B, Ekhteraei Tousi S, Behmanesh M. Hsa-miR-497 as a new regulator in TGFβ signaling pathway and cardiac differentiation process. Gene 2018;675:150-6. [DOI: 10.1016/j.gene.2018.06.098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
174 Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, Karp JM, Farokhzad OC. Multiscale technologies for treatment of ischemic cardiomyopathy. Nat Nanotechnol 2017;12:845-55. [PMID: 28875984 DOI: 10.1038/nnano.2017.167] [Cited by in Crossref: 72] [Cited by in F6Publishing: 54] [Article Influence: 36.0] [Reference Citation Analysis]
175 Eng G, Lee BW, Protas L, Gagliardi M, Brown K, Kass RS, Keller G, Robinson RB, Vunjak-Novakovic G. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016;7:10312. [PMID: 26785135 DOI: 10.1038/ncomms10312] [Cited by in Crossref: 78] [Cited by in F6Publishing: 68] [Article Influence: 15.6] [Reference Citation Analysis]
176 Coulombe KL, Bajpai VK, Andreadis ST, Murry CE. Heart regeneration with engineered myocardial tissue. Annu Rev Biomed Eng 2014;16:1-28. [PMID: 24819474 DOI: 10.1146/annurev-bioeng-071812-152344] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 7.6] [Reference Citation Analysis]
177 Cui X, Shang S, Lv X, Zhao J, Qi Y, Liu Z. Perspectives of small molecule inhibitors of activin receptor‑like kinase in anti‑tumor treatment and stem cell differentiation (Review). Mol Med Rep 2019;19:5053-62. [PMID: 31059090 DOI: 10.3892/mmr.2019.10209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
178 Ashok P, Fan Y, Rostami MR, Tzanakakis ES. Aggregate and Microcarrier Cultures of Human Pluripotent Stem Cells in Stirred-Suspension Systems. Methods Mol Biol 2016;1502:35-52. [PMID: 26659793 DOI: 10.1007/7651_2015_312] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
179 Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11:847-854. [PMID: 24973948 DOI: 10.1038/nmeth.3016] [Cited by in Crossref: 435] [Cited by in F6Publishing: 323] [Article Influence: 62.1] [Reference Citation Analysis]
180 Vunjak Novakovic G, Eschenhagen T, Mummery C. Myocardial tissue engineering: in vitro models. Cold Spring Harb Perspect Med 2014;4:a014076. [PMID: 24591534 DOI: 10.1101/cshperspect.a014076] [Cited by in Crossref: 68] [Cited by in F6Publishing: 57] [Article Influence: 9.7] [Reference Citation Analysis]
181 Mcclelland Descalzo DL, Ehnes DD, zur Nieden NI. Stem cells for osteodegenerative diseases: current studies and future outlook. Regenerative Medicine 2014;9:219-30. [DOI: 10.2217/rme.13.100] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
182 Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon RT, Stamatoyannopoulos J, Murry CE. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 2012;151:221-32. [PMID: 22981225 DOI: 10.1016/j.cell.2012.08.027] [Cited by in Crossref: 242] [Cited by in F6Publishing: 205] [Article Influence: 26.9] [Reference Citation Analysis]
183 Xu C. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol. 2012;52:1203-1212. [PMID: 22484618 DOI: 10.1016/j.yjmcc.2012.03.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
184 Yeo HC, Ting S, Brena RM, Koh G, Chen A, Toh SQ, Lim YM, Oh SK, Lee DY. Genome-Wide Transcriptome and Binding Sites Analyses Identify Early FOX Expressions for Enhancing Cardiomyogenesis Efficiency of hESC Cultures. Sci Rep 2016;6:31068. [PMID: 27501774 DOI: 10.1038/srep31068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
185 Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 2012;28:719-41. [PMID: 23057748 DOI: 10.1146/annurev-cellbio-101011-155739] [Cited by in Crossref: 185] [Cited by in F6Publishing: 159] [Article Influence: 23.1] [Reference Citation Analysis]
186 Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, Kojima H, Umei T, Akiyama M, Kuishi Y, Kurokawa J, Furukawa T, Fukuda K, Ieda M. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports 2015;5:1128-42. [PMID: 26626177 DOI: 10.1016/j.stemcr.2015.10.019] [Cited by in Crossref: 99] [Cited by in F6Publishing: 80] [Article Influence: 16.5] [Reference Citation Analysis]
187 Sakaki-Yumoto M, Katsuno Y, Derynck R. TGF-β family signaling in stem cells. Biochim Biophys Acta 2013;1830:2280-96. [PMID: 22959078 DOI: 10.1016/j.bbagen.2012.08.008] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 10.2] [Reference Citation Analysis]
188 Sharma A, Toepfer CN, Schmid M, Garfinkel AC, Seidman CE. Differentiation and Contractile Analysis of GFP-Sarcomere Reporter hiPSC-Cardiomyocytes. Curr Protoc Hum Genet 2018;96:21.12.1-21.12.12. [PMID: 29364522 DOI: 10.1002/cphg.53] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
189 Chanthra N, Abe T, Miyamoto M, Sekiguchi K, Kwon C, Hanazono Y, Uosaki H. A Novel Fluorescent Reporter System Identifies Laminin-511/521 as Potent Regulators of Cardiomyocyte Maturation. Sci Rep 2020;10:4249. [PMID: 32144297 DOI: 10.1038/s41598-020-61163-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
190 Purpura KA, Bratt-Leal AM, Hammersmith KA, McDevitt TC, Zandstra PW. Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 2012;33:1271-80. [PMID: 22079776 DOI: 10.1016/j.biomaterials.2011.10.051] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
191 Jiang Y, Habibollah S, Tilgner K, Collin J, Barta T, Al-Aama JY, Tesarov L, Hussain R, Trafford AW, Kirkwood G, Sernagor E, Eleftheriou CG, Przyborski S, Stojković M, Lako M, Keavney B, Armstrong L. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl Med 2014;3:416-23. [PMID: 24591732 DOI: 10.5966/sctm.2013-0105] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
192 Lee J, Laronde S, Collins TJ, Shapovalova Z, Tanasijevic B, Mcnicol JD, Fiebig-comyn A, Benoit YD, Lee JB, Mitchell RR, Bhatia M. Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Reports 2017;19:20-35. [DOI: 10.1016/j.celrep.2017.03.036] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
193 Jiang Y, Lian XL. Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioact Mater 2020;5:74-81. [PMID: 31989061 DOI: 10.1016/j.bioactmat.2020.01.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
194 Hwang GH, Park SM, Han HJ, Kim JS, Yun SP, Ryu JM, Lee HJ, Chang W, Lee SJ, Choi JH, Choi JS, Lee MY. Purification of small molecule-induced cardiomyocytes from human induced pluripotent stem cells using a reporter system. J Cell Physiol 2017;232:3384-95. [PMID: 28063225 DOI: 10.1002/jcp.25783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
195 Han L, Mich-Basso J, Kühn B. Generation of Human Induced Pluripotent Stem Cells and Differentiation into Cardiomyocytes. Methods Mol Biol 2021;2158:125-39. [PMID: 32857370 DOI: 10.1007/978-1-0716-0668-1_10] [Reference Citation Analysis]
196 Lalit PA, Hei DJ, Raval AN, Kamp TJ. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ Res 2014;114:1328-45. [PMID: 24723658 DOI: 10.1161/CIRCRESAHA.114.300556] [Cited by in Crossref: 84] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
197 Hong SP, Song S, Cho SW, Lee S, Koh BI, Bae H, Kim KH, Park JS, Do HS, Im I, Heo HJ, Ko TH, Park JH, Youm JB, Kim SJ, Kim I, Han J, Han YM, Koh GY. Generation of PDGFRα+ Cardioblasts from Pluripotent Stem Cells. Sci Rep 2017;7:41840. [PMID: 28165490 DOI: 10.1038/srep41840] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
198 Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Chan HYS, Webb SE, Keung W, Chow H, Miller AL, Leung AY, Hajjar RJ, Li RA, Chan CW. A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 2014;23:1704-16. [PMID: 24564569 DOI: 10.1089/scd.2013.0509] [Cited by in Crossref: 79] [Cited by in F6Publishing: 70] [Article Influence: 11.3] [Reference Citation Analysis]
199 Biermann M, Cai W, Lang D, Hermsen J, Profio L, Zhou Y, Czirok A, Isai DG, Napiwocki BN, Rodriguez AM, Brown ME, Woon MT, Shao A, Han T, Park D, Hacker TA, Crone WC, Burlingham WJ, Glukhov AV, Ge Y, Kamp TJ. Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells 2019;37:910-23. [PMID: 31087611 DOI: 10.1002/stem.3021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
200 Liu Z, Wen X, Wang H, Zhou J, Zhao M, Lin Q, Wang Y, Li J, Li D, Du Z, Yao A, Cao F, Wang C. Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium. PLoS One 2013;8:e66369. [PMID: 23840453 DOI: 10.1371/journal.pone.0066369] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
201 Lupo G, Bertacchi M, Carucci N, Augusti-Tocco G, Biagioni S, Cremisi F. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014;71:2917-30. [PMID: 24643740 DOI: 10.1007/s00018-014-1596-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
202 Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019;11:464-75. [PMID: 31523367 DOI: 10.4252/wjsc.v11.i8.464] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
203 Li Z, Chen Y. Functions of BMP signaling in embryonic stem cell fate determination. Experimental Cell Research 2013;319:113-9. [DOI: 10.1016/j.yexcr.2012.09.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
204 Islas JF, Abbasgholizadeh R, Dacso C, Potaman VN, Navran S, Bond RA, Iyer D, Birla R, Schwartz RJ. β-Adrenergic stimuli and rotating suspension culture enhance conversion of human adipogenic mesenchymal stem cells into highly conductive cardiac progenitors. J Tissue Eng Regen Med 2020;14:306-18. [PMID: 31821703 DOI: 10.1002/term.2994] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
205 Cimetta E, Cannizzaro C, James R, Biechele T, Moon RT, Elvassore N, Vunjak-Novakovic G. Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 2010;10:3277-83. [PMID: 20936235 DOI: 10.1039/c0lc00033g] [Cited by in Crossref: 74] [Cited by in F6Publishing: 64] [Article Influence: 6.7] [Reference Citation Analysis]
206 Ramachandra CJ, Mehta A, Wong P, Shim W. ErbB4 Activated p38γ MAPK Isoform Mediates Early Cardiogenesis Through NKx2.5 in Human Pluripotent Stem Cells: ErbB4-p38γ Signaling and Cardiogenesis. Stem Cells 2016;34:288-98. [DOI: 10.1002/stem.2223] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
207 Wang D, Wang Y, Liu H, Tong C, Ying Q, Sachinidis A, Li L, Peng L. Laminin promotes differentiation of rat embryonic stem cells into cardiomyocytes by activating the integrin/FAK/PI3K p85 pathway. J Cell Mol Med 2019;23:3629-40. [PMID: 30907509 DOI: 10.1111/jcmm.14264] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
208 Shelton M, Metz J, Liu J, Carpenedo RL, Demers SP, Stanford WL, Skerjanc IS. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Reports. 2014;3:516-529. [PMID: 25241748 DOI: 10.1016/j.stemcr.2014.07.001] [Cited by in Crossref: 102] [Cited by in F6Publishing: 88] [Article Influence: 14.6] [Reference Citation Analysis]
209 Bongiorno T, Gura J, Talwar P, Chambers D, Young KM, Arafat D, Wang G, Jackson-Holmes EL, Qiu P, McDevitt TC, Sulchek T. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures. PLoS One 2018;13:e0192631. [PMID: 29518080 DOI: 10.1371/journal.pone.0192631] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
210 Wang Q, Kurita H, Carreira V, Ko CI, Fan Y, Zhang X, Biesiada J, Medvedovic M, Puga A. Ah Receptor Activation by Dioxin Disrupts Activin, BMP, and WNT Signals During the Early Differentiation of Mouse Embryonic Stem Cells and Inhibits Cardiomyocyte Functions. Toxicol Sci. 2016;149:346-357. [PMID: 26572662 DOI: 10.1093/toxsci/kfv246] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 5.7] [Reference Citation Analysis]
211 Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D. Role of c-Kit in Myocardial Regeneration and Aging. Front Endocrinol (Lausanne) 2019;10:371. [PMID: 31275242 DOI: 10.3389/fendo.2019.00371] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
212 Takeda M, Kanki Y, Masumoto H, Funakoshi S, Hatani T, Fukushima H, Izumi-Taguchi A, Matsui Y, Shimamura T, Yoshida Y, Yamashita JK. Identification of Cardiomyocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. Cell Rep. 2018;22:546-556. [PMID: 29320747 DOI: 10.1016/j.celrep.2017.12.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
213 Lei IL, Bu L, Wang Z. Derivation of cardiac progenitor cells from embryonic stem cells. J Vis Exp 2015;:52047. [PMID: 25650840 DOI: 10.3791/52047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
214 [DOI: 10.1101/2020.02.06.937797] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
215 Zhang J, Chou OH, Tse YL, Ng KM, Tse HF. Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies. Int J Mol Sci 2021;22:8132. [PMID: 34360897 DOI: 10.3390/ijms22158132] [Reference Citation Analysis]
216 Guo X, Xu Y, Wang Z, Wu Y, Chen J, Wang G, Lu C, Jia W, Xi J, Zhu S, Jiapaer Z, Wan X, Liu Z, Gao S, Kang J. A Linc1405/Eomes Complex Promotes Cardiac Mesoderm Specification and Cardiogenesis. Cell Stem Cell 2018;22:893-908.e6. [PMID: 29754779 DOI: 10.1016/j.stem.2018.04.013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
217 Guild J, Haque A, Gheibi P, Gao Y, Son KJ, Foster E, Dumont S, Revzin A. Embryonic Stem Cells Cultured in Microfluidic Chambers Take Control of Their Fate by Producing Endogenous Signals Including LIF: Autocrine LIF Controls mESC Fate in Microchambers. Stem Cells 2016;34:1501-12. [DOI: 10.1002/stem.2324] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
218 Wang H, Luo X, Leighton J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. Biochem Insights 2015;8:15-21. [PMID: 26462244 DOI: 10.4137/BCI.S30377] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
219 Du ZW, Chen H, Liu H, Lu J, Qian K, Huang CL, Zhong X, Fan F, Zhang SC. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun. 2015;6:6626. [PMID: 25806427 DOI: 10.1038/ncomms7626] [Cited by in Crossref: 144] [Cited by in F6Publishing: 130] [Article Influence: 24.0] [Reference Citation Analysis]
220 Savla JJ, Nelson BC, Perry CN, Adler ED. Induced Pluripotent Stem Cells for the Study of Cardiovascular Disease. Journal of the American College of Cardiology 2014;64:512-9. [DOI: 10.1016/j.jacc.2014.05.038] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
221 Li Y, Weng X, Wang P, He Z, Cheng S, Wang D, Li X, Cheng G, Li T. 4-phenylbutyrate exerts stage-specific effects on cardiac differentiation via HDAC inhibition. PLoS One 2021;16:e0250267. [PMID: 33882103 DOI: 10.1371/journal.pone.0250267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
222 Nakao S, Tsukamoto T, Ueyama T, Kawamura T. STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering. Int J Mol Sci 2020;21:E1937. [PMID: 32178385 DOI: 10.3390/ijms21061937] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
223 Sepac A, Si-Tayeb K, Sedlic F, Barrett S, Canfield S, Duncan SA, Bosnjak ZJ, Lough JW. Comparison of cardiomyogenic potential among human ESC and iPSC lines. Cell Transplant 2012;21:2523-30. [PMID: 22863088 DOI: 10.3727/096368912X653165] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
224 Scott IC. Life Before Nkx2.5. Heart Development. Elsevier; 2012. pp. 1-31. [DOI: 10.1016/b978-0-12-387786-4.00001-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
225 Singh SJ, Turner W, Glaser DE, McCloskey KE, Filipp FV. Metabolic shift in density-dependent stem cell differentiation. Cell Commun Signal 2017;15:44. [PMID: 29052507 DOI: 10.1186/s12964-017-0173-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
226 Romagnuolo R, Laflamme MA. Programming cells for cardiac repair. Curr Opin Biotechnol 2017;47:43-50. [PMID: 28633074 DOI: 10.1016/j.copbio.2017.05.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
227 Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, Aghdami N, Baharvand H. Expansion of Human Pluripotent Stem Cell-derived Early Cardiovascular Progenitor Cells by a Cocktail of Signaling Factors. Sci Rep 2019;9:16006. [PMID: 31690816 DOI: 10.1038/s41598-019-52516-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
228 Zhao Z, Lan H, El-Battrawy I, Li X, Buljubasic F, Sattler K, Yücel G, Lang S, Tiburcy M, Zimmermann WH, Cyganek L, Utikal J, Wieland T, Borggrefe M, Zhou XB, Akin I. Ion Channel Expression and Characterization in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Int 2018;2018:6067096. [PMID: 29535773 DOI: 10.1155/2018/6067096] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
229 Morey L, Santanach A, Blanco E, Aloia L, Nora E, Bruneau B, Di croce L. Polycomb Regulates Mesoderm Cell Fate-Specification in Embryonic Stem Cells through Activation and Repression Mechanisms. Cell Stem Cell 2015;17:300-15. [DOI: 10.1016/j.stem.2015.08.009] [Cited by in Crossref: 92] [Cited by in F6Publishing: 67] [Article Influence: 15.3] [Reference Citation Analysis]
230 Dambrot C, Buermans HP, Varga E, Kosmidis G, Langenberg K, Casini S, Elliott DA, Dinnyes A, Atsma DE, Mummery CL, Braam SR, Davis RP. Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research 2014;327:297-306. [DOI: 10.1016/j.yexcr.2014.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
231 Gibbs BC, Shenje L, Andersen P, Miyamoto M, Kwon C. β1-integrin is a cell-autonomous factor mediating the Numb pathway for cardiac progenitor maintenance. Biochem Biophys Res Commun 2018;500:256-60. [PMID: 29653101 DOI: 10.1016/j.bbrc.2018.04.054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
232 Bernal A, Gálvez BG. The potential of stem cells in the treatment of cardiovascular diseases. Stem Cell Rev Rep 2013;9:814-32. [PMID: 23949886 DOI: 10.1007/s12015-013-9461-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
233 Song L, Awari DW, Han EY, Uche-Anya E, Park SH, Yabe YA, Chung WK, Yazawa M. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators. Stem Cells Transl Med 2015;4:468-75. [PMID: 25769651 DOI: 10.5966/sctm.2014-0245] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
234 Rhee JM, Iannaccone PM. Mapping mouse hemangioblast maturation from headfold stages. Dev Biol 2012;365:1-13. [PMID: 22426104 DOI: 10.1016/j.ydbio.2012.02.023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
235 Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. Prog Biophys Mol Biol. 2012;110:178-195. [PMID: 22958937 DOI: 10.1016/j.pbiomolbio.2012.07.012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
236 Cimetta E, Vunjak-Novakovic G. Microscale technologies for regulating human stem cell differentiation. Exp Biol Med (Maywood) 2014;239:1255-63. [PMID: 24737735 DOI: 10.1177/1535370214530369] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
237 Khan JM, Lyon AR, Harding SE. The case for induced pluripotent stem cell-derived cardiomyocytes in pharmacological screening. Br J Pharmacol 2013;169:304-17. [PMID: 22845396 DOI: 10.1111/j.1476-5381.2012.02118.x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
238 Poleshko A, Shah PP, Gupta M, Babu A, Morley MP, Manderfield LJ, Ifkovits JL, Calderon D, Aghajanian H, Sierra-Pagán JE, Sun Z, Wang Q, Li L, Dubois NC, Morrisey EE, Lazar MA, Smith CL, Epstein JA, Jain R. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell 2017;171:573-587.e14. [PMID: 29033129 DOI: 10.1016/j.cell.2017.09.018] [Cited by in Crossref: 80] [Cited by in F6Publishing: 60] [Article Influence: 20.0] [Reference Citation Analysis]
239 Segers VF, Lee RT, Dimmeler S, Losordo D. Biomaterials to Enhance Stem Cell Function in the Heart. Circ Res 2011;109:910-22. [DOI: 10.1161/circresaha.111.249052] [Cited by in Crossref: 134] [Cited by in F6Publishing: 59] [Article Influence: 13.4] [Reference Citation Analysis]
240 Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA. 2012;109:13016-13021. [PMID: 22826236 DOI: 10.1073/pnas.1120299109] [Cited by in Crossref: 149] [Cited by in F6Publishing: 119] [Article Influence: 16.6] [Reference Citation Analysis]
241 Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med. 2013;3. [PMID: 24186488 DOI: 10.1101/cshperspect.a014027] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
242 Shenje LT, Andersen P, Halushka MK, Lui C, Fernandez L, Collin GB, Amat-Alarcon N, Meschino W, Cutz E, Chang K, Yonescu R, Batista DA, Chen Y, Chelko S, Crosson JE, Scheel J, Vricella L, Craig BD, Marosy BA, Mohr DW, Hetrick KN, Romm JM, Scott AF, Valle D, Naggert JK, Kwon C, Doheny KF, Judge DP. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nat Commun 2014;5:3416. [PMID: 24595103 DOI: 10.1038/ncomms4416] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
243 Liu F, Kang I, Park C, Chang LW, Wang W, Lee D, Lim DS, Vittet D, Nerbonne JM, Choi K. ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 2012;119:3295-305. [PMID: 22343916 DOI: 10.1182/blood-2012-01-403766] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 6.4] [Reference Citation Analysis]
244 Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020;21:E7662. [PMID: 33081233 DOI: 10.3390/ijms21207662] [Reference Citation Analysis]
245 Alexander JM, Hota SK, He D, Thomas S, Ho L, Pennacchio LA, Bruneau BG. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 2015;142:1418-30. [PMID: 25813539 DOI: 10.1242/dev.109496] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 9.8] [Reference Citation Analysis]
246 Cimetta E, Sirabella D, Yeager K, Davidson K, Simon J, Moon RT, Vunjak-Novakovic G. Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab Chip. 2013;13:355-364. [PMID: 23232509 DOI: 10.1039/c2lc40836h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
247 Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 2014;:52010. [PMID: 25286293 DOI: 10.3791/52010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
248 Alexanian RA, Mahapatra K, Lang D, Vaidyanathan R, Markandeya YS, Gill RK, Zhai AJ, Dhillon A, Lea MR, Abozeid S, Schmuck EG, Raval AN, Eckhardt LL, Glukhov AV, Lalit PA, Kamp TJ. Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochim Biophys Acta Mol Cell Res 2020;1867:118559. [PMID: 31634503 DOI: 10.1016/j.bbamcr.2019.118559] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
249 Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016;143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Cited by in Crossref: 51] [Cited by in F6Publishing: 39] [Article Influence: 10.2] [Reference Citation Analysis]
250 Acimovic I, Vilotic A, Pesl M, Lacampagne A, Dvorak P, Rotrekl V, Meli AC. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomed Res Int 2014;2014:512831. [PMID: 24800237 DOI: 10.1155/2014/512831] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 5.1] [Reference Citation Analysis]
251 Buikema JW, Mady AS, Mittal NV, Atmanli A, Caron L, Doevendans PA, Sluijter JP, Domian IJ. Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development 2013;140:4165-76. [PMID: 24026118 DOI: 10.1242/dev.099325] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
252 Okubo C, Narita M, Inagaki A, Nishikawa M, Hotta A, Yamanaka S, Yoshida Y. Expression dynamics of HAND1/2 in in vitro human cardiomyocyte differentiation. Stem Cell Reports 2021;16:1906-22. [PMID: 34297940 DOI: 10.1016/j.stemcr.2021.06.014] [Reference Citation Analysis]
253 Liau B, Zhang D, Bursac N. Functional cardiac tissue engineering. Regen Med 2012;7:187-206. [PMID: 22397609 DOI: 10.2217/rme.11.122] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 9.0] [Reference Citation Analysis]
254 Jiang J, Han P, Zhang Q, Zhao J, Ma Y. Cardiac differentiation of human pluripotent stem cells. J Cell Mol Med 2012;16:1663-8. [PMID: 22248065 DOI: 10.1111/j.1582-4934.2012.01528.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
255 van den Ameele J, Tiberi L, Bondue A, Paulissen C, Herpoel A, Iacovino M, Kyba M, Blanpain C, Vanderhaeghen P. Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep 2012;13:355-62. [PMID: 22402664 DOI: 10.1038/embor.2012.23] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
256 Feinberg AW. Engineered tissue grafts: opportunities and challenges in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med 2012;4:207-20. [PMID: 22012681 DOI: 10.1002/wsbm.164] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
257 Rao L, Tang W, Wei Y, Bao L, Chen J, Chen H, He L, Lu P, Ren J, Wu L. Highly efficient derivation of skeletal myotubes from human embryonic stem cells. Stem Cell Rev. 2012;8:1109-1119. [PMID: 23104134 DOI: 10.1007/s12015-012-9413-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
258 Prajapati C, Ojala M, Lappi H, Aalto-Setälä K, Pekkanen-Mattila M. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods. Stem Cell Res 2021;51:102176. [PMID: 33485184 DOI: 10.1016/j.scr.2021.102176] [Reference Citation Analysis]
259 Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139:829-841. [PMID: 22318624 DOI: 10.1242/dev.060426] [Cited by in Crossref: 187] [Cited by in F6Publishing: 151] [Article Influence: 20.8] [Reference Citation Analysis]
260 Scheuermann JC, Boyer LA. Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J. 2013;32:1805-1816. [PMID: 23756463 DOI: 10.1038/emboj.2013.134] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 9.5] [Reference Citation Analysis]
261 Nunes SS, Miklas JW, Radisic M. Maturation of stem cell-derived human heart tissue by mimicking fetal heart rate. Future Cardiol 2013;9:751-4. [PMID: 24180529 DOI: 10.2217/fca.13.71] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
262 Chuang Y, Hung ME, Cangelose BK, Leonard JN. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun 2016;22:647-57. [PMID: 27670945 DOI: 10.1177/1753425916668243] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
263 Den Hartogh SC, Passier R. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity: Fluorescent reporters in stem-cell derived cardiomyocytes. Stem Cells 2016;34:13-26. [DOI: 10.1002/stem.2196] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
264 Bhargava V, Ko P, Willems E, Mercola M, Subramaniam S. Quantitative transcriptomics using designed primer-based amplification. Sci Rep 2013;3:1740. [PMID: 23624976 DOI: 10.1038/srep01740] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
265 Szebényi K, Péntek A, Erdei Z, Várady G, Orbán TI, Sarkadi B, Apáti Á. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression. Tissue Eng Part C Methods 2015;21:35-45. [PMID: 24734786 DOI: 10.1089/ten.TEC.2013.0646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
266 Sinnecker D, Laugwitz KL, Moretti A. Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol Ther 2014;143:246-52. [PMID: 24657289 DOI: 10.1016/j.pharmthera.2014.03.004] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 9.3] [Reference Citation Analysis]
267 Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. Int Rev Cell Mol Biol 2012;293:195-267. [PMID: 22251563 DOI: 10.1016/B978-0-12-394304-0.00012-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
268 Tu C, Allen A, Deng W, Conroy O, Nambiar M, Zoldan J. Commonly used thiol-containing antioxidants reduce cardiac differentiation and alter gene expression ratios of sarcomeric isoforms. Exp Cell Res 2018;370:150-9. [PMID: 29920245 DOI: 10.1016/j.yexcr.2018.06.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
269 Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, Yorgan T, Cheng KH, Lessmann K, Stolen T, Scherrer-Crosbie M, Smith G, Reichenspurner H, Hansen A, Eschenhagen T. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 2016;8:363ra148. [PMID: 27807283 DOI: 10.1126/scitranslmed.aaf8781] [Cited by in Crossref: 133] [Cited by in F6Publishing: 101] [Article Influence: 33.3] [Reference Citation Analysis]
270 Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM. Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations. Cell Stem Cell. 2017;21:179-194.e4. [PMID: 28777944 DOI: 10.1016/j.stem.2017.07.003] [Cited by in Crossref: 173] [Cited by in F6Publishing: 124] [Article Influence: 57.7] [Reference Citation Analysis]
271 Kokkinopoulos I, Ishida H, Saba R, Coppen S, Suzuki K, Yashiro K. Cardiomyocyte differentiation from mouse embryonic stem cells using a simple and defined protocol: Simple High-Yield Cardiomyogenesis Protocol. Dev Dyn 2016;245:157-65. [DOI: 10.1002/dvdy.24366] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
272 Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021:S1084-9521(21)00153-1. [PMID: 34144893 DOI: 10.1016/j.semcdb.2021.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
273 Kerscher P, Turnbull IC, Hodge AJ, Kim J, Seliktar D, Easley CJ, Costa KD, Lipke EA. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials 2016;83:383-95. [PMID: 26826618 DOI: 10.1016/j.biomaterials.2015.12.011] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 9.5] [Reference Citation Analysis]
274 Liu F, Bhang SH, Arentson E, Sawada A, Kim CK, Kang I, Yu J, Sakurai N, Kim SH, Yoo JJ, Kim P, Pahng SH, Xia Y, Solnica-Krezel L, Choi K. Enhanced hemangioblast generation and improved vascular repair and regeneration from embryonic stem cells by defined transcription factors. Stem Cell Reports 2013;1:166-82. [PMID: 24052951 DOI: 10.1016/j.stemcr.2013.06.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
275 Titmarsh DM, Hudson JE, Hidalgo A, Elefanty AG, Stanley EG, Wolvetang EJ, Cooper-White JJ. Microbioreactor arrays for full factorial screening of exogenous and paracrine factors in human embryonic stem cell differentiation. PLoS One. 2012;7:e52405. [PMID: 23300662 DOI: 10.1371/journal.pone.0052405] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
276 Yamauchi K, Li J, Morikawa K, Liu L, Shirayoshi Y, Nakatsuji N, Elliott DA, Hisatome I, Suemori H. Isolation and characterization of ventricular-like cells derived from NKX2-5eGFP/w and MLC2vmCherry/w double knock-in human pluripotent stem cells. Biochem Biophys Res Commun 2018;495:1278-84. [PMID: 29175323 DOI: 10.1016/j.bbrc.2017.11.133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
277 Neiman G, Scarafía MA, La Greca A, Santín Velazque NL, Garate X, Waisman A, Möbbs AM, Kasai-Brunswick TH, Mesquita F, Martire-Greco D, Moro LN, Luzzani C, Bastos Carvalho A, Sevlever GE, Campos de Carvalho A, Guberman AS, Miriuka SG. Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Sci Rep 2019;9:18077. [PMID: 31792288 DOI: 10.1038/s41598-019-54352-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
278 Ban K, Park HJ, Kim S, Andukuri A, Cho KW, Hwang JW, Cha HJ, Kim SY, Kim WS, Jun HW, Yoon YS. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS Nano 2014;8:10815-25. [PMID: 25210842 DOI: 10.1021/nn504617g] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 9.9] [Reference Citation Analysis]
279 Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-860. [PMID: 24930130 DOI: 10.1038/nmeth.2999] [Cited by in Crossref: 824] [Cited by in F6Publishing: 661] [Article Influence: 117.7] [Reference Citation Analysis]
280 Sadahiro T. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming. Regen Ther 2019;11:95-100. [PMID: 31304202 DOI: 10.1016/j.reth.2019.06.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
281 Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res. 2015;117:80-88. [PMID: 26089365 DOI: 10.1161/circresaha.117.305365] [Cited by in Crossref: 236] [Cited by in F6Publishing: 137] [Article Influence: 39.3] [Reference Citation Analysis]
282 Rapti K, Stillitano F, Karakikes I, Nonnenmacher M, Weber T, Hulot JS, Hajjar RJ. Effectiveness of gene delivery systems for pluripotent and differentiated cells. Mol Ther Methods Clin Dev 2015;2:14067. [PMID: 26052535 DOI: 10.1038/mtm.2014.67] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
283 Psaltis PJ, Spoon DB, Wong DT, Gulati R. An update on stem cell therapies for acute coronary syndrome. Curr Cardiol Rep 2014;16:526. [PMID: 25073868 DOI: 10.1007/s11886-014-0526-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
284 Dziedzicka D, Tewary M, Keller A, Tilleman L, Prochazka L, Östblom J, Couvreu De Deckersberg E, Markouli C, Franck S, Van Nieuwerburgh F, Spits C, Zandstra PW, Sermon K, Geens M. Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm. Sci Rep 2021;11:6137. [PMID: 33731744 DOI: 10.1038/s41598-021-85447-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
285 Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012;151:206-20. [PMID: 22981692 DOI: 10.1016/j.cell.2012.07.035] [Cited by in Crossref: 448] [Cited by in F6Publishing: 366] [Article Influence: 49.8] [Reference Citation Analysis]
286 Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. Tissue Eng Part B Rev 2015;21:377-92. [PMID: 25813860 DOI: 10.1089/ten.TEB.2014.0662] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
287 Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
288 Cimetta E, Godier-Furnémont A, Vunjak-Novakovic G. Bioengineering heart tissue for in vitro testing. Curr Opin Biotechnol 2013;24:926-32. [PMID: 23932513 DOI: 10.1016/j.copbio.2013.07.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
289 Choe MS, Yeo HC, Bae CM, Han HJ, Baek KM, Kim JS, Lim KS, Shin IS, Chang W, Yun SP, Lee HJ, Lee MY. Trolox-induced cardiac differentiation is mediated by the inhibition of Wnt/β-catenin signaling in human embryonic stem cells. Cell Biol Int 2019. [PMID: 31293030 DOI: 10.1002/cbin.11200] [Reference Citation Analysis]
290 Hudson JE, Porrello ER. The non-coding road towards cardiac regeneration. J Cardiovasc Transl Res 2013;6:909-23. [PMID: 23797382 DOI: 10.1007/s12265-013-9486-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
291 Palpant NJ, Pabon L, Roberts M, Hadland B, Jones D, Jones C, Moon RT, Ruzzo WL, Bernstein I, Zheng Y, Murry CE. Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 2015;142:3198-209. [PMID: 26153229 DOI: 10.1242/dev.117010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
292 Iglesias-garcía O, Pelacho B, Prósper F. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology 2013;62:43-50. [DOI: 10.1016/j.yjmcc.2013.04.022] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
293 Wanjare M, Huang NF. Regulation of the microenvironment for cardiac tissue engineering. Regen Med 2017;12:187-201. [PMID: 28244821 DOI: 10.2217/rme-2016-0132] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
294 Lei I, Tian S, Chen V, Zhao Y, Wang Z. SWI/SNF Component BAF250a Coordinates OCT4 and WNT Signaling Pathway to Control Cardiac Lineage Differentiation. Front Cell Dev Biol 2019;7:358. [PMID: 32039194 DOI: 10.3389/fcell.2019.00358] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
295 Willems E, Cabral-Teixeira J, Schade D, Cai W, Reeves P, Bushway PJ, Lanier M, Walsh C, Kirchhausen T, Izpisua Belmonte JC, Cashman J, Mercola M. Small molecule-mediated TGF-β type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 2012;11:242-52. [PMID: 22862949 DOI: 10.1016/j.stem.2012.04.025] [Cited by in Crossref: 90] [Cited by in F6Publishing: 73] [Article Influence: 11.3] [Reference Citation Analysis]
296 Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017;35:77-94. [PMID: 28007615 DOI: 10.1016/j.biotechadv.2016.12.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
297 Kennedy L, Kaltenbrun E, Greco TM, Temple B, Herring LE, Cristea IM, Conlon FL. Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS Genet 2017;13:e1007011. [PMID: 28945738 DOI: 10.1371/journal.pgen.1007011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
298 Hsieh A, Feric NT, Radisic M. Combined hypoxia and sodium nitrite pretreatment for cardiomyocyte protection in vitro. Biotechnol Progress 2015;31:482-92. [DOI: 10.1002/btpr.2039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
299 Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M. Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 2014;14:869-82. [PMID: 24352498 DOI: 10.1039/c3lc51123e] [Cited by in Crossref: 87] [Cited by in F6Publishing: 40] [Article Influence: 12.4] [Reference Citation Analysis]
300 Tan X, Dai Q, Guo T, Xu J, Dai Q. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes. Biochemical and Biophysical Research Communications 2018;495:2490-7. [DOI: 10.1016/j.bbrc.2017.12.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
301 Beyer TA, Narimatsu M, Weiss A, David L, Wrana JL. The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:2268-79. [DOI: 10.1016/j.bbagen.2012.08.025] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
302 Zhao S, Agarwal P, Rao W, Huang H, Zhang R, Liu Z, Yu J, Weisleder N, Zhang W, He X. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr Biol (Camb) 2014;6:874-84. [PMID: 25036382 DOI: 10.1039/c4ib00100a] [Cited by in Crossref: 60] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
303 Pecha S, Eschenhagen T, Reichenspurner H. Myocardial tissue engineering for cardiac repair. The Journal of Heart and Lung Transplantation 2016;35:294-8. [DOI: 10.1016/j.healun.2015.12.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
304 Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tamura F, Tani H, Tohyama S, Fujita J, Miyoshi H, Kawamura Y, Goshima N, Iwasaki YW, Murano K, Saito K, Oda M, Andersen P, Kwon C, Uosaki H, Nishizono H, Fukuda K, Ieda M. Tbx6 Induces Nascent Mesoderm from Pluripotent Stem Cells and Temporally Controls Cardiac versus Somite Lineage Diversification. Cell Stem Cell 2018;23:382-395.e5. [PMID: 30100166 DOI: 10.1016/j.stem.2018.07.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
305 Lee CS, Cho HJ, Lee JW, Lee J, Kwon YW, Son T, Park H, Kim J, Kim HS. Identification of Latrophilin-2 as a Novel Cell-Surface Marker for the Cardiomyogenic Lineage and Its Functional Significance in Heart Development. Circulation 2019;139:2910-2. [PMID: 31206334 DOI: 10.1161/CIRCULATIONAHA.119.040826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
306 Kamdar F, Klaassen Kamdar A, Koyano-Nakagawa N, Garry MG, Garry DJ. Cardiomyopathy in a dish: using human inducible pluripotent stem cells to model inherited cardiomyopathies. J Card Fail 2015;21:761-70. [PMID: 25934595 DOI: 10.1016/j.cardfail.2015.04.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
307 Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 2015;15:365-75. [PMID: 26318718 DOI: 10.1016/j.scr.2015.08.002] [Cited by in Crossref: 102] [Cited by in F6Publishing: 82] [Article Influence: 17.0] [Reference Citation Analysis]
308 Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012;303:H133-43. [PMID: 22582087 DOI: 10.1152/ajpheart.00007.2012] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 7.6] [Reference Citation Analysis]
309 Freytes D, Godier-furnemont A, Duan Y, O’neill J, Vunjak-novakovic G. Biomaterial scaffolds for cardiac regeneration and repair derived from native heart matrix. Cardiac Regeneration and Repair. Elsevier; 2014. pp. 201-24. [DOI: 10.1533/9780857096715.2.201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
310 Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, Passier R, Mummery CL. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 2015;33:970-9. [PMID: 26192318 DOI: 10.1038/nbt.3271] [Cited by in Crossref: 125] [Cited by in F6Publishing: 114] [Article Influence: 20.8] [Reference Citation Analysis]
311 Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, Yang HT. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23:1119-1132. [PMID: 23896987 DOI: 10.1038/cr.2013.102] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 11.6] [Reference Citation Analysis]
312 Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494:105-110. [PMID: 23354045 DOI: 10.1038/nature11799] [Cited by in Crossref: 346] [Cited by in F6Publishing: 292] [Article Influence: 43.3] [Reference Citation Analysis]
313 Holtzinger A, Streeter PR, Sarangi F, Hillborn S, Niapour M, Ogawa S, Keller G. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development 2015;142:4253-65. [PMID: 26493401 DOI: 10.1242/dev.121020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
314 Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 2020;11:4283. [PMID: 32883967 DOI: 10.1038/s41467-020-18031-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
315 Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, Liu K, Nie B, Xu T, Li K, Xu S, Bruneau BG, Srivastava D, Ding S. Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts. Cell Stem Cell. 2016;18:368-381. [PMID: 26942852 DOI: 10.1016/j.stem.2016.02.001] [Cited by in Crossref: 86] [Cited by in F6Publishing: 67] [Article Influence: 17.2] [Reference Citation Analysis]
316 Cai W, Albini S, Wei K, Willems E, Guzzo RM, Tsuda M, Giordani L, Spiering S, Kurian L, Yeo GW, Puri PL, Mercola M. Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes Dev 2013;27:2332-44. [PMID: 24186978 DOI: 10.1101/gad.225144.113] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
317 Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 2013;5:a008292. [PMID: 23457256 DOI: 10.1101/cshperspect.a008292] [Cited by in Crossref: 142] [Cited by in F6Publishing: 110] [Article Influence: 17.8] [Reference Citation Analysis]
318 Xie M, Cao N, Ding S. Small molecules for cell reprogramming and heart repair: progress and perspective. ACS Chem Biol. 2014;9:34-44. [PMID: 24372513 DOI: 10.1021/cb400865w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
319 Caluori G, Pribyl J, Pesl M, Jelinkova S, Rotrekl V, Skladal P, Raiteri R. Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosensors and Bioelectronics 2019;124-125:129-35. [DOI: 10.1016/j.bios.2018.10.021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
320 Ebert A, Joshi AU, Andorf S, Dai Y, Sampathkumar S, Chen H, Li Y, Garg P, Toischer K, Hasenfuss G, Mochly-Rosen D, Wu JC. Proteasome-Dependent Regulation of Distinct Metabolic States During Long-Term Culture of Human iPSC-Derived Cardiomyocytes. Circ Res 2019;125:90-103. [PMID: 31104567 DOI: 10.1161/CIRCRESAHA.118.313973] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
321 Sirabella D, Cimetta E, Vunjak-Novakovic G. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells. Exp Biol Med (Maywood) 2015;240:1008-18. [PMID: 26069271 DOI: 10.1177/1535370215589910] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
322 Ishida M, El-Mounayri O, Kattman S, Zandstra P, Sakamoto H, Ogawa M, Keller G, Husain M. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells. Circ Res 2012;110:253-64. [PMID: 22116818 DOI: 10.1161/CIRCRESAHA.111.259499] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
323 Van Handel B, Montel-Hagen A, Sasidharan R, Nakano H, Ferrari R, Boogerd CJ, Schredelseker J, Wang Y, Hunter S, Org T, Zhou J, Li X, Pellegrini M, Chen JN, Orkin SH, Kurdistani SK, Evans SM, Nakano A, Mikkola HK. Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell 2012;150:590-605. [PMID: 22863011 DOI: 10.1016/j.cell.2012.06.026] [Cited by in Crossref: 121] [Cited by in F6Publishing: 103] [Article Influence: 13.4] [Reference Citation Analysis]
324 Addis RC, Epstein JA. Induced regeneration--the progress and promise of direct reprogramming for heart repair. Nat Med. 2013;19:829-836. [PMID: 23836233 DOI: 10.1038/nm.3225] [Cited by in Crossref: 71] [Cited by in F6Publishing: 54] [Article Influence: 8.9] [Reference Citation Analysis]
325 Pomp O, Colman A. Disease modelling using induced pluripotent stem cells: status and prospects. Bioessays 2013;35:271-80. [PMID: 23148027 DOI: 10.1002/bies.201200088] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
326 Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019;7:164. [PMID: 31448277 DOI: 10.3389/fcell.2019.00164] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
327 Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2017;9:513-27. [PMID: 28793247 DOI: 10.1016/j.stemcr.2017.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
328 Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 2011;117:e109-19. [PMID: 21296996 DOI: 10.1182/blood-2010-07-298331] [Cited by in Crossref: 180] [Cited by in F6Publishing: 150] [Article Influence: 18.0] [Reference Citation Analysis]
329 Murphy SA, Miyamoto M, Kervadec A, Kannan S, Tampakakis E, Kambhampati S, Lin BL, Paek S, Andersen P, Lee DI, Zhu R, An SS, Kass DA, Uosaki H, Colas AR, Kwon C. PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat Commun 2021;12:1648. [PMID: 33712605 DOI: 10.1038/s41467-021-21957-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
330 He ZQ, Xia BL, Wang YK, Li J, Feng GH, Zhang LL, Li YH, Wan HF, Li TD, Xu K, Yuan XW, Li YF, Zhang XX, Zhang Y, Wang L, Li W, Zhou Q. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening. Cell Rep 2017;20:2227-37. [PMID: 28854370 DOI: 10.1016/j.celrep.2017.07.081] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
331 Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 2013;8:162-75. [PMID: 23257984 DOI: 10.1038/nprot.2012.150] [Cited by in Crossref: 783] [Cited by in F6Publishing: 662] [Article Influence: 87.0] [Reference Citation Analysis]
332 Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011;6:e23657. [PMID: 21876760 DOI: 10.1371/journal.pone.0023657] [Cited by in Crossref: 219] [Cited by in F6Publishing: 172] [Article Influence: 21.9] [Reference Citation Analysis]
333 Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E, Mancuso T, Marotta P, Sacco W, Lewis FC, Couch L, Shone V, Gritti G, Torella A, Smith AJ, Terracciano CM, Britti D, Veltri P, Indolfi C, Nadal-Ginard B, Ellison-Hughes GM, Torella D. Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ 2017;24:2101-16. [PMID: 28800128 DOI: 10.1038/cdd.2017.130] [Cited by in Crossref: 87] [Cited by in F6Publishing: 64] [Article Influence: 21.8] [Reference Citation Analysis]
334 Li G, Xu A, Sim S, Priest JR, Tian X, Khan T, Quertermous T, Zhou B, Tsao PS, Quake SR, Wu SM. Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. Dev Cell 2016;39:491-507. [PMID: 27840109 DOI: 10.1016/j.devcel.2016.10.014] [Cited by in Crossref: 124] [Cited by in F6Publishing: 90] [Article Influence: 24.8] [Reference Citation Analysis]
335 Kamps JA, Krenning G. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 2016;8:163-79. [PMID: 26981212 DOI: 10.4330/wjc.v8.i2.163] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
336 Zhao H, Xu C, Lee T, Liu F, Choi K. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration: ETS Transcription Factor ETV2/ER71/Etsrp. Dev Dyn 2017;246:318-27. [DOI: 10.1002/dvdy.24483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
337 Choi SC, Lee H, Choi JH, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS One 2015;10:e0117410. [PMID: 25629977 DOI: 10.1371/journal.pone.0117410] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
338 Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 2016;143:387-97. [PMID: 26839342 DOI: 10.1242/dev.120576] [Cited by in Crossref: 85] [Cited by in F6Publishing: 69] [Article Influence: 17.0] [Reference Citation Analysis]
339 Lee CS, Cho HJ, Lee JW, Son H, Chai J, Kim HS. Adhesion GPCR Latrophilin-2 Specifies Cardiac Lineage Commitment through CDK5, Src, and P38MAPK. Stem Cell Reports 2021;16:868-82. [PMID: 33798451 DOI: 10.1016/j.stemcr.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
340 Chetty S, Pagliuca FW, Honore C, Kweudjeu A, Rezania A, Melton DA. A simple tool to improve pluripotent stem cell differentiation. Nat Methods. 2013;10:553-556. [PMID: 23584186 DOI: 10.1038/nmeth.2442] [Cited by in Crossref: 122] [Cited by in F6Publishing: 102] [Article Influence: 15.3] [Reference Citation Analysis]
341 Kishino Y, Fujita J, Tohyama S, Okada M, Tanosaki S, Someya S, Fukuda K. Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflamm Regen 2020;40:1. [PMID: 31938077 DOI: 10.1186/s41232-019-0110-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 15.0] [Reference Citation Analysis]
342 Terrenoire C, Wang K, Tung KW, Chung WK, Pass RH, Lu JT, Jean JC, Omari A, Sampson KJ, Kotton DN, Keller G, Kass RS. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol. 2013;141:61-72. [PMID: 23277474 DOI: 10.1085/jgp.201210899] [Cited by in Crossref: 141] [Cited by in F6Publishing: 117] [Article Influence: 17.6] [Reference Citation Analysis]
343 Xie H, Hong N, Zhang E, Li F, Sun K, Yu Y. Identification of Rare Copy Number Variants Associated With Pulmonary Atresia With Ventricular Septal Defect. Front Genet 2019;10:15. [PMID: 30745907 DOI: 10.3389/fgene.2019.00015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
344 Kawaguchi N, Hayama E, Furutani Y, Nakanishi T. Prospective in vitro models of channelopathies and cardiomyopathies. Stem Cells Int 2012;2012:439219. [PMID: 22969812 DOI: 10.1155/2012/439219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
345 Jennbacken K, Wågberg F, Karlsson U, Eriksson J, Magnusson L, Chimienti M, Ricchiuto P, Bernström J, Ding M, Ross-Thriepland D, Xue Y, Peiris D, Aastrup T, Tegel H, Hober S, Sivertsson Å, Uhlén M, Strömstedt PE, Davies R, Holmberg Schiavone L. Phenotypic Screen with the Human Secretome Identifies FGF16 as Inducing Proliferation of iPSC-Derived Cardiac Progenitor Cells. Int J Mol Sci 2019;20:E6037. [PMID: 31801200 DOI: 10.3390/ijms20236037] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
346 Lemcke H, Voronina N, Steinhoff G, David R. Recent Progress in Stem Cell Modification for Cardiac Regeneration. Stem Cells Int 2018;2018:1909346. [PMID: 29535769 DOI: 10.1155/2018/1909346] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
347 Matsa E, Denning C. In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes. J of Cardiovasc Trans Res 2012;5:581-92. [DOI: 10.1007/s12265-012-9376-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
348 Pacheco-Leyva I, Matias AC, Oliveira DV, Santos JM, Nascimento R, Guerreiro E, Michell AC, van De Vrugt AM, Machado-Oliveira G, Ferreira G, Domian I, Bragança J. CITED2 Cooperates with ISL1 and Promotes Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports 2016;7:1037-49. [PMID: 27818139 DOI: 10.1016/j.stemcr.2016.10.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
349 Nakahama H, Di Pasquale E. Generation of Cardiomyocytes from Pluripotent Stem Cells. Methods Mol Biol 2016;1353:181-90. [PMID: 25523811 DOI: 10.1007/7651_2014_173] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
350 Zhang M, Schulte JS, Heinick A, Piccini I, Rao J, Quaranta R, Zeuschner D, Malan D, Kim KP, Röpke A, Sasse P, Araúzo-Bravo M, Seebohm G, Schöler H, Fabritz L, Kirchhof P, Müller FU, Greber B. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells 2015;33:1456-69. [PMID: 25639979 DOI: 10.1002/stem.1964] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 11.4] [Reference Citation Analysis]
351 Vahdat S, Pahlavan S, Aghdami N, Bakhshandeh B, Baharvand H. Establishment of A Protocol for In Vitro Culture of Cardiogenic Mesodermal Cells Derived from Human Embryonic Stem Cells. Cell J 2019;20:496-504. [PMID: 30123995 DOI: 10.22074/cellj.2019.5661] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
352 Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13:497-505. [PMID: 21540845 DOI: 10.1038/ncb0511-497] [Cited by in Crossref: 372] [Cited by in F6Publishing: 320] [Article Influence: 37.2] [Reference Citation Analysis]
353 Liu Y, Kaneda R, Leja TW, Subkhankulova T, Tolmachov O, Minchiotti G, Schwartz RJ, Barahona M, Schneider MD. Hhex and Cer1 mediate the Sox17 pathway for cardiac mesoderm formation in embryonic stem cells. Stem Cells 2014;32:1515-26. [PMID: 24585688 DOI: 10.1002/stem.1695] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
354 He WJ, Hou Q, Han QW, Han WD, Fu XB. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration. Tissue Eng Part B Rev 2014;20:304-13. [PMID: 24063625 DOI: 10.1089/ten.TEB.2013.0393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
355 Feric NT, Radisic M. Strategies and Challenges to Myocardial Replacement Therapy. Stem Cells Transl Med 2016;5:410-6. [PMID: 26933042 DOI: 10.5966/sctm.2015-0288] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
356 Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, Weisel RD, Keller G, Li RK. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials. 2014;35:2798-2808. [PMID: 24424206 DOI: 10.1016/j.biomaterials.2013.12.052] [Cited by in Crossref: 140] [Cited by in F6Publishing: 127] [Article Influence: 20.0] [Reference Citation Analysis]
357 Thavandiran N, Nunes SS, Xiao Y, Radisic M. Topological and electrical control of cardiac differentiation and assembly. Stem Cell Res Ther 2013;4:14. [PMID: 23425700 DOI: 10.1186/scrt162] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
358 Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019;8:E1536. [PMID: 31795206 DOI: 10.3390/cells8121536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
359 Nakano A, Nakano H, Smith KA, Palpant NJ. The developmental origins and lineage contributions of endocardial endothelium. Biochim Biophys Acta 2016;1863:1937-47. [PMID: 26828773 DOI: 10.1016/j.bbamcr.2016.01.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
360 Van Orman JR, Si-Tayeb K, Duncan SA, Lough J. Induction of cardiomyogenesis in human embryonic stem cells by human embryonic stem cell-derived definitive endoderm. Stem Cells Dev 2012;21:987-94. [PMID: 21627569 DOI: 10.1089/scd.2011.0161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
361 Tanaka A, Yuasa S, Node K, Fukuda K. Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015;16:18894-922. [PMID: 26274955 DOI: 10.3390/ijms160818894] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
362 Ali S, Wall IB, Mason C, Pelling AE, Veraitch FS. The effect of Young’s modulus on the neuronal differentiation of mouse embryonic stem cells. Acta Biomaterialia 2015;25:253-67. [DOI: 10.1016/j.actbio.2015.07.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
363 Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019;37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
364 Laksman Z, Wauchop M, Lin E, Protze S, Lee J, Yang W, Izaddoustdar F, Shafaattalab S, Gepstein L, Tibbits GF, Keller G, Backx PH. Modeling Atrial Fibrillation using Human Embryonic Stem Cell-Derived Atrial Tissue. Sci Rep 2017;7:5268. [PMID: 28706272 DOI: 10.1038/s41598-017-05652-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 9.8] [Reference Citation Analysis]
365 Craft AM, Rockel JS, Nartiss Y, Kandel RA, Alman BA, Keller GM. Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33:638-645. [PMID: 25961409 DOI: 10.1038/nbt.3210] [Cited by in Crossref: 99] [Cited by in F6Publishing: 74] [Article Influence: 16.5] [Reference Citation Analysis]
366 Olmer R, Martin U. Induced Pluripotent Stem Cells Differentiate into Functional Cardiomyocytes. In: Hayat M, editor. Stem Cells and Cancer Stem Cells, Volume 12. Dordrecht: Springer Netherlands; 2014. pp. 47-62. [DOI: 10.1007/978-94-017-8032-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
367 Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018;17:927-46. [PMID: 29862928 DOI: 10.1080/15384101.2018.1464852] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
368 Chandy M, Ishida M, Shikatani EA, El-Mounayri O, Park LC, Afroze T, Wang T, Marsden PA, Husain M. c-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells. PLoS One 2018;13:e0202778. [PMID: 30169548 DOI: 10.1371/journal.pone.0202778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
369 Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 2012;21:1513-23. [PMID: 21933026 DOI: 10.1089/scd.2011.0254] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 6.0] [Reference Citation Analysis]
370 Aoi T. 10th anniversary of iPS cells: the challenges that lie ahead. J Biochem. 2016;160:121-129. [PMID: 27387749 DOI: 10.1093/jb/mvw044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
371 Wang Y, Yi N, Hu Y, Zhou X, Jiang H, Lin Q, Chen R, Liu H, Gu Y, Tong C, Lu M, Zhang J, Zhang B, Peng L, Li L. Molecular Signatures and Networks of Cardiomyocyte Differentiation in Humans and Mice. Mol Ther Nucleic Acids 2020;21:696-711. [PMID: 32769060 DOI: 10.1016/j.omtn.2020.07.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
372 Carvajal-Vergara X, Prósper F. Are we closer to cardiac regeneration? Stem Cell Investig 2016;3:59. [PMID: 27868041 DOI: 10.21037/sci.2016.09.16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
373 Tan Y, Han P, Gu Q, Chen G, Wang L, Ma R, Wu J, Feng C, Zhang Y, Wang L, Hu B, Li W, Hao J, Zhou Q. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. J Tissue Eng Regen Med 2018;12:153-63. [PMID: 27943600 DOI: 10.1002/term.2381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
374 Chong JJ, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE. Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev. 2013;22:1932-1943. [PMID: 23391309 DOI: 10.1089/scd.2012.0542] [Cited by in Crossref: 98] [Cited by in F6Publishing: 82] [Article Influence: 12.3] [Reference Citation Analysis]
375 Tsai SY, Chen S, Evans T. Efficient Generation of Cardiac Purkinje-like Cells from Embryonic Stem Cells by Activating cAMP Signaling. Curr Protoc Stem Cell Biol 2017;40:1F.16.1-1F.16.13. [PMID: 28152183 DOI: 10.1002/cpsc.20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
376 Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell. EMBO J. 2015;34:710-738. [PMID: 25712211 DOI: 10.15252/embj.201490563] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
377 Inagawa K, Ieda M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2013;6:37-45. [PMID: 23054660 DOI: 10.1007/s12265-012-9412-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
378 Frank DB, Penkala IJ, Zepp JA, Sivakumar A, Linares-Saldana R, Zacharias WJ, Stolz KG, Pankin J, Lu M, Wang Q, Babu A, Li L, Zhou S, Morley MP, Jain R, Morrisey EE. Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc Natl Acad Sci U S A 2019;116:4362-71. [PMID: 30782824 DOI: 10.1073/pnas.1813952116] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 24.0] [Reference Citation Analysis]
379 Jacobson EF, Chen Z, Stoukides DM, Nair GG, Hebrok M, Tzanakakis ES. Non-xenogeneic expansion and definitive endoderm differentiation of human pluripotent stem cells in an automated bioreactor. Biotechnol Bioeng 2021;118:979-91. [PMID: 33205831 DOI: 10.1002/bit.27629] [Reference Citation Analysis]
380 Xu J, Gruber PJ, Chien KR. SMAD4 Is Essential for Human Cardiac Mesodermal Precursor Cell Formation. Stem Cells 2019;37:216-25. [PMID: 30376214 DOI: 10.1002/stem.2943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
381 Lei CL, Wang K, Clerx M, Johnstone RH, Hortigon-Vinagre MP, Zamora V, Allan A, Smith GL, Gavaghan DJ, Mirams GR, Polonchuk L. Tailoring Mathematical Models to Stem-Cell Derived Cardiomyocyte Lines Can Improve Predictions of Drug-Induced Changes to Their Electrophysiology. Front Physiol 2017;8:986. [PMID: 29311950 DOI: 10.3389/fphys.2017.00986] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
382 Uosaki H, Andersen P, Shenje LT, Fernandez L, Christiansen SL, Kwon C. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells. PLoS One 2012;7:e46413. [PMID: 23056302 DOI: 10.1371/journal.pone.0046413] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
383 Tran NT, Trinh QM, Lee GM, Han YM. Efficient differentiation of human pluripotent stem cells into mesenchymal stem cells by modulating intracellular signaling pathways in a feeder/serum-free system. Stem Cells Dev 2012;21:1165-75. [PMID: 21793661 DOI: 10.1089/scd.2011.0346] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
384 Mesquita FCP, Kasai-brunswick TH, Gubert FDMESV, Borgonovo T, Silva-dos-santos D, Araújo DSD, Campos-de-carvalho AC, Carvalho AB. Generation of human iPS cell line ihFib3.2 from dermal fibroblasts. Stem Cell Research 2015;15:445-8. [DOI: 10.1016/j.scr.2015.09.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
385 Bagheri-Hosseinabadi Z, Seyedi F, Mollaei HR, Moshrefi M, Seifalian A. Combination of 5-azaytidine and hanging drop culture convert fat cell into cardiac cell. Biotechnol Appl Biochem 2021;68:92-101. [PMID: 32028539 DOI: 10.1002/bab.1897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
386 Bardot E, Calderon D, Santoriello F, Han S, Cheung K, Jadhav B, Burtscher I, Artap S, Jain R, Epstein J, Lickert H, Gouon-Evans V, Sharp AJ, Dubois NC. Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nat Commun 2017;8:14428. [PMID: 28195173 DOI: 10.1038/ncomms14428] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
387 Dawson J, Schussler O, Al-Madhoun A, Menard C, Ruel M, Skerjanc IS. Collagen scaffolds with or without the addition of RGD peptides support cardiomyogenesis after aggregation of mouse embryonic stem cells. In Vitro Cell Dev Biol Anim 2011;47:653-64. [PMID: 21938587 DOI: 10.1007/s11626-011-9453-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
388 Hausburg F, Jung JJ, Hoch M, Wolfien M, Yavari A, Rimmbach C, David R. (Re-)programming of subtype specific cardiomyocytes. Advanced Drug Delivery Reviews 2017;120:142-67. [DOI: 10.1016/j.addr.2017.09.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
389 Dar A, Gerecht S, Itskovitz-eldor J. Human Vascular Progenitor Cells. Handbook of Stem Cells. Elsevier; 2013. pp. 587-94. [DOI: 10.1016/b978-0-12-385942-6.00051-2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
390 Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev Rep 2015;11:710-27. [PMID: 26085192 DOI: 10.1007/s12015-015-9596-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
391 Gao M, Yang J, Liu G, Wei R, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T. Ghrelin promotes the differentiation of human embryonic stem cells in infarcted cardiac microenvironment. Peptides 2012;34:373-9. [PMID: 22386650 DOI: 10.1016/j.peptides.2012.02.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
392 Lescroart F, Wang X, Lin X, Swedlund B, Gargouri S, Sànchez-Dànes A, Moignard V, Dubois C, Paulissen C, Kinston S, Göttgens B, Blanpain C. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 2018;359:1177-81. [PMID: 29371425 DOI: 10.1126/science.aao4174] [Cited by in Crossref: 125] [Cited by in F6Publishing: 91] [Article Influence: 41.7] [Reference Citation Analysis]
393 Kadari A, Mekala S, Wagner N, Malan D, Köth J, Doll K, Stappert L, Eckert D, Peitz M, Matthes J, Sasse P, Herzig S, Brüstle O, Ergün S, Edenhofer F. Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. Stem Cell Rev Rep 2015;11:560-9. [PMID: 25392050 DOI: 10.1007/s12015-014-9564-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
394 Veevers J, Farah EN, Corselli M, Witty AD, Palomares K, Vidal JG, Emre N, Carson CT, Ouyang K, Liu C, van Vliet P, Zhu M, Hegarty JM, Deacon DC, Grinstein JD, Dirschinger RJ, Frazer KA, Adler ED, Knowlton KU, Chi NC, Martin JC, Chen J, Evans SM. Cell-Surface Marker Signature for Enrichment of Ventricular Cardiomyocytes Derived from Human Embryonic Stem Cells. Stem Cell Reports 2018;11:828-41. [PMID: 30122443 DOI: 10.1016/j.stemcr.2018.07.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
395 Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020;12:a036731. [PMID: 31818856 DOI: 10.1101/cshperspect.a036731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
396 Tsai SY, Maass K, Lu J, Fishman GI, Chen S, Evans T. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling. Stem Cell Reports 2015;4:1089-102. [PMID: 26028533 DOI: 10.1016/j.stemcr.2015.04.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
397 Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 2017;144:2104-22. [PMID: 28634270 DOI: 10.1242/dev.151035] [Cited by in Crossref: 253] [Cited by in F6Publishing: 182] [Article Influence: 63.3] [Reference Citation Analysis]
398 Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther 2013;4:150. [PMID: 24476344 DOI: 10.1186/scrt380] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
399 Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev 2019;140:3-11. [PMID: 29885330 DOI: 10.1016/j.addr.2018.06.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
400 Zhang J, Tao R, Campbell KF, Carvalho JL, Ruiz EC, Kim GC, Schmuck EG, Raval AN, da Rocha AM, Herron TJ, Jalife J, Thomson JA, Kamp TJ. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 2019;10:2238. [PMID: 31110246 DOI: 10.1038/s41467-019-09831-5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 25.0] [Reference Citation Analysis]
401 Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res. 2014;13:202-213. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 42] [Article Influence: 8.3] [Reference Citation Analysis]
402 Horrillo A, Pezzolla D, Fraga MF, Aguilera Y, Salguero-Aranda C, Tejedo JR, Martin F, Bedoya FJ, Soria B, Hmadcha A. Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis 2013;4:e570. [PMID: 23559004 DOI: 10.1038/cddis.2013.88] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
403 Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018;9:201. [PMID: 30053890 DOI: 10.1186/s13287-018-0947-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
404 Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 2013;23:33-48. [PMID: 23277278 DOI: 10.1038/cr.2013.1] [Cited by in Crossref: 88] [Cited by in F6Publishing: 75] [Article Influence: 11.0] [Reference Citation Analysis]
405 Sharma A, Li G, Rajarajan K, Hamaguchi R, Burridge PW, Wu SM. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J Vis Exp 2015. [PMID: 25867738 DOI: 10.3791/52628] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
406 Lu TY, Yang L. Uses of cardiomyocytes generated from induced pluripotent stem cells. Stem Cell Res Ther 2011;2:44. [PMID: 22099214 DOI: 10.1186/scrt85] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
407 Schade D, Plowright AT. Medicinal Chemistry Approaches to Heart Regeneration. J Med Chem 2015;58:9451-79. [DOI: 10.1021/acs.jmedchem.5b00446] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
408 Daughters RS, Keirstead SA, Slack JMW. Transformation of jaw muscle satellite cells to cardiomyocytes. Differentiation 2017;93:58-65. [PMID: 27918914 DOI: 10.1016/j.diff.2016.11.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
409 Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai TN, Baban D, Ragoussis J, Huang Y, Han JD, Zeng L, Hu Y, Xu Q. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci USA. 2012;109:13793-13798. [PMID: 22869753 DOI: 10.1073/pnas.1205526109] [Cited by in Crossref: 176] [Cited by in F6Publishing: 142] [Article Influence: 19.6] [Reference Citation Analysis]
410 Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 2011;10:915-29. [PMID: 22076509 DOI: 10.1038/nrd3577] [Cited by in Crossref: 326] [Cited by in F6Publishing: 279] [Article Influence: 32.6] [Reference Citation Analysis]
411 Ghiroldi A, Piccoli M, Cirillo F, Monasky MM, Ciconte G, Pappone C, Anastasia L. Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int J Mol Sci 2018;19:E3194. [PMID: 30332812 DOI: 10.3390/ijms19103194] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
412 Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2019;25:311-27. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 45.0] [Reference Citation Analysis]
413 Gu Y, Liu GH, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban CR, Zhang K, Izpisua Belmonte JC. Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell 2014;5:59-68. [PMID: 24474197 DOI: 10.1007/s13238-013-0016-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
414 Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z, Ma PX. Porous nanofibrous poly(L-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 2015;26:105-14. [PMID: 26283164 DOI: 10.1016/j.actbio.2015.08.017] [Cited by in Crossref: 59] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
415 Hook LA. Stem cell technology for drug discovery and development. Drug Discovery Today 2012;17:336-42. [DOI: 10.1016/j.drudis.2011.11.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
416 Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10:16-28. [PMID: 22226352 DOI: 10.1016/j.stem.2011.12.013] [Cited by in Crossref: 438] [Cited by in F6Publishing: 372] [Article Influence: 48.7] [Reference Citation Analysis]
417 Reischauer S, Stone OA, Villasenor A, Chi N, Jin SW, Martin M, Lee MT, Fukuda N, Marass M, Witty A, Fiddes I, Kuo T, Chung WS, Salek S, Lerrigo R, Alsiö J, Luo S, Tworus D, Augustine SM, Mucenieks S, Nystedt B, Giraldez AJ, Schroth GP, Andersson O, Stainier DY. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 2016;535:294-8. [PMID: 27411634 DOI: 10.1038/nature18614] [Cited by in Crossref: 97] [Cited by in F6Publishing: 65] [Article Influence: 19.4] [Reference Citation Analysis]
418 Golforoush P, Schneider MD. Intensive care for human hearts in pluripotent stem cell models. NPJ Regen Med 2020;5:4. [PMID: 32194989 DOI: 10.1038/s41536-020-0090-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
419 Li T, Greenblatt EM, Shin ME, Brown TJ, Chan C. Cargo small non-coding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil Steril 2021;115:1327-36. [PMID: 33272614 DOI: 10.1016/j.fertnstert.2020.10.046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
420 Geraets IME, Chanda D, van Tienen FHJ, van den Wijngaard A, Kamps R, Neumann D, Liu Y, Glatz JFC, Luiken JJFP, Nabben M. Human embryonic stem cell-derived cardiomyocytes as an in vitro model to study cardiac insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018;1864:1960-7. [PMID: 29277329 DOI: 10.1016/j.bbadis.2017.12.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
421 Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation: Materials Design for Cardiac Differentiation. Stem Cells 2015;33:1021-35. [DOI: 10.1002/stem.1929] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
422 Miranda CC, Fernandes TG, Diogo MM, Cabral JMS. Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018;5:E49. [PMID: 29933623 DOI: 10.3390/bioengineering5030049] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
423 Bylund JB, Hatzopoulos AK. Differentiation of Atrial Cardiomyocytes from Pluripotent Stem Cells Using the BMP Antagonist Grem2. J Vis Exp 2016. [PMID: 27023256 DOI: 10.3791/53919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
424 El-mounayri O, Mihic A, Shikatani EA, Gagliardi M, Steinbach SK, Dubois N, Dacosta R, Li R, Keller G, Husain M. Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovascular Research 2013;98:125-35. [DOI: 10.1093/cvr/cvs357] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
425 Hoang P, Wang J, Conklin BR, Healy KE, Ma Z. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat Protoc. 2018;13:723-737. [PMID: 29543795 DOI: 10.1038/nprot.2018.006] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 19.7] [Reference Citation Analysis]
426 Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021;9:658088. [PMID: 34055788 DOI: 10.3389/fcell.2021.658088] [Reference Citation Analysis]
427 Miwa T, Idiris A, Kumagai H. A novel cardiac differentiation method of a large number and uniformly-sized spheroids using microfabricated culture vessels. Regen Ther 2020;15:18-26. [PMID: 32490063 DOI: 10.1016/j.reth.2020.04.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
428 Bayzigitov DR, Medvedev SP, Dementyeva EV, Bayramova SA, Pokushalov EA, Karaskov AM, Zakian SM. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling. Cardiol Res Pract 2016;2016:3582380. [PMID: 27110425 DOI: 10.1155/2016/3582380] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
429 Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T, Wellendorf AM, Valencia CA, Paddison PJ, Horwitz MS, Grimes HL, Lutzko C, Cancelas JA. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest 2015;125:3103-16. [PMID: 26193632 DOI: 10.1172/JCI80924] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
430 Farra N, Manickaraj AK, Ellis J, Mital S. Personalized Medicine in the Genomics Era: highlights from an international symposium on childhood heart disease. Future Cardiol 2012;8:157-60. [PMID: 22413975 DOI: 10.2217/fca.12.3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
431 Saint-Jean L, Barkas N, Harmelink C, Tompkins KL, Oakey RJ, Baldwin HS. Myocardial differentiation is dependent upon endocardial signaling during early cardiogenesis in vitro. Development 2019;146:dev172619. [PMID: 31023876 DOI: 10.1242/dev.172619] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
432 Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors. Stem Cells. 2015;33:2148-2157. [PMID: 25865043 DOI: 10.1002/stem.2036] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 12.2] [Reference Citation Analysis]
433 Machiraju P, Greenway SC. Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells. 2019;11:33-43. [PMID: 30705713 DOI: 10.4252/wjsc.v11.i1.33] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 27.0] [Reference Citation Analysis]
434 Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li RK, Kattman SJ, Keller G. Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 2014;32:1026-1035. [PMID: 25240927 DOI: 10.1038/nbt.3002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 92] [Article Influence: 15.7] [Reference Citation Analysis]
435 Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C. Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays. 2013;35:281-298. [PMID: 22886688 DOI: 10.1002/bies.201200053] [Cited by in Crossref: 73] [Cited by in F6Publishing: 65] [Article Influence: 8.1] [Reference Citation Analysis]
436 Müller M, Stockmann M, Malan D, Wolheim A, Tischendorf M, Linta L, Katz SF, Lin Q, Latz S, Brunner C, Wobus AM, Zenke M, Wartenberg M, Boeckers TM, von Wichert G, Fleischmann BK, Liebau S, Kleger A. Ca2+ activated K channels-new tools to induce cardiac commitment from pluripotent stem cells in mice and men. Stem Cell Rev Rep 2012;8:720-40. [PMID: 22038332 DOI: 10.1007/s12015-011-9324-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
437 Chen AC, Lee KF, Yeung WSB, Lee YL. Human embryonic stem cells as an in vitro model for studying developmental origins of type 2 diabetes. World J Stem Cells 2020;12:761-75. [PMID: 32952857 DOI: 10.4252/wjsc.v12.i8.761] [Reference Citation Analysis]
438 Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair. APL Bioeng 2021;5:031508. [PMID: 34368602 DOI: 10.1063/5.0030353] [Reference Citation Analysis]
439 Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016;96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Cited by in Crossref: 86] [Cited by in F6Publishing: 62] [Article Influence: 14.3] [Reference Citation Analysis]
440 Ebert AD, Diecke S, Chen IY, Wu JC. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol Med 2015;7:1090-103. [PMID: 26183451 DOI: 10.15252/emmm.201504395] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
441 Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip 2017;17:2395-420. [PMID: 28617487 DOI: 10.1039/c6lc01554a] [Cited by in Crossref: 183] [Cited by in F6Publishing: 65] [Article Influence: 61.0] [Reference Citation Analysis]
442 van den Berg CW, Elliott DA, Braam SR, Mummery CL, Davis RP. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. In: Nagy A, Turksen K, editors. Patient-Specific Induced Pluripotent Stem Cell Models. New York: Springer; 2016. pp. 163-80. [DOI: 10.1007/7651_2014_178] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
443 Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018;50:323-35. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
444 Correia C, Koshkin A, Duarte P, Hu D, Carido M, Sebastião MJ, Gomes-Alves P, Elliott DA, Domian IJ, Teixeira AP, Alves PM, Serra M. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol Bioeng 2018;115:630-44. [PMID: 29178315 DOI: 10.1002/bit.26504] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 14.0] [Reference Citation Analysis]
445 Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem. 2014;289:4585-4593. [PMID: 24362021 DOI: 10.1074/jbc.r113.463737] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
446 Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 2014;12:1954-65. [PMID: 25297648 DOI: 10.1111/jth.12750] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
447 Dell'Era P, Benzoni P, Crescini E, Valle M, Xia E, Consiglio A, Memo M. Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes. World J Stem Cells 2015;7:329-42. [PMID: 25815118 DOI: 10.4252/wjsc.v7.i2.329] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
448 Ge X, Wang IN, Toma I, Sebastiano V, Liu J, Butte MJ, Reijo Pera RA, Yang PC. Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev 2012;21:2798-808. [PMID: 22530853 DOI: 10.1089/scd.2011.0435] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
449 Lin Y, Linask KL, Mallon B, Johnson K, Klein M, Beers J, Xie W, Du Y, Liu C, Lai Y, Zou J, Haigney M, Yang H, Rao M, Chen G. Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med 2017;6:527-38. [PMID: 28191759 DOI: 10.5966/sctm.2015-0428] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
450 Souidi M, Sleiman Y, Acimovic I, Pribyl J, Charrabi A, Baecker V, Scheuermann V, Pesl M, Jelinkova S, Skladal P, Dvorak P, Lacampagne A, Rotrekl V, Meli AC. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Int J Mol Sci 2021;22:E662. [PMID: 33440843 DOI: 10.3390/ijms22020662] [Reference Citation Analysis]
451 Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, Fernandez L, Kass DA, Kwon C. Transcriptional Landscape of Cardiomyocyte Maturation. Cell Rep 2015;13:1705-16. [PMID: 26586429 DOI: 10.1016/j.celrep.2015.10.032] [Cited by in Crossref: 84] [Cited by in F6Publishing: 66] [Article Influence: 14.0] [Reference Citation Analysis]
452 Asprer JS, Lakshmipathy U. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells. Stem Cell Rev Rep 2015;11:357-72. [PMID: 25504379 DOI: 10.1007/s12015-014-9580-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
453 Kempf H, Lecina M, Ting S, Zweigerdt R, Oh S. Distinct regulation of mitogen-activated protein kinase activities is coupled with enhanced cardiac differentiation of human embryonic stem cells. Stem Cell Res. 2011;7:198-209. [PMID: 21907163 DOI: 10.1016/j.scr.2011.06.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
454 Ishida H, Saba R, Kokkinopoulos I, Hashimoto M, Yamaguchi O, Nowotschin S, Shiraishi M, Ruchaya P, Miller D, Harmer S, Poliandri A, Kogaki S, Sakata Y, Dunkel L, Tinker A, Hadjantonakis AK, Sawa Y, Sasaki H, Ozono K, Suzuki K, Yashiro K. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Rep. 2016;16:1026-1038. [PMID: 27396331 DOI: 10.1016/j.celrep.2016.06.050] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
455 Zhao M, Tang Y, Zhou Y, Zhang J. Deciphering Role of Wnt Signalling in Cardiac Mesoderm and Cardiomyocyte Differentiation from Human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation. Sci Rep 2019;9:19389. [PMID: 31852937 DOI: 10.1038/s41598-019-55620-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
456 Sasano Y, Fukumoto K, Tsukamoto Y, Akagi T, Akashi M. Construction of 3D cardiac tissue with synchronous powerful beating using human cardiomyocytes from human iPS cells prepared by a convenient differentiation method. Journal of Bioscience and Bioengineering 2020;129:749-55. [DOI: 10.1016/j.jbiosc.2020.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
457 Lauschke K, Treschow AF, Rasmussen MA, Davidsen N, Holst B, Emnéus J, Taxvig C, Vinggaard AM. Creating a human-induced pluripotent stem cell-based NKX2.5 reporter gene assay for developmental toxicity testing. Arch Toxicol 2021;95:1659-70. [PMID: 33660062 DOI: 10.1007/s00204-021-03018-y] [Reference Citation Analysis]
458 Kawaguchi N, Nakanishi T. Cardiomyocyte regeneration. Cells 2013;2:67-82. [PMID: 24709645 DOI: 10.3390/cells2010067] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
459 Lian X, Xu J, Li J, Chien KR. Next-generation models of human cardiogenesis via genome editing. Cold Spring Harb Perspect Med 2014;4:a013920. [PMID: 25237142 DOI: 10.1101/cshperspect.a013920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
460 Yassa ME, Mansour IA, Sewelam NI, Hamza H, Gaafar T. The impact of growth factors on human induced pluripotent stem cells differentiation into cardiomyocytes. Life Sciences 2018;196:38-47. [DOI: 10.1016/j.lfs.2018.01.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
461 Yamanaka S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell. 2020;27:523-531. [PMID: 33007237 DOI: 10.1016/j.stem.2020.09.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 51.0] [Reference Citation Analysis]
462 Lambers E, Kume T. Navigating the labyrinth of cardiac regeneration. Dev Dyn 2016;245:751-61. [PMID: 26890576 DOI: 10.1002/dvdy.24397] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
463 Morrell NW, Bloch DB, ten Dijke P, Goumans MJ, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016;13:106-20. [PMID: 26461965 DOI: 10.1038/nrcardio.2015.156] [Cited by in Crossref: 115] [Cited by in F6Publishing: 97] [Article Influence: 19.2] [Reference Citation Analysis]
464 Li T, Zhang X, Jiang K, Liu J, Liu Z. Dural effects of oxidative stress on cardiomyogenesis via Gata4 transcription and protein ubiquitination. Cell Death Dis 2018;9:246. [PMID: 29445146 DOI: 10.1038/s41419-018-0281-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
465 Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021;13:275. [PMID: 33477916 DOI: 10.3390/nu13010275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
466 Tanwar V, Bylund JB, Hu J, Yan J, Walthall JM, Mukherjee A, Heaton WH, Wang WD, Potet F, Rai M, Kupershmidt S, Knapik EW, Hatzopoulos AK. Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Stem Cells 2014;32:1774-88. [PMID: 24648383 DOI: 10.1002/stem.1703] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
467 Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development. Stem Cell Reports 2016;7:764-76. [PMID: 27641648 DOI: 10.1016/j.stemcr.2016.08.008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 9.2] [Reference Citation Analysis]
468 Kreutzer J, Ikonen L, Hirvonen J, Pekkanen-mattila M, Aalto-setälä K, Kallio P. Pneumatic cell stretching system for cardiac differentiation and culture. Medical Engineering & Physics 2014;36:496-501. [DOI: 10.1016/j.medengphy.2013.09.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
469 Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, Leor J, Perrino C, Schulz R, Ytrehus K, Landmesser U, Mummery CL, Janssens S, Willerson J, Eschenhagen T, Ferdinandy P, Sluijter JP. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37:1789-1798. [PMID: 27055812 DOI: 10.1093/eurheartj/ehw113] [Cited by in Crossref: 147] [Cited by in F6Publishing: 121] [Article Influence: 29.4] [Reference Citation Analysis]
470 Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 2012;18:910-9. [PMID: 22092279 DOI: 10.1089/ten.tea.2011.0341] [Cited by in Crossref: 261] [Cited by in F6Publishing: 221] [Article Influence: 29.0] [Reference Citation Analysis]
471 Buikema JW, Van Der Meer P, Sluijter JP, Domian IJ. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 2013;31:2587-98. [PMID: 23843322 DOI: 10.1002/stem.1467] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
472 Wang T, Warren ST, Jin P. Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 2013;4:820-32. [PMID: 24078387 DOI: 10.1007/s13238-013-3074-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
473 Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021;5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Reference Citation Analysis]
474 Hota SK, Johnson JR, Verschueren E, Thomas R, Blotnick AM, Zhu Y, Sun X, Pennacchio LA, Krogan NJ, Bruneau BG. Dynamic BAF chromatin remodeling complex subunit inclusion promotes temporally distinct gene expression programs in cardiogenesis. Development 2019;146:dev174086. [PMID: 30814119 DOI: 10.1242/dev.174086] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
475 Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M, Drzymalski M, Wagner S, Maier LS, Hehr U, Baessler A, Fischer M, Hengstenberg C. Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 2015;10:e0126596. [PMID: 25970162 DOI: 10.1371/journal.pone.0126596] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
476 Girlovanu M, Susman S, Soritau O, Rus-Ciuca D, Melincovici C, Constantin AM, Mihu CM. Stem cells - biological update and cell therapy progress. Clujul Med 2015;88:265-71. [PMID: 26609255 DOI: 10.15386/cjmed-483] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
477 Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ. Cell therapy for cardiac repair--lessons from clinical trials. Nat Rev Cardiol. 2014;11:232-246. [PMID: 24594893 DOI: 10.1038/nrcardio.2014.9] [Cited by in Crossref: 210] [Cited by in F6Publishing: 174] [Article Influence: 30.0] [Reference Citation Analysis]
478 Wang C, Liu W, Zhang X, Wang Y, Liu H, Li H. MEK/ERK signaling is involved in the role of VEGF and IGF1 in cardiomyocyte differentiation of mouse adipose tissue-derived stromal cells. International Journal of Cardiology 2017;228:427-34. [DOI: 10.1016/j.ijcard.2016.11.199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
479 Bouveret R, Waardenberg AJ, Schonrock N, Ramialison M, Doan T, de Jong D, Bondue A, Kaur G, Mohamed S, Fonoudi H, Chen CM, Wouters MA, Bhattacharya S, Plachta N, Dunwoodie SL, Chapman G, Blanpain C, Harvey RP. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. Elife 2015;4. [PMID: 26146939 DOI: 10.7554/eLife.06942] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
480 Shelton M, Kocharyan A, Liu J, Skerjanc IS, Stanford WL. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells. Methods 2016;101:73-84. [PMID: 26404920 DOI: 10.1016/j.ymeth.2015.09.019] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
481 Jahng JWS, Zhang M, Wu JC. The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Semin Cell Dev Biol 2021:S1084-9521(21)00127-0. [PMID: 34074592 DOI: 10.1016/j.semcdb.2021.05.018] [Reference Citation Analysis]
482 Ieda M. Key Regulators of Cardiovascular Differentiation and Regeneration: Harnessing the Potential of Direct Reprogramming to Treat Heart Failure. J Card Fail 2020;26:80-4. [PMID: 31541743 DOI: 10.1016/j.cardfail.2019.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
483 Uzel SG, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. Prog Biophys Mol Biol 2014;115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
484 Lee H, Haller C, Manneville C, Doll T, Fruh I, Keller CG, Richards SM, Ibig-rehm Y, Patoor M, Goette M, Bouchez LC, Mueller M. Identification of Small Molecules Which Induce Skeletal Muscle Differentiation in Embryonic Stem Cells via Activation of the Wnt and Inhibition of Smad2/3 and Sonic Hedgehog Pathways: Small Molecules Drive Skeletal Muscle in ES Cell. Stem Cells 2016;34:299-310. [DOI: 10.1002/stem.2228] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
485 Ban K, Bae S, Yoon YS. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Theranostics 2017;7:2067-77. [PMID: 28638487 DOI: 10.7150/thno.19427] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
486 Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. Adv Ther (Weinh) 2020;3:1900182. [PMID: 33665356 DOI: 10.1002/adtp.201900182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
487 Pereira IT, Spangenberg L, Robert AW, Amorín R, Stimamiglio MA, Naya H, Dallagiovanna B. Cardiomyogenic differentiation is fine-tuned by differential mRNA association with polysomes. BMC Genomics 2019;20:219. [PMID: 30876407 DOI: 10.1186/s12864-019-5550-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
488 Choi WY, Poss KD. Cardiac regeneration. Curr Top Dev Biol 2012;100:319-44. [PMID: 22449849 DOI: 10.1016/B978-0-12-387786-4.00010-5] [Cited by in Crossref: 53] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
489 Qin H, Zhao A, Fu X. Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 2017;74:3553-75. [DOI: 10.1007/s00018-017-2586-x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
490 Ortmann D, Vallier L. Variability of human pluripotent stem cell lines. Current Opinion in Genetics & Development 2017;46:179-85. [DOI: 10.1016/j.gde.2017.07.004] [Cited by in Crossref: 63] [Cited by in F6Publishing: 41] [Article Influence: 15.8] [Reference Citation Analysis]
491 Chen Y, Yang Z, Zhao ZA, Shen Z. Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther 2017;8:118. [PMID: 28545505 DOI: 10.1186/s13287-017-0569-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
492 Vereide DT, Vickerman V, Swanson SA, Chu LF, McIntosh BE, Thomson JA. An expandable, inducible hemangioblast state regulated by fibroblast growth factor. Stem Cell Reports 2014;3:1043-57. [PMID: 25458896 DOI: 10.1016/j.stemcr.2014.10.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
493 Deegan DF, Karbalaei R, Madzo J, Kulathinal RJ, Engel N. The developmental origins of sex-biased expression in cardiac development. Biol Sex Differ 2019;10:46. [PMID: 31488212 DOI: 10.1186/s13293-019-0259-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
494 Liaw NY, Zimmermann WH. Mechanical stimulation in the engineering of heart muscle. Adv Drug Deliv Rev 2016;96:156-60. [PMID: 26362920 DOI: 10.1016/j.addr.2015.09.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
495 Liu T, Zhang R, Guo T, Ma S, Han D, Li XJ, Jin Y, Fan MM, Wang YB, Chen YD, Cao F. Cardiotrophin-1 promotes cardiomyocyte differentiation from mouse induced pluripotent stem cells via JAK2/STAT3/Pim-1 signaling pathway. J Geriatr Cardiol 2015;12:591-9. [PMID: 26788034 DOI: 10.11909/j.issn.1671-5411.2015.06.002] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
496 Conradi L, Schmidt S, Neofytou E, Deuse T, Peters L, Eder A, Hua X, Hansen A, Robbins RC, Beygui RE, Reichenspurner H, Eschenhagen T, Schrepfer S. Immunobiology of fibrin-based engineered heart tissue. Stem Cells Transl Med 2015;4:625-31. [PMID: 25947338 DOI: 10.5966/sctm.2013-0202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
497 Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M, Tabei R, Ohno R, Fujita C, Haruna T, Yuasa S, Sano M, Fujita J, Fukuda K. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med. 2014;3:1473-1483. [PMID: 25355733 DOI: 10.5966/sctm.2014-0072] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 6.7] [Reference Citation Analysis]
498 Palpant NJ, Pabon L, Rabinowitz JS, Hadland BK, Stoick-Cooper CL, Paige SL, Bernstein ID, Moon RT, Murry CE. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 2013;140:3799-808. [PMID: 23924634 DOI: 10.1242/dev.094789] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
499 Kasai-brunswick T, Silva dos Santos D, Ferreira R, Araujo D, Dias G, Coutinho J, Cruz F, Sternick E, Gubert F, Oliveira J, Vaz I, Borgonovo T, Brofman P, Moura-neto R, Silva R, Campos-de-carvalho A, Carvalho A. Generation of patient-specific induced pluripotent stem cell lines from one patient with Jervell and Lange-Nielsen syndrome, one with type 1 long QT syndrome and two healthy relatives. Stem Cell Research 2018;31:174-80. [DOI: 10.1016/j.scr.2018.07.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
500 Anderson CW, Boardman N, Luo J, Park J, Qyang Y. Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies. Curr Cardiol Rep 2017;19:34. [PMID: 28324469 DOI: 10.1007/s11886-017-0841-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
501 Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 2013;10:781-7. [PMID: 23793239 DOI: 10.1038/nmeth.2524] [Cited by in Crossref: 543] [Cited by in F6Publishing: 451] [Article Influence: 67.9] [Reference Citation Analysis]
502 Breckwoldt K, Letuffe-Brenière D, Mannhardt I, Schulze T, Ulmer B, Werner T, Benzin A, Klampe B, Reinsch MC, Laufer S, Shibamiya A, Prondzynski M, Mearini G, Schade D, Fuchs S, Neuber C, Krämer E, Saleem U, Schulze ML, Rodriguez ML, Eschenhagen T, Hansen A. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat Protoc 2017;12:1177-97. [PMID: 28492526 DOI: 10.1038/nprot.2017.033] [Cited by in Crossref: 114] [Cited by in F6Publishing: 89] [Article Influence: 28.5] [Reference Citation Analysis]
503 Pereira IT, Spangenberg L, Robert AW, Amorín R, Stimamiglio MA, Naya H, Dallagiovanna B. Polysome profiling followed by RNA-seq of cardiac differentiation stages in hESCs. Sci Data 2018;5:180287. [PMID: 30512016 DOI: 10.1038/sdata.2018.287] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
504 Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2020;100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
505 Suh CY, Wang Z, Bártulos O, Qyang Y. Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine. J Cardiovasc Pharmacol Ther 2014;19:330-9. [PMID: 24651517 DOI: 10.1177/1074248414523676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
506 Addis RC, Ifkovits JL, Pinto F, Kellam LD, Esteso P, Rentschler S, Christoforou N, Epstein JA, Gearhart JD. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol 2013;60:97-106. [PMID: 23591016 DOI: 10.1016/j.yjmcc.2013.04.004] [Cited by in Crossref: 147] [Cited by in F6Publishing: 119] [Article Influence: 18.4] [Reference Citation Analysis]
507 Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017;74:3711-39. [PMID: 28573431 DOI: 10.1007/s00018-017-2546-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
508 Liu J, Li Y, Lin B, Sheng Y, Yang L. HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1. Dev Cell. 2017;42:333-348.e5. [PMID: 28829943 DOI: 10.1016/j.devcel.2017.07.023] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
509 Ohyama M, Okano H. Promise of Human Induced Pluripotent Stem Cells in Skin Regeneration and Investigation. Journal of Investigative Dermatology 2014;134:605-9. [DOI: 10.1038/jid.2013.376] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
510 Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M, Cashman J, Mercola M. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res. 2011;109:360-364. [PMID: 21737789 DOI: 10.1161/circresaha.111.249540] [Cited by in Crossref: 179] [Cited by in F6Publishing: 86] [Article Influence: 17.9] [Reference Citation Analysis]
511 Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci 2014;71:2271-88. [PMID: 24442477 DOI: 10.1007/s00018-013-1554-3] [Cited by in Crossref: 75] [Cited by in F6Publishing: 65] [Article Influence: 10.7] [Reference Citation Analysis]
512 Wang Z, Gagliardi M, Mohamadi RM, Ahmed SU, Labib M, Zhang L, Popescu S, Zhou Y, Sargent EH, Keller GM, Kelley SO. Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Sci Adv 2020;6:eaay7629. [PMID: 32440533 DOI: 10.1126/sciadv.aay7629] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
513 Biendarra-tiegs SM, Secreto FJ, Nelson TJ. Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. In: Turksen K, editor. Cell Biology and Translational Medicine, Volume 6. Cham: Springer International Publishing; 2020. pp. 1-29. [DOI: 10.1007/5584_2019_350] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
514 Wang L, Meier EM, Tian S, Lei I, Liu L, Xian S, Lam MT, Wang Z. Transplantation of Isl1+ cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. Stem Cell Res Ther 2017;8:230. [PMID: 29037258 DOI: 10.1186/s13287-017-0675-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
515 Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH. Comparative analysis of cardiovascular development related genes in stem cells isolated from deciduous pulp and adipose tissue. ScientificWorldJournal 2014;2014:186508. [PMID: 25548778 DOI: 10.1155/2014/186508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
516 Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, Tang A, Liu S, Fishman GI, Evans T. GATA factors efficiently direct cardiac fate from embryonic stem cells. Development 2013;140:1639-44. [PMID: 23487308 DOI: 10.1242/dev.093260] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
517 Ishizuka T, Goshima H, Ozawa A, Watanabe Y. Involvement of β-adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. Eur J Pharmacol 2014;740:28-34. [PMID: 25014757 DOI: 10.1016/j.ejphar.2014.06.056] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
518 Richter A, Valdimarsdottir L, Hrafnkelsdottir HE, Runarsson JF, Omarsdottir AR, Ward-van Oostwaard D, Mummery C, Valdimarsdottir G. BMP4 promotes EMT and mesodermal commitment in human embryonic stem cells via SLUG and MSX2. Stem Cells 2014;32:636-48. [PMID: 24549638 DOI: 10.1002/stem.1592] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 7.9] [Reference Citation Analysis]
519 Redig JK, Adler E. Doing the dirty work: progress in the search for a reliable protocol for cardiomyogenesis. Stem Cell Res Ther 2011;2:35. [PMID: 21861857 DOI: 10.1186/scrt76] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
520 Iop L, Dal Sasso E, Menabò R, Di Lisa F, Gerosa G. The Rapidly Evolving Concept of Whole Heart Engineering. Stem Cells Int 2017;2017:8920940. [PMID: 29250121 DOI: 10.1155/2017/8920940] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
521 Jung DW, Williams DR. Reawakening atlas: chemical approaches to repair or replace dysfunctional musculature. ACS Chem Biol. 2012;7:1773-1790. [PMID: 23043623 DOI: 10.1021/cb3003368] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
522 Robbins ER, Pins GD, Laflamme MA, Gaudette GR. Creation of a contractile biomaterial from a decellularized spinach leaf without ECM protein coating: An in vitro study. J Biomed Mater Res A 2020;108:2123-32. [PMID: 32323417 DOI: 10.1002/jbm.a.36971] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
523 Stauske M, Rodriguez Polo I, Haas W, Knorr DY, Borchert T, Streckfuss-Bömeke K, Dressel R, Bartels I, Tiburcy M, Zimmermann WH, Behr R. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells 2020;9:E1349. [PMID: 32485910 DOI: 10.3390/cells9061349] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
524 Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W, Mazine A, Yang D, Burnett B, Lee J, Protze S, Bader GD, Nunes SS, Laflamme M, Keller G. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat Commun 2021;12:3155. [PMID: 34039977 DOI: 10.1038/s41467-021-23329-z] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
525 Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 2014;4:6614. [PMID: 25310989 DOI: 10.1038/srep06614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
526 Ye L, Zhang S, Greder L, Dutton J, Keirstead SA, Lepley M, Zhang L, Kaufman D, Zhang J. Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS One 2013;8:e53764. [PMID: 23326500 DOI: 10.1371/journal.pone.0053764] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 5.5] [Reference Citation Analysis]
527 Blinova K, Stohlman J, Vicente J, Chan D, Johannesen L, Hortigon-Vinagre MP, Zamora V, Smith G, Crumb WJ, Pang L, Lyn-Cook B, Ross J, Brock M, Chvatal S, Millard D, Galeotti L, Stockbridge N, Strauss DG. Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias. Toxicol Sci 2017;155:234-47. [PMID: 27701120 DOI: 10.1093/toxsci/kfw200] [Cited by in Crossref: 122] [Cited by in F6Publishing: 96] [Article Influence: 24.4] [Reference Citation Analysis]
528 Qiu XX, Liu Y, Zhang YF, Guan YN, Jia QQ, Wang C, Liang H, Li YQ, Yang HT, Qin YW, Huang S, Zhao XX, Jing Q. Rapamycin and CHIR99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53-Dependent Apoptosis. J Am Heart Assoc 2017;6:e005295. [PMID: 28971953 DOI: 10.1161/JAHA.116.005295] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
529 Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med. 2017;23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
530 Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:1216-1220. [PMID: 27127239 DOI: 10.1126/science.aaf1502] [Cited by in Crossref: 216] [Cited by in F6Publishing: 152] [Article Influence: 43.2] [Reference Citation Analysis]
531 Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111:344-358. [PMID: 22821908 DOI: 10.1161/CIRCRESAHA.110.227512] [Cited by in Crossref: 438] [Cited by in F6Publishing: 235] [Article Influence: 48.7] [Reference Citation Analysis]
532 Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2020;598:2941-56. [PMID: 30571853 DOI: 10.1113/JP276754] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
533 Andersen P, Tampakakis E, Jimenez DV, Kannan S, Miyamoto M, Shin HK, Saberi A, Murphy S, Sulistio E, Chelko SP, Kwon C. Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nat Commun 2018;9:3140. [PMID: 30087351 DOI: 10.1038/s41467-018-05604-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
534 Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy KE. In vitro cardiac tissue models: Current status and future prospects. Adv Drug Deliv Rev 2016;96:203-13. [PMID: 26428618 DOI: 10.1016/j.addr.2015.09.011] [Cited by in Crossref: 90] [Cited by in F6Publishing: 73] [Article Influence: 15.0] [Reference Citation Analysis]
535 Hatzistergos KE, Takeuchi LM, Saur D, Seidler B, Dymecki SM, Mai JJ, White IA, Balkan W, Kanashiro-Takeuchi RM, Schally AV, Hare JM. cKit+ cardiac progenitors of neural crest origin. Proc Natl Acad Sci U S A 2015;112:13051-6. [PMID: 26438843 DOI: 10.1073/pnas.1517201112] [Cited by in Crossref: 86] [Cited by in F6Publishing: 69] [Article Influence: 14.3] [Reference Citation Analysis]
536 Lahlil R, Scrofani M, Barbet R, Tancredi C, Aries A, Hénon P. VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion. Stem Cell Rev Rep 2018;14:510-24. [PMID: 29736843 DOI: 10.1007/s12015-018-9821-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
537 Nunes SS, Feric N, Pahnke A, Miklas JW, Li M, Coles J, Gagliardi M, Keller G, Radisic M. Human Stem Cell-Derived Cardiac Model of Chronic Drug Exposure. ACS Biomater Sci Eng 2017;3:1911-21. [DOI: 10.1021/acsbiomaterials.5b00496] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
538 Rupert CE, Irofuala C, Coulombe KLK. Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques. PLoS One 2020;15:e0230001. [PMID: 32155214 DOI: 10.1371/journal.pone.0230001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
539 Jackman CP, Shadrin IY, Carlson AL, Bursac N. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair. Curr Opin Chem Eng 2015;7:57-64. [PMID: 25599018 DOI: 10.1016/j.coche.2014.11.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
540 Connell JP, Ruano R, Jacot JG. Amniotic fluid-derived stem cells demonstrate limited cardiac differentiation following small molecule-based modulation of Wnt signaling pathway. Biomed Mater 2015;10:034103. [PMID: 25784677 DOI: 10.1088/1748-6041/10/3/034103] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
541 Jang JH, Kim MS, Antao AM, Jo WJ, Kim HJ, Kim SJ, Choi MJ, Ramakrishna S, Kim KS. Bioactive Lipid O-cyclic phytosphingosine-1-phosphate Promotes Differentiation of Human Embryonic Stem Cells into Cardiomyocytes via ALK3/BMPR Signaling. Int J Mol Sci 2021;22:7015. [PMID: 34209900 DOI: 10.3390/ijms22137015] [Reference Citation Analysis]
542 Ardehali R, Ali SR, Inlay MA, Abilez OJ, Chen MQ, Blauwkamp TA, Yazawa M, Gong Y, Nusse R, Drukker M, Weissman IL. Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue. Proc Natl Acad Sci U S A 2013;110:3405-10. [PMID: 23391730 DOI: 10.1073/pnas.1220832110] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 6.1] [Reference Citation Analysis]
543 Shen X, Soibam B, Benham A, Xu X, Chopra M, Peng X, Yu W, Bao W, Liang R, Azares A, Liu P, Gunaratne PH, Mercola M, Cooney AJ, Schwartz RJ, Liu Y. miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proc Natl Acad Sci U S A 2016;113:9551-6. [PMID: 27512039 DOI: 10.1073/pnas.1608256113] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 8.8] [Reference Citation Analysis]
544 Sommer CA, Mostoslavsky G. The evolving field of induced pluripotency: recent progress and future challenges. J Cell Physiol 2013;228:267-75. [PMID: 22767332 DOI: 10.1002/jcp.24155] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
545 Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O'Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 2017;26:3031-45. [PMID: 28521042 DOI: 10.1093/hmg/ddx140] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
546 Arai K, Murata D, Verissimo AR, Mukae Y, Itoh M, Nakamura A, Morita S, Nakayama K. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS One 2018;13:e0209162. [PMID: 30557409 DOI: 10.1371/journal.pone.0209162] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 18.0] [Reference Citation Analysis]
547 Macarthur CC, Xue H, Van Hoof D, Lieu PT, Dudas M, Fontes A, Swistowski A, Touboul T, Seerke R, Laurent LC, Loring JF, German MS, Zeng X, Rao MS, Lakshmipathy U, Chesnut JD, Liu Y. Chromatin insulator elements block transgene silencing in engineered human embryonic stem cell lines at a defined chromosome 13 locus. Stem Cells Dev 2012;21:191-205. [PMID: 21699412 DOI: 10.1089/scd.2011.0163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
548 Soong PL, Tiburcy M, Zimmermann WH. Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle. Curr Protoc Cell Biol 2012;Chapter 23:Unit23.8. [PMID: 23129117 DOI: 10.1002/0471143030.cb2308s55] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
549 Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D. Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 2015;8:81-101. [PMID: 25999743 DOI: 10.2147/SCCAA.S54204] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
550 Szaraz P, Gratch YS, Iqbal F, Librach CL. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells. J Vis Exp 2017. [PMID: 28829419 DOI: 10.3791/55757] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
551 Liu C, Peng G, Jing N. TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochimica et Biophysica Sinica 2018;50:68-73. [DOI: 10.1093/abbs/gmx120] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
552 Qian T, Heaster TM, Houghtaling AR, Sun K, Samimi K, Skala MC. Label-free imaging for quality control of cardiomyocyte differentiation. Nat Commun 2021;12:4580. [PMID: 34321477 DOI: 10.1038/s41467-021-24868-1] [Reference Citation Analysis]
553 Glaser DE, Turner WS, Madfis N, Wong L, Zamora J, White N, Reyes S, Burns AB, Gopinathan A, McCloskey KE. Multifactorial Optimizations for Directing Endothelial Fate from Stem Cells. PLoS One 2016;11:e0166663. [PMID: 27907001 DOI: 10.1371/journal.pone.0166663] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
554 Kempf H, Zweigerdt R. Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. Adv Biochem Eng Biotechnol 2018;163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
555 Jara-Avaca M, Kempf H, Rückert M, Robles-Diaz D, Franke A, de la Roche J, Fischer M, Malan D, Sasse P, Solodenko W, Dräger G, Kirschning A, Martin U, Zweigerdt R. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports 2017;8:305-17. [PMID: 28089668 DOI: 10.1016/j.stemcr.2016.12.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
556 Sharma A, Zhang Y, Wu SM. Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine. Curr Treat Options Cardiovasc Med 2015;17:404. [PMID: 26324824 DOI: 10.1007/s11936-015-0404-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
557 Ramachandra CJ, Mehta A, Lua CH, Chitre A, Ja KP, Shim W. ErbB Receptor Tyrosine Kinase: A Molecular Switch Between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells. Stem Cells 2016;34:2461-70. [PMID: 27324647 DOI: 10.1002/stem.2420] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
558 Cho GS, Fernandez L, Kwon C. Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxid Redox Signal 2014;21:2018-31. [PMID: 25133793 DOI: 10.1089/ars.2014.6063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
559 Piccini I, Araúzo-Bravo M, Seebohm G, Greber B. Functional high-resolution time-course expression analysis of human embryonic stem cells undergoing cardiac induction. Genom Data 2016;10:71-4. [PMID: 27722090 DOI: 10.1016/j.gdata.2016.09.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
560 Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, Qiu Z, Xie X. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013-1024. [PMID: 26292833 DOI: 10.1038/cr.2015.99] [Cited by in Crossref: 139] [Cited by in F6Publishing: 112] [Article Influence: 23.2] [Reference Citation Analysis]
561 Martins AM, Vunjak-Novakovic G, Reis RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 2014;10:177-90. [PMID: 24425421 DOI: 10.1007/s12015-013-9487-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 5.9] [Reference Citation Analysis]
562 McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development. 2017;144:958-962. [PMID: 28292841 DOI: 10.1242/dev.140731] [Cited by in Crossref: 130] [Cited by in F6Publishing: 105] [Article Influence: 32.5] [Reference Citation Analysis]
563 Xi H, Fujiwara W, Gonzalez K, Jan M, Liebscher S, Van Handel B, Schenke-Layland K, Pyle AD. In Vivo Human Somitogenesis Guides Somite Development from hPSCs. Cell Rep 2017;18:1573-85. [PMID: 28178531 DOI: 10.1016/j.celrep.2017.01.040] [Cited by in Crossref: 57] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
564 Mills RJ, Hudson JE. Bioengineering adult human heart tissue: How close are we? APL Bioeng 2019;3:010901. [PMID: 31069330 DOI: 10.1063/1.5070106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
565 Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29:1011-1018. [PMID: 22020386 DOI: 10.1038/nbt.2005] [Cited by in Crossref: 379] [Cited by in F6Publishing: 311] [Article Influence: 37.9] [Reference Citation Analysis]
566 Jiang B, Xiang Z, Ai Z, Wang H, Li Y, Ji W, Li T. Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials 2015;65:103-14. [DOI: 10.1016/j.biomaterials.2015.06.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
567 Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020;11:384. [PMID: 32390874 DOI: 10.3389/fphys.2020.00384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
568 Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, Bernstein I, Zheng Y, Murry CE. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 2017;12:15-31. [PMID: 27906170 DOI: 10.1038/nprot.2016.153] [Cited by in Crossref: 92] [Cited by in F6Publishing: 72] [Article Influence: 18.4] [Reference Citation Analysis]
569 Ruan H, Liao Y, Ren Z, Mao L, Yao F, Yu P, Ye Y, Zhang Z, Li S, Xu H, Liu J, Diao L, Zhou B, Han L, Wang L. Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol 2019;17:89. [PMID: 31722692 DOI: 10.1186/s12915-019-0709-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
570 Hsiao C, Tomai M, Glynn J, Palecek SP. Effects of 3D microwell culture on initial fate specification in human embryonic stem cells. AIChE J 2014;60:1225-35. [PMID: 25505348 DOI: 10.1002/aic.14351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
571 Kim MS, Horst A, Blinka S, Stamm K, Mahnke D, Schuman J, Gundry R, Tomita-Mitchell A, Lough J. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS One 2015;10:e0118670. [PMID: 25706534 DOI: 10.1371/journal.pone.0118670] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
572 Burridge PW, Zambidis ET. Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol Biol 2013;997:149-61. [PMID: 23546754 DOI: 10.1007/978-1-62703-348-0_12] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
573 Cai L, Keller BB. Cardiac regeneration and diabetes. Regen Med Res 2014;2:1. [PMID: 25984329 DOI: 10.1186/2050-490X-2-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
574 Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setälä K. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One 2012;7:e48659. [PMID: 23119085 DOI: 10.1371/journal.pone.0048659] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
575 Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F, de la Roche J, Polten F, Christoph Wollert K, Kraft T, Fischer M, Martin U, Gruh I, Kempf H, Zweigerdt R. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports 2019;13:366-79. [PMID: 31353227 DOI: 10.1016/j.stemcr.2019.06.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
576 Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 2015;61:257-65. [PMID: 26005764 DOI: 10.1016/j.biomaterials.2015.05.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
577 Mercola M, Colas A, Willems E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 2013;112:534-48. [PMID: 23371902 DOI: 10.1161/CIRCRESAHA.111.250266] [Cited by in Crossref: 84] [Cited by in F6Publishing: 46] [Article Influence: 10.5] [Reference Citation Analysis]
578 Yang D, Wang J, Xiao M, Zhou T, Shi X. Role of Mir-155 in Controlling HIF-1α Level and Promoting Endothelial Cell Maturation. Sci Rep 2016;6:35316. [PMID: 27731397 DOI: 10.1038/srep35316] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
579 Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021;9:639699. [PMID: 34262897 DOI: 10.3389/fcell.2021.639699] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
580 Moon SH, Ban K, Kim C, Kim SS, Byun J, Song MK, Park IH, Yu SP, Yoon YS. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol 2013;168:41-52. [PMID: 23044428 DOI: 10.1016/j.ijcard.2012.09.077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
581 Shenje LT, Andersen P, Uosaki H, Fernandez L, Rainer PP, Cho GS, Lee DI, Zhong W, Harvey RP, Kass DA, Kwon C. Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. Elife 2014;3:e02164. [PMID: 24843018 DOI: 10.7554/eLife.02164] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
582 Adkar SS, Brunger JM, Willard VP, Wu CL, Gersbach CA, Guilak F. Genome Engineering for Personalized Arthritis Therapeutics. Trends Mol Med 2017;23:917-31. [PMID: 28887050 DOI: 10.1016/j.molmed.2017.08.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
583 Bao X, Lian X, Hacker TA, Schmuck EG, Qian T, Bhute VJ, Han T, Shi M, Drowley L, Plowright A, Wang QD, Goumans MJ, Palecek SP. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat Biomed Eng 2016;1:0003. [PMID: 28462012 DOI: 10.1038/s41551-016-0003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
584 Lauschke K, Volpini L, Liu Y, Vinggaard AM, Hall VJ. A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells Dev 2021;30:374-85. [PMID: 33599158 DOI: 10.1089/scd.2020.0184] [Reference Citation Analysis]
585 Ting S, Lecina M, Chan YC, Tse HF, Reuveny S, Oh SK. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells. World J Stem Cells 2013;5:86-97. [PMID: 23904910 DOI: 10.4252/wjsc.v5.i3.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
586 Maldonado M, Luu RJ, Ico G, Ospina A, Myung D, Shih HP, Nam J. Lineage- and developmental stage-specific mechanomodulation of induced pluripotent stem cell differentiation. Stem Cell Res Ther 2017;8:216. [PMID: 28962663 DOI: 10.1186/s13287-017-0667-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
587 Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA. Changing Metabolism in Differentiating Cardiac Progenitor Cells-Can Stem Cells Become Metabolically Flexible Cardiomyocytes? Front Cardiovasc Med 2018;5:119. [PMID: 30283788 DOI: 10.3389/fcvm.2018.00119] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
588 Didié M, Christalla P, Rubart M, Muppala V, Döker S, Unsöld B, El-Armouche A, Rau T, Eschenhagen T, Schwoerer AP, Ehmke H, Schumacher U, Fuchs S, Lange C, Becker A, Tao W, Scherschel JA, Soonpaa MH, Yang T, Lin Q, Zenke M, Han DW, Schöler HR, Rudolph C, Steinemann D, Schlegelberger B, Kattman S, Witty A, Keller G, Field LJ, Zimmermann WH. Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest 2013;123:1285-98. [PMID: 23434590 DOI: 10.1172/JCI66854] [Cited by in Crossref: 82] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
589 Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol 2021:S1084-9521(21)00092-6. [PMID: 33952430 DOI: 10.1016/j.semcdb.2021.04.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
590 [DOI: 10.1101/270751] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
591 Zhao H, Choi K. A CRISPR screen identifies genes controlling Etv2 threshold expression in murine hemangiogenic fate commitment. Nat Commun 2017;8:541. [PMID: 28912455 DOI: 10.1038/s41467-017-00667-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
592 Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marbán E, Cho HC. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports 2015;4:129-42. [PMID: 25533636 DOI: 10.1016/j.stemcr.2014.11.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 46] [Article Influence: 9.7] [Reference Citation Analysis]
593 Marchianò S, Bertero A, Murry CE. Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr Cardiol 2019;40:1367-87. [PMID: 31388700 DOI: 10.1007/s00246-019-02165-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
594 Moledina F, Clarke G, Oskooei A, Onishi K, Günther A, Zandstra PW. Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proc Natl Acad Sci USA. 2012;109:3264-3269. [PMID: 22334649 DOI: 10.1073/pnas.1111478109] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 5.9] [Reference Citation Analysis]
595 Feric NT, Radisic M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016;96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Cited by in Crossref: 121] [Cited by in F6Publishing: 100] [Article Influence: 20.2] [Reference Citation Analysis]
596 Mendjan S, Mascetti VL, Ortmann D, Ortiz M, Karjosukarso DW, Ng Y, Moreau T, Pedersen RA. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 2014;15:310-25. [PMID: 25042702 DOI: 10.1016/j.stem.2014.06.006] [Cited by in Crossref: 125] [Cited by in F6Publishing: 98] [Article Influence: 17.9] [Reference Citation Analysis]
597 Gong R, Jiang Z, Zagidullin N, Liu T, Cai B. Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduct Target Ther 2021;6:31. [PMID: 33500391 DOI: 10.1038/s41392-020-00413-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
598 Freire AG, Resende TP, Pinto-do-Ó P. Building and repairing the heart: what can we learn from embryonic development? Biomed Res Int 2014;2014:679168. [PMID: 24864252 DOI: 10.1155/2014/679168] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
599 Hirt MN, Hansen A, Eschenhagen T. Cardiac Tissue Engineering: State of the Art. Circ Res 2014;114:354-67. [DOI: 10.1161/circresaha.114.300522] [Cited by in Crossref: 264] [Cited by in F6Publishing: 113] [Article Influence: 37.7] [Reference Citation Analysis]
600 Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC;  American Heart Association Council on Functional Genomics and Translational Biology;  Council on Cardiovascular Disease in the Young;  and Council on Cardiovascular and Stroke Nursing. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2018;11:e000043. [PMID: 29874173 DOI: 10.1161/hcg.0000000000000043] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 18.0] [Reference Citation Analysis]
601 Hotkar AJ, Balinsky W. Stem cells in the treatment of cardiovascular disease--an overview. Stem Cell Rev Rep 2012;8:494-502. [PMID: 21800038 DOI: 10.1007/s12015-011-9302-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
602 Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014;5:12. [PMID: 24444355 DOI: 10.1186/scrt401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
603 Zatti S, Martewicz S, Serena E, Uno N, Giobbe G, Kazuki Y, Oshimura M, Elvassore N. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. Mol Ther Methods Clin Dev 2014;1:1. [PMID: 26015941 DOI: 10.1038/mtm.2013.1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
604 Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 2015;16:4043-67. [PMID: 25689424 DOI: 10.3390/ijms16024043] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
605 Orlova VV, Chuva de Sousa Lopes S, Valdimarsdottir G. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine & Growth Factor Reviews 2016;27:55-63. [DOI: 10.1016/j.cytogfr.2015.11.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
606 Traister A, Aafaqi S, Masse S, Dai X, Li M, Hinek A, Nanthakumar K, Hannigan G, Coles JG. ILK induces cardiomyogenesis in the human heart. PLoS One 2012;7:e37802. [PMID: 22666394 DOI: 10.1371/journal.pone.0037802] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
607 Yan Y, Liu F, Dang X, Zhou R, Liao B. TBX3 induces biased differentiation of human induced pluripotent stem cells into cardiac pacemaker-like cells. Gene Expr Patterns 2021;40:119184. [PMID: 33975000 DOI: 10.1016/j.gep.2021.119184] [Reference Citation Analysis]
608 Jahan B, McCloskey KE. Differentiation and expansion of endothelial cells requires pre-optimization of KDR+ expression kinetics. Stem Cell Res 2020;42:101685. [PMID: 31896485 DOI: 10.1016/j.scr.2019.101685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
609 Lin X, Steinberg S, Kandasamy SK, Afzal J, Mbiyangandu B, Liao SE, Guan Y, Corona-Villalobos CP, Matkovich SJ, Epstein N, Tripodi D, Huo Z, Cutting G, Abraham TP, Fukunaga R, Abraham MR. Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS One 2016;11:e0156065. [PMID: 27196440 DOI: 10.1371/journal.pone.0156065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
610 Dickel DE, Zhu Y, Nord AS, Wylie JN, Akiyama JA, Afzal V, Plajzer-Frick I, Kirkpatrick A, Göttgens B, Bruneau BG, Visel A, Pennacchio LA. Function-based identification of mammalian enhancers using site-specific integration. Nat Methods 2014;11:566-71. [PMID: 24658141 DOI: 10.1038/nmeth.2886] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
611 Kim BJ, Kim YH, Lee YA, Jung SE, Hong YH, Lee EJ, Kim BG, Hwang S, Do JT, Pang MG, Ryu BY. Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis in vitro and in vivo. Oncotarget 2017;8:29643-56. [PMID: 28410244 DOI: 10.18632/oncotarget.16772] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
612 Robert AW, Pereira IT, Dallagiovanna B, Stimamiglio MA. Secretome Analysis Performed During in vitro Cardiac Differentiation: Discovering the Cardiac Microenvironment. Front Cell Dev Biol 2020;8:49. [PMID: 32117977 DOI: 10.3389/fcell.2020.00049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
613 Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021;14:dmm047522. [PMID: 33787508 DOI: 10.1242/dmm.047522] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
614 Myers FB, Silver JS, Zhuge Y, Beygui RE, Zarins CK, Lee LP, Abilez OJ. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning. Integr Biol (Camb) 2013;5:1495-506. [PMID: 24141327 DOI: 10.1039/c2ib20191g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
615 Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. Curr Treat Options Cardiovasc Med. 2014;16:319. [PMID: 24838687 DOI: 10.1007/s11936-014-0319-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
616 Del Álamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R, Mercola M. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta 2016;1863:1717-27. [PMID: 26952934 DOI: 10.1016/j.bbamcr.2016.03.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
617 Kowalski MP, Yoder A, Liu L, Pajak L. Controlling embryonic stem cell growth and differentiation by automation: enhanced and more reliable differentiation for drug discovery. J Biomol Screen 2012;17:1171-9. [PMID: 22895460 DOI: 10.1177/1087057112452783] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
618 Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848-E1857. [PMID: 22645348 DOI: 10.1073/pnas.1200250109] [Cited by in Crossref: 941] [Cited by in F6Publishing: 801] [Article Influence: 104.6] [Reference Citation Analysis]
619 Guan X, Wang Z, Czerniecki S, Mack D, François V, Blouin V, Moullier P, Childers MK. Use of Adeno-Associated Virus to Enrich Cardiomyocytes Derived from Human Stem Cells. Hum Gene Ther Clin Dev 2015;26:194-201. [PMID: 26252064 DOI: 10.1089/humc.2015.052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
620 Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R, Lea MR, Eliceiri KW, Hacker TA, Crone WC, Kyba M, Garry DJ, Stewart R, Thomson JA, Downs KM, Lyons GE, Kamp TJ. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell. 2016;18:354-367. [PMID: 26877223 DOI: 10.1016/j.stem.2015.12.001] [Cited by in Crossref: 122] [Cited by in F6Publishing: 96] [Article Influence: 24.4] [Reference Citation Analysis]
621 Madsen RR, Knox RG, Pearce W, Lopez S, Mahler-Araujo B, McGranahan N, Vanhaesebroeck B, Semple RK. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc Natl Acad Sci U S A 2019;116:8380-9. [PMID: 30948643 DOI: 10.1073/pnas.1821093116] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 11.5] [Reference Citation Analysis]
622 Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Mol Biol Cell. 2016;27:2149-2160. [PMID: 27418636 DOI: 10.1091/mbc.e16-01-0038] [Cited by in Crossref: 47] [Cited by in F6Publishing: 27] [Article Influence: 11.8] [Reference Citation Analysis]
623 Wang J, Cui C, Nan H, Yu Y, Xiao Y, Poon E, Yang G, Wang X, Wang C, Li L, Boheler KR, Ma X, Cheng X, Ni Z, Chen M. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. ACS Appl Mater Interfaces 2017;9:25929-40. [DOI: 10.1021/acsami.7b08777] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
624 Parmacek MS, Epstein JA. An epigenetic roadmap for cardiomyocyte differentiation. Circ Res 2013;112:881-3. [PMID: 23493303 DOI: 10.1161/CIRCRESAHA.113.301134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
625 Chow M, Boheler KR, Li RA. Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther 2013;4:97. [PMID: 23953772 DOI: 10.1186/scrt308] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
626 Ao A, Hao J, Hopkins CR, Hong CC. DMH1, a novel BMP small molecule inhibitor, increases cardiomyocyte progenitors and promotes cardiac differentiation in mouse embryonic stem cells. PLoS One 2012;7:e41627. [PMID: 22848549 DOI: 10.1371/journal.pone.0041627] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 4.2] [Reference Citation Analysis]
627 Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015;10:139-46. [PMID: 26379417 DOI: 10.4137/BMI.S20058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
628 Salazar-Roa M, Trakala M, Álvarez-Fernández M, Valdés-Mora F, Zhong C, Muñoz J, Yu Y, Peters TJ, Graña-Castro O, Serrano R, Zapatero-Solana E, Abad M, Bueno MJ, de Cedrón MG, Fernández-Piqueras J, Serrano M, Blasco MA, Wang DZ, Clark SJ, Izpisua-Belmonte JC, Ortega S, Malumbres M. Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells. EMBO J 2020;39:e104324. [PMID: 32614092 DOI: 10.15252/embj.2019104324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
629 Pesl M, Acimovic I, Pribyl J, Hezova R, Vilotic A, Fauconnier J, Vrbsky J, Kruzliak P, Skladal P, Kara T. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessels. 2014;29:834-846. [PMID: 24258387 DOI: 10.1007/s00380-013-0436-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
630 Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM. Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 2012;21:977-86. [PMID: 22182484 DOI: 10.1089/scd.2011.0075] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 8.0] [Reference Citation Analysis]
631 Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017;74:1969-83. [PMID: 28050627 DOI: 10.1007/s00018-016-2448-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
632 Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, Torella M, Nadal-Ginard B, Torella D. Heterogeneity of Adult Cardiac Stem Cells. Adv Exp Med Biol 2019;1169:141-78. [PMID: 31487023 DOI: 10.1007/978-3-030-24108-7_8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
633 Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013;65:1091-133. [PMID: 23818131 DOI: 10.1124/pr.112.007393] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 4.1] [Reference Citation Analysis]
634 Sharma A, Burridge PW, McKeithan WL, Serrano R, Shukla P, Sayed N, Churko JM, Kitani T, Wu H, Holmström A, Matsa E, Zhang Y, Kumar A, Fan AC, Del Álamo JC, Wu SM, Moslehi JJ, Mercola M, Wu JC. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 2017;9:eaaf2584. [PMID: 28202772 DOI: 10.1126/scitranslmed.aaf2584] [Cited by in Crossref: 185] [Cited by in F6Publishing: 156] [Article Influence: 46.3] [Reference Citation Analysis]
635 Lin ZC, McGuire AF, Burridge PW, Matsa E, Lou HY, Wu JC, Cui B. Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst Nanoeng 2017;3:16080. [PMID: 31057850 DOI: 10.1038/micronano.2016.80] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
636 Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016;245:1130-44. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
637 Choi SC, Choi JH, Cui LH, Seo HR, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Mixl1 and Flk1 Are Key Players of Wnt/TGF-β Signaling During DMSO-Induced Mesodermal Specification in P19 cells. J Cell Physiol 2015;230:1807-21. [PMID: 25521758 DOI: 10.1002/jcp.24892] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
638 Hicks M, Pyle A. The Path from Pluripotency to Skeletal Muscle: Developmental Myogenesis Guides the Way. Cell Stem Cell 2015;17:255-7. [PMID: 26340524 DOI: 10.1016/j.stem.2015.08.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
639 Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34:5813-5820. [PMID: 23642535 DOI: 10.1016/j.biomaterials.2013.04.026] [Cited by in Crossref: 370] [Cited by in F6Publishing: 310] [Article Influence: 46.3] [Reference Citation Analysis]
640 Den Hartogh SC, Schreurs C, Monshouwer-kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R. Dual Reporter MESP1 mCherry/w -NKX2-5 eGFP/w hESCs Enable Studying Early Human Cardiac Differentiation: A Dual Cardiac Reporter hESC Line. Stem Cells 2015;33:56-67. [DOI: 10.1002/stem.1842] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 7.6] [Reference Citation Analysis]
641 Lee JA, An J, Kang TM, De D, Kim KK. Discovery of Natural Compounds Promoting Cardiomyocyte Differentiation. Stem Cells Dev 2019;28:13-27. [PMID: 30358491 DOI: 10.1089/scd.2018.0153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
642 Lu B, Atala A. Small molecules and small molecule drugs in regenerative medicine. Drug Discov Today 2014;19:801-8. [PMID: 24252867 DOI: 10.1016/j.drudis.2013.11.011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
643 Koui Y, Kido T, Ito T, Oyama H, Chen SW, Katou Y, Shirahige K, Miyajima A. An In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non-parenchymal Cells. Stem Cell Reports. 2017;9:490-498. [PMID: 28757162 DOI: 10.1016/j.stemcr.2017.06.010] [Cited by in Crossref: 74] [Cited by in F6Publishing: 58] [Article Influence: 18.5] [Reference Citation Analysis]
644 Shafaattalab S, Lin E, Christidi E, Huang H, Nartiss Y, Garcia A, Lee J, Protze S, Keller G, Brunham L, Tibbits GF, Laksman Z. Ibrutinib Displays Atrial-Specific Toxicity in Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2019;12:996-1006. [PMID: 31031187 DOI: 10.1016/j.stemcr.2019.03.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
645 Xu XQ, Sun W. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes. J Cell Biochem 2013;114:39-46. [PMID: 22903726 DOI: 10.1002/jcb.24359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
646 Wang R, Su C, Wang X, Fu Q, Gao X, Zhang C, Yang J, Yang X, Wei M. Global gene expression analysis combined with a genomics approach for the identification of signal transduction networks involved in postnatal mouse myocardial proliferation and development. Int J Mol Med 2018;41:311-21. [PMID: 29115400 DOI: 10.3892/ijmm.2017.3234] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
647 Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors--a developmental perspective. Dev Biol. 2015;400:169-179. [PMID: 25624264 DOI: 10.1016/j.ydbio.2015.01.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
648 Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018;9:44. [PMID: 29482607 DOI: 10.1186/s13287-018-0773-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 13.3] [Reference Citation Analysis]
649 Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015;10:77-90. [PMID: 26052226 DOI: 10.4137/BMI.S20313] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
650 Sa S, Wong L, McCloskey KE. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access 2014;3:150-61. [PMID: 25126479 DOI: 10.1089/biores.2014.0018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
651 Eggenberger J, Blanco-Melo D, Panis M, Brennand KJ, tenOever BR. Type I interferon response impairs differentiation potential of pluripotent stem cells. Proc Natl Acad Sci U S A 2019;116:1384-93. [PMID: 30606801 DOI: 10.1073/pnas.1812449116] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
652 Sala L, Ward-van Oostwaard D, Tertoolen LGJ, Mummery CL, Bellin M. Electrophysiological Analysis of human Pluripotent Stem Cell-derived Cardiomyocytes (hPSC-CMs) Using Multi-electrode Arrays (MEAs). J Vis Exp 2017. [PMID: 28570546 DOI: 10.3791/55587] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
653 Ng KM, Tse HF. Modeling hereditary cardiac disease with patient-specific-induced pluripotent stem cells: opportunities and concerns. J Cardiovasc Pharmacol 2012;60:406-7. [PMID: 22653418 DOI: 10.1097/FJC.0b013e31825f3f0f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]