BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kirouac DC, Zandstra PW. The systematic production of cells for cell therapies. Cell Stem Cell. 2008;3:369-381. [PMID: 18940729 DOI: 10.1016/j.stem.2008.09.001] [Cited by in Crossref: 225] [Cited by in F6Publishing: 163] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Ashton RS, Keung AJ, Peltier J, Schaffer DV. Progress and prospects for stem cell engineering. Annu Rev Chem Biomol Eng 2011;2:479-502. [PMID: 22432628 DOI: 10.1146/annurev-chembioeng-061010-114105] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
2 Mulhall H, Patel M, Alqahtani K, Mason C, Lewis MP, Wall I. Effect of capillary shear stress on recovery and osteogenic differentiation of muscle-derived precursor cell populations. J Tissue Eng Regen Med 2011;5:629-35. [PMID: 21774086 DOI: 10.1002/term.355] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
3 Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A. Microfabricated biomaterials for engineering 3D tissues. Adv Mater 2012;24:1782-804. [PMID: 22410857 DOI: 10.1002/adma.201104631] [Cited by in Crossref: 296] [Cited by in F6Publishing: 216] [Article Influence: 32.9] [Reference Citation Analysis]
4 Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I. Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing. Adv Sci 2019;7:1902295. [DOI: 10.1002/advs.201902295] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
5 Odeleye AOO, Castillo-Avila S, Boon M, Martin H, Coopman K. Development of an optical system for the non-invasive tracking of stem cell growth on microcarriers. Biotechnol Bioeng 2017;114:2032-42. [PMID: 28464210 DOI: 10.1002/bit.26328] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
6 Kanie K, Sakai T, Imai Y, Yoshida K, Sugimoto A, Makino H, Kubo H, Kato R. Effect of mechanical vibration stress in cell culture on human induced pluripotent stem cells. Regen Ther 2019;12:27-35. [PMID: 31890764 DOI: 10.1016/j.reth.2019.05.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Mandenius C, Björkman M. Mechatronics design principles for biotechnology product development. Trends in Biotechnology 2010;28:230-6. [DOI: 10.1016/j.tibtech.2010.02.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
8 Ratcliffe E, Thomas RJ, Williams DJ. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br Med Bull 2011;100:137-55. [PMID: 21852279 DOI: 10.1093/bmb/ldr037] [Cited by in Crossref: 73] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
9 Martin I, Smith T, Wendt D. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol 2009;27:495-502. [PMID: 19651453 DOI: 10.1016/j.tibtech.2009.06.002] [Cited by in Crossref: 104] [Cited by in F6Publishing: 74] [Article Influence: 8.7] [Reference Citation Analysis]
10 Collart-Dutilleul PY, Panayotov I, Secret E, Cunin F, Gergely C, Cuisinier F, Martin M. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth. Nanoscale Res Lett 2014;9:564. [PMID: 25386101 DOI: 10.1186/1556-276X-9-564] [Cited by in Crossref: 30] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
11 Shi X, Li L, Ostrovidov S, Shu Y, Khademhosseini A, Wu H. Stretchable and micropatterned membrane for osteogenic differentation of stem cells. ACS Appl Mater Interfaces 2014;6:11915-23. [PMID: 24977302 DOI: 10.1021/am5029236] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
12 Hassan S, Huang H, Warren K, Mahdavi B, Smith D, Jong S, Farid SS. Process change evaluation framework for allogeneic cell therapies: impact on drug development and commercialization. Regenerative Medicine 2016;11:287-305. [DOI: 10.2217/rme-2015-0034] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
13 Ungrin MD, Clarke G, Yin T, Niebrugge S, Nostro MC, Sarangi F, Wood G, Keller G, Zandstra PW. Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnol Bioeng 2012;109:853-66. [PMID: 22139975 DOI: 10.1002/bit.24375] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
14 Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed Differentiation of Human Pluripotent Stem Cells to Podocytes under Defined Conditions. Sci Rep 2019;9:2765. [PMID: 30808965 DOI: 10.1038/s41598-019-39504-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
15 Andrade PZ, dos Santos F, Almeida-Porada G, da Silva CL, S Cabral JM. Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. Mol Biosyst 2010;6:1207-15. [PMID: 20424784 DOI: 10.1039/b922637k] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
16 Ting S, Lecina M, Chan YC, Tse HF, Reuveny S, Oh SK. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells. World J Stem Cells 2013;5:86-97. [PMID: 23904910 DOI: 10.4252/wjsc.v5.i3.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
17 Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv. 2013;31:1600-1623. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Cited by in Crossref: 65] [Cited by in F6Publishing: 49] [Article Influence: 8.1] [Reference Citation Analysis]
18 Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW. Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 2009;5:293. [PMID: 19638974 DOI: 10.1038/msb.2009.49] [Cited by in Crossref: 85] [Cited by in F6Publishing: 69] [Article Influence: 7.1] [Reference Citation Analysis]
19 Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res. 2014;13:202-213. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 42] [Article Influence: 8.3] [Reference Citation Analysis]
20 Mehrian M, Guyot Y, Papantoniou I, Olofsson S, Sonnaert M, Misener R, Geris L. Maximizing neotissue growth kinetics in a perfusion bioreactor: An in silico strategy using model reduction and Bayesian optimization. Biotechnol Bioeng 2018;115:617-29. [DOI: 10.1002/bit.26500] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
21 Lu YC, Fu DJ, An D, Chiu A, Schwartz R, Nikitin AY, Ma M. Scalable Production and Cryostorage of Organoids Using Core-Shell Decoupled Hydrogel Capsules. Adv Biosyst 2017;1:1700165. [PMID: 29607405 DOI: 10.1002/adbi.201700165] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
22 Foley L, Whitaker M. Concise review: cell therapies: the route to widespread adoption. Stem Cells Transl Med 2012;1:438-47. [PMID: 23197823 DOI: 10.5966/sctm.2011-0009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 2.9] [Reference Citation Analysis]
23 Hussain W, Moens N, Veraitch FS, Hernandez D, Mason C, Lye GJ. Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform. Biochem Eng J 2013;77:246-57. [PMID: 23956681 DOI: 10.1016/j.bej.2013.05.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
24 Li Y, Ma T. Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores Open Access 2012;1:205-14. [PMID: 23515461 DOI: 10.1089/biores.2012.0224] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 6.3] [Reference Citation Analysis]
25 Misener R, Allenby MC, Fuentes-Garí M, Gupta K, Wiggins T, Panoskaltsis N, Pistikopoulos EN, Mantalaris A. Stem cell biomanufacturing under uncertainty: A case study in optimizing red blood cell production. AIChE J 2018;64:3011-22. [PMID: 30166646 DOI: 10.1002/aic.16042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
26 Menasché P. Embryonic stem cells for severe heart failure: why and how? J Cardiovasc Transl Res 2012;5:555-65. [PMID: 22411322 DOI: 10.1007/s12265-012-9356-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
27 Agabalyan NA, Borys BS, Sparks HD, Boon K, Raharjo EW, Abbasi S, Kallos MS, Biernaskie J. Enhanced Expansion and Sustained Inductive Function of Skin-Derived Precursor Cells in Computer-Controlled Stirred Suspension Bioreactors. Stem Cells Transl Med 2017;6:434-43. [PMID: 28191777 DOI: 10.5966/sctm.2016-0133] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kehoe DE, Jing D, Lock LT, Tzanakakis ES. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A. 2010;16:405-421. [PMID: 19739936 DOI: 10.1089/ten.tea.2009.0454] [Cited by in Crossref: 184] [Cited by in F6Publishing: 149] [Article Influence: 16.7] [Reference Citation Analysis]
29 Badenes SM, Fernandes TG, Rodrigues CA, Diogo MM, Cabral JM. Scalable expansion of human-induced pluripotent stem cells in xeno-free microcarriers. Methods Mol Biol 2015;1283:23-9. [PMID: 25108454 DOI: 10.1007/7651_2014_106] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
30 Heathman TR, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy 2016;18:523-35. [DOI: 10.1016/j.jcyt.2016.01.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
31 Elseberg CL, Leber J, Salzig D, Wallrapp C, Kassem M, Kraume M, Czermak P. Microcarrier-based Expansion Process for hMSCs with High Vitality and Undifferentiated Characteristics. Int J Artif Organs 2012;35:93-107. [DOI: 10.5301/ijao.5000077] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
32 Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009;10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
33 Heathman TR, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 2015;10:49-64. [PMID: 25562352 DOI: 10.2217/rme.14.73] [Cited by in Crossref: 180] [Cited by in F6Publishing: 137] [Article Influence: 30.0] [Reference Citation Analysis]
34 Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JM. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 2009;27:342-349. [PMID: 19398140 DOI: 10.1016/j.tibtech.2009.02.009] [Cited by in Crossref: 196] [Cited by in F6Publishing: 144] [Article Influence: 16.3] [Reference Citation Analysis]
35 Benedek A, Cernica D, Mester A, Opincariu D, Hodas R, Rodean I, Keri J, Benedek T. Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. Int J Mol Sci 2019;20:E2574. [PMID: 31130624 DOI: 10.3390/ijms20102574] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
36 Bratt-Leal AM, Kepple KL, Carpenedo RL, Cooke MT, McDevitt TC. Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates. Integr Biol (Camb) 2011;3:1224-32. [PMID: 22076329 DOI: 10.1039/c1ib00064k] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.8] [Reference Citation Analysis]
37 Wang X, Chen Z, Zhou B, Duan X, Weng W, Cheng K, Wang H, Lin J. Cell-Sheet-Derived ECM Coatings and Their Effects on BMSCs Responses. ACS Appl Mater Interfaces 2018;10:11508-18. [PMID: 29564888 DOI: 10.1021/acsami.7b19718] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
38 Hossain MM, Shimizu E, Saito M, Rao SR, Yamaguchi Y, Tamiya E. Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video. Analyst 2010;135:1624-30. [PMID: 20517541 DOI: 10.1039/c0an00208a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
39 Tögel FE, Westenfelder C. Treatment of Acute Kidney Injury with Allogeneic Mesenchymal Stem Cells: Preclinical and Initial Clinical Data. Regenerative Nephrology. Elsevier; 2011. pp. 315-39. [DOI: 10.1016/b978-0-12-380928-5.10021-1] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
40 Stace ET, Dakin SG, Mouthuy P, Carr AJ. Translating Regenerative Biomaterials Into Clinical Practice: TRANSLATING BIOMATERIALS TO CLINICAL PRACTICE. J Cell Physiol 2016;231:36-49. [DOI: 10.1002/jcp.25071] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
41 Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell. 2009;5:364-377. [PMID: 19796617 DOI: 10.1016/j.stem.2009.09.004] [Cited by in Crossref: 141] [Cited by in F6Publishing: 113] [Article Influence: 11.8] [Reference Citation Analysis]
42 Woods EJ, Bagchi A, Goebel WS, Vilivalam VD, Vilivalam VD. Container system for enabling commercial production of cryopreserved cell therapy products. Regen Med 2010;5:659-67. [PMID: 20632866 DOI: 10.2217/rme.10.41] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
43 Tabata Y, Horiguchi I, Lutolf MP, Sakai Y. Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors. Biomater Sci 2014;2:176-83. [DOI: 10.1039/c3bm60183h] [Cited by in Crossref: 23] [Article Influence: 3.3] [Reference Citation Analysis]
44 Luni C, Feldman HC, Pozzobon M, De Coppi P, Meinhart CD, Elvassore N. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture. Biomicrofluidics 2010;4:034105. [PMID: 20824067 DOI: 10.1063/1.3380627] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
45 Yan X, Zhang K, Yang Y, Deng D, Lyu C, Xu H, Liu W, Du Y. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Tissue Eng Part C Methods 2020;26:263-75. [PMID: 32268824 DOI: 10.1089/ten.TEC.2020.0039] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
46 Worrallo MJ, Moore RL, Glen KE, Thomas RJ. Immobilized hematopoietic growth factors onto magnetic particles offer a scalable strategy for cell therapy manufacturing in suspension cultures. Biotechnol J 2017;12:1600493. [DOI: 10.1002/biot.201600493] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
47 Levinson Y, Beri RG, Holderness K, Ben-nun IF, Shi Y, Abraham E. Bespoke cell therapy manufacturing platforms. Biochemical Engineering Journal 2018;132:262-9. [DOI: 10.1016/j.bej.2018.01.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
48 Zaret KS. Using small molecules to great effect in stem cell differentiation. Cell Stem Cell 2009;4:373-4. [PMID: 19427285 DOI: 10.1016/j.stem.2009.04.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
49 Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, Wilson J, Dotti G, Heslop HE, Leen AM, Rooney CM. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 2010;33:305-15. [PMID: 20445351 DOI: 10.1097/CJI.0b013e3181c0c3cb] [Cited by in Crossref: 110] [Cited by in F6Publishing: 68] [Article Influence: 10.0] [Reference Citation Analysis]
50 van der Sanden B, Dhobb M, Berger F, Wion D. Optimizing stem cell culture. J Cell Biochem 2010;111:801-7. [PMID: 20803548 DOI: 10.1002/jcb.22847] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
51 Myers FB, Zarins CK, Abilez OJ, Lee LP. Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters. Lab Chip 2013;13:220-8. [PMID: 23207961 DOI: 10.1039/c2lc40905d] [Cited by in Crossref: 27] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
52 Ng KS, Smith JA, McAteer MP, Mead BE, Ware J, Jackson FO, Carter A, Ferreira L, Bure K, Rowley JA, Reeve B, Brindley DA, Karp JM. Bioprocess decision support tool for scalable manufacture of extracellular vesicles. Biotechnol Bioeng 2019;116:307-19. [PMID: 30063243 DOI: 10.1002/bit.26809] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
53 MacPherson S, Kilgour M, Lum JJ. Understanding lymphocyte metabolism for use in cancer immunotherapy. FEBS J 2018;285:2567-78. [PMID: 29611301 DOI: 10.1111/febs.14454] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
54 Myers FB, Silver JS, Zhuge Y, Beygui RE, Zarins CK, Lee LP, Abilez OJ. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning. Integr Biol (Camb) 2013;5:1495-506. [PMID: 24141327 DOI: 10.1039/c2ib20191g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
55 Fan Y, Wu J, Ashok P, Hsiung M, Tzanakakis ES. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015;11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
56 de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. Adv Biochem Eng Biotechnol 2020;171:225-78. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
57 Lambrechts T, Papantoniou I, Sonnaert M, Schrooten J, Aerts JM. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnol Bioeng 2014;111:1982-92. [PMID: 24771348 DOI: 10.1002/bit.25274] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
58 Lu H, Xie C, Zhao YM, Chen FM. Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 2013;22:205-29. [PMID: 23031442 DOI: 10.3727/096368912X656171] [Cited by in Crossref: 22] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
59 Woods EJ, Thirumala S. Packaging Considerations for Biopreservation. Transfus Med Hemother 2011;38:149-56. [PMID: 21566715 DOI: 10.1159/000326083] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
60 Tebyanian H, Karami A, Nourani MR, Motavallian E, Barkhordari A, Yazdanian M, Seifalian A. Lung tissue engineering: An update. J Cell Physiol 2019;234:19256-70. [PMID: 30972749 DOI: 10.1002/jcp.28558] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
61 Andrade PZ, dos Santos F, Cabral JM, da Silva CL. Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J Tissue Eng Regen Med 2015;9:988-1003. [PMID: 23564692 DOI: 10.1002/term.1741] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
62 Toms D, Deardon R, Ungrin M. Climbing the mountain: experimental design for the efficient optimization of stem cell bioprocessing. J Biol Eng 2017;11:35. [PMID: 29213303 DOI: 10.1186/s13036-017-0078-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
63 Kinney MA, Saeed R, McDevitt TC. Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size. Integr Biol (Camb) 2012;4:641-50. [PMID: 22609810 DOI: 10.1039/c2ib00165a] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
64 Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021;15:13. [PMID: 33849630 DOI: 10.1186/s13036-021-00264-7] [Reference Citation Analysis]
65 Subramanian K, Park Y, Verfaillie C, Hu W. Scalable expansion of multipotent adult progenitor cells as three-dimensional cell aggregates. Biotechnol Bioeng 2011;108:364-75. [DOI: 10.1002/bit.22939] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
66 Fernandes-platzgummer A, Carmelo JG, da Silva CL, Cabral JMS. Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. In: Gnecchi M, editor. Mesenchymal Stem Cells. New York: Springer; 2016. pp. 375-88. [DOI: 10.1007/978-1-4939-3584-0_22] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
67 Zhang H, Badur MG, Divakaruni AS, Parker SJ, Jäger C, Hiller K, Murphy AN, Metallo CM. Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Rep 2016;16:1536-47. [PMID: 27477285 DOI: 10.1016/j.celrep.2016.06.102] [Cited by in Crossref: 70] [Cited by in F6Publishing: 55] [Article Influence: 14.0] [Reference Citation Analysis]
68 Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. 2016;13:333-349. [PMID: 27009425 DOI: 10.1038/nrcardio.2016.36] [Cited by in Crossref: 101] [Cited by in F6Publishing: 85] [Article Influence: 20.2] [Reference Citation Analysis]
69 Qadura M, Terenzi DC, Verma S, Al-omran M, Hess DA. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies: Stem Cell Therapy for Critical Limb Ischemia. Stem Cells 2018;36:161-71. [DOI: 10.1002/stem.2751] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 25.0] [Reference Citation Analysis]
70 Sanjuan-Gimenez JC, Morales ML, Carranza-Garcia I, Pino-Zumaquero AD, Hernández-Ruiz L, Villegas E. Development and qualification of a representative scale-down model of automated Ficoll-based processing of a cell-based therapeutic according to quality by design principles. Cytotherapy 2021:S1465-3249(21)00646-0. [PMID: 34229963 DOI: 10.1016/j.jcyt.2021.04.008] [Reference Citation Analysis]
71 Andrade PZ, da Silva CL, dos Santos F, Almeida-Porada G, Cabral JM. Initial CD34+ cell-enrichment of cord blood determines hematopoietic stem/progenitor cell yield upon ex vivo expansion. J Cell Biochem 2011;112:1822-31. [PMID: 21400571 DOI: 10.1002/jcb.23099] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
72 Lane A, Philip LR, Ruban L, Fynes K, Smart M, Carr A, Mason C, Coffey P. Engineering efficient retinal pigment epithelium differentiation from human pluripotent stem cells. Stem Cells Transl Med 2014;3:1295-304. [PMID: 25273541 DOI: 10.5966/sctm.2014-0094] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
73 Carmelo JG, Fernandes-Platzgummer A, Cabral JM, da Silva CL. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. Methods Mol Biol 2015;1283:147-59. [PMID: 25063496 DOI: 10.1007/7651_2014_100] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
74 Almutawaa W, Rohani L, Rancourt DE. Expansion of Human Induced Pluripotent Stem Cells in Stirred Suspension Bioreactors. Methods Mol Biol 2016;1502:53-61. [PMID: 26786884 DOI: 10.1007/7651_2015_311] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
75 Davies BM, Rikabi S, French A, Pinedo-Villanueva R, Morrey ME, Wartolowska K, Judge A, MacLaren RE, Mathur A, Williams DJ, Wall I, Birchall M, Reeve B, Atala A, Barker RW, Cui Z, Furniss D, Bure K, Snyder EY, Karp JM, Price A, Carr A, Brindley DA. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study. J Tissue Eng 2014;5:2041731414551764. [PMID: 25383173 DOI: 10.1177/2041731414551764] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
76 Badenes SM, Fernandes TG, Rodrigues CAV, Diogo MM, Cabral JMS. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. J Biotechnol 2016;234:71-82. [PMID: 27480342 DOI: 10.1016/j.jbiotec.2016.07.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
77 Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering Stem Cell Organoids. Cell Stem Cell. 2016;18:25-38. [PMID: 26748754 DOI: 10.1016/j.stem.2015.12.005] [Cited by in Crossref: 408] [Cited by in F6Publishing: 333] [Article Influence: 81.6] [Reference Citation Analysis]
78 Salmikangas P, Menezes-ferreira M, Reischl I, Tsiftsoglou A, Kyselovic J, Borg JJ, Ruiz S, Flory E, Trouvin J, Celis P, Ancans J, Timon M, Pante G, Sladowski D, Lipnik-stangelj M, Schneider CK. Manufacturing, characterization and control of cell-based medicinal products: challenging paradigms toward commercial use. Regenerative Medicine 2015;10:65-78. [DOI: 10.2217/rme.14.65] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
79 Larijani MR, Seifinejad A, Pournasr B, Hajihoseini V, Hassani S, Totonchi M, Yousefi M, Shamsi F, Salekdeh GH, Baharvand H. Long-Term Maintenance of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells in Suspension. Stem Cells and Development 2011;20:1911-23. [DOI: 10.1089/scd.2010.0517] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
80 Jefri M, Bell S, Peng H, Hettige N, Maussion G, Soubannier V, Wu H, Silveira H, Theroux JF, Moquin L, Zhang X, Aouabed Z, Krishnan J, O'Leary LA, Antonyan L, Zhang Y, McCarty V, Mechawar N, Gratton A, Schuppert A, Durcan TM, Fon EA, Ernst C. Stimulation of L-type calcium channels increases tyrosine hydroxylase and dopamine in ventral midbrain cells induced from somatic cells. Stem Cells Transl Med 2020;9:697-712. [PMID: 32154672 DOI: 10.1002/sctm.18-0180] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
81 Lipsitz YY, Milligan WD, Fitzpatrick I, Stalmeijer E, Farid SS, Tan KY, Smith D, Perry R, Carmen J, Chen A, Mooney C, Fink J. A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 2017;19:1383-91. [PMID: 28935190 DOI: 10.1016/j.jcyt.2017.06.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 8.8] [Reference Citation Analysis]
82 Hansson EM, Lendahl U. Regenerative medicine for the treatment of heart disease. J Intern Med 2013;273:235-45. [PMID: 23331408 DOI: 10.1111/joim.12033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
83 Hassan S, Simaria AS, Varadaraju H, Gupta S, Warren K, Farid SS. Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regen Med 2015;10:591-609. [PMID: 26237703 DOI: 10.2217/rme.15.29] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 9.4] [Reference Citation Analysis]
84 Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev 2017;114:222-39. [PMID: 28625827 DOI: 10.1016/j.addr.2017.06.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 8.8] [Reference Citation Analysis]
85 Sart S, Agathos SN, Li Y. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochemical Engineering Journal 2014;84:74-82. [DOI: 10.1016/j.bej.2014.01.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
86 Salvi M, Morbiducci U, Amadeo F, Santoro R, Angelini F, Chimenti I, Massai D, Messina E, Giacomello A, Pesce M, Molinari F. Automated Segmentation of Fluorescence Microscopy Images for 3D Cell Detection in human-derived Cardiospheres. Sci Rep 2019;9:6644. [PMID: 31040327 DOI: 10.1038/s41598-019-43137-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
87 Santos FD, Andrade PZ, da Silva CL, Cabral JMS. Scaling-up Ex Vivo Expansion of Mesenchymal Stem/Stromal Cells for Cellular Therapies. In: Chase LG, Vemuri MC, editors. Mesenchymal Stem Cell Therapy. Totowa: Humana Press; 2013. pp. 1-14. [DOI: 10.1007/978-1-62703-200-1_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
88 Kempf H, Lecina M, Ting S, Zweigerdt R, Oh S. Distinct regulation of mitogen-activated protein kinase activities is coupled with enhanced cardiac differentiation of human embryonic stem cells. Stem Cell Res. 2011;7:198-209. [PMID: 21907163 DOI: 10.1016/j.scr.2011.06.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
89 Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017;58:681-6. [PMID: 28840744 DOI: 10.1080/00071668.2017.1365354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
90 Branco A, Bucar S, Moura-Sampaio J, Lilaia C, Cabral JMS, Fernandes-Platzgummer A, Lobato da Silva C. Tailored Cytokine Optimization for ex vivo Culture Platforms Targeting the Expansion of Human Hematopoietic Stem/Progenitor Cells. Front Bioeng Biotechnol 2020;8:573282. [PMID: 33330414 DOI: 10.3389/fbioe.2020.573282] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Carrondo MJ, Alves PM, Carinhas N, Glassey J, Hesse F, Merten OW, Micheletti M, Noll T, Oliveira R, Reichl U, Staby A, Teixeira AP, Weichert H, Mandenius CF. How can measurement, monitoring, modeling and control advance cell culture in industrial biotechnology? Biotechnol J 2012;7:1522-9. [PMID: 22949408 DOI: 10.1002/biot.201200226] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 3.9] [Reference Citation Analysis]
92 Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 2014;111:69-83. [PMID: 23893544 DOI: 10.1002/bit.25008] [Cited by in Crossref: 122] [Cited by in F6Publishing: 91] [Article Influence: 15.3] [Reference Citation Analysis]
93 Mao X, Liu Y, Chen C, Shi S. Mesenchymal Stem Cells and Their Role in Dental Medicine. Dent Clin North Am 2017;61:161-72. [PMID: 27912816 DOI: 10.1016/j.cden.2016.08.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
94 Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011;2011:620247. [PMID: 21904661 DOI: 10.4061/2011/620247] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
95 Ikonomou L, Kotton DN. Derivation of Endodermal Progenitors From Pluripotent Stem Cells. J Cell Physiol 2015;230:246-58. [PMID: 25160562 DOI: 10.1002/jcp.24771] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
96 Lindsay CD, Roth JG, LeSavage BL, Heilshorn SC. Bioprinting of stem cell expansion lattices. Acta Biomater 2019;95:225-35. [PMID: 31096043 DOI: 10.1016/j.actbio.2019.05.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
97 O'Connor KC. Molecular Profiles of Cell-to-Cell Variation in the Regenerative Potential of Mesenchymal Stromal Cells. Stem Cells Int 2019;2019:5924878. [PMID: 31636675 DOI: 10.1155/2019/5924878] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
98 Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020;8:620. [PMID: 32637403 DOI: 10.3389/fbioe.2020.00620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
99 Murugappan G, Carrillo-cocom LM, Johnson KE, González-barrón MT, Moreno-cuevas JE, Alvarez MM. Human hematopoietic progenitor cells grow faster under rotational laminar flows. Biotechnol Progress 2010;26:1465-73. [DOI: 10.1002/btpr.440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
100 Badenes SM, Fernandes TG, Miranda CC, Pusch-klein A, Haupt S, Rodrigues CA, Diogo MM, Brüstle O, Cabral JM. Long-term expansion of human induced pluripotent stem cells in a microcarrier-based dynamic system: Long-term expansion of hiPS cells on microcarriers. J Chem Technol Biotechnol 2017;92:492-503. [DOI: 10.1002/jctb.5074] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
101 Chilmonczyk MA, Kottke PA, Stevens HY, Guldberg RE, Fedorov AG. Dynamic mass spectrometry probe for electrospray ionization mass spectrometry monitoring of bioreactors for therapeutic cell manufacturing. Biotechnol Bioeng 2019;116:121-31. [PMID: 30199089 DOI: 10.1002/bit.26832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med. 2018;24:242-256. [PMID: 29449149 DOI: 10.1016/j.molmed.2018.01.006] [Cited by in Crossref: 113] [Cited by in F6Publishing: 99] [Article Influence: 37.7] [Reference Citation Analysis]
103 Wang Y, Wong LB, Mao H. Induction of ciliated cells from avian embryonic stem cells using three-dimensional matrix. Tissue Eng Part C Methods 2010;16:929-36. [PMID: 19951007 DOI: 10.1089/ten.TEC.2009.0327] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
104 Sharma S, Raju R, Sui S, Hu WS. Stem cell culture engineering - process scale up and beyond. Biotechnol J. 2011;6:1317-1329. [PMID: 21721127 DOI: 10.1002/biot.201000435] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
105 Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE. Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred-Suspension Bioreactors. Tissue Engineering Part C: Methods 2010;16:573-82. [DOI: 10.1089/ten.tec.2009.0228] [Cited by in Crossref: 123] [Cited by in F6Publishing: 94] [Article Influence: 11.2] [Reference Citation Analysis]
106 Talò G, Turrisi C, Arrigoni C, Recordati C, Gerges I, Tamplenizza M, Cappelluti A, Riboldi S, Moretti M. Industrialization of a perfusion bioreactor: Prime example of a non‐straightforward process. J Tissue Eng Regen Med 2018;12:405-15. [DOI: 10.1002/term.2480] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
107 Abraham E, Gupta S, Jung S, Mcafee E. Bioreactor for Scale-Up: Process Control. Mesenchymal Stromal Cells. Elsevier; 2017. pp. 139-78. [DOI: 10.1016/b978-0-12-802826-1.00006-4] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
108 Kunas KT, Papoutsakis ET, Eleftherios Terry Papoutsakis IB. Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 2009;102:977-87. [DOI: 10.1002/bit.22263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
109 Ahrlund-Richter L, De Luca M, Marshak DR, Munsie M, Veiga A, Rao M. Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 2009;4:20-6. [PMID: 19058776 DOI: 10.1016/j.stem.2008.11.012] [Cited by in Crossref: 94] [Cited by in F6Publishing: 75] [Article Influence: 7.2] [Reference Citation Analysis]
110 Reichen M, Macown RJ, Jaccard N, Super A, Ruban L, Griffin LD, Veraitch FS, Szita N. Microfabricated modular scale-down device for regenerative medicine process development. PLoS One 2012;7:e52246. [PMID: 23284952 DOI: 10.1371/journal.pone.0052246] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
111 Lee WY, Lui PP, Rui YF. Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro. Tissue Eng Part A 2012;18:484-98. [PMID: 21943340 DOI: 10.1089/ten.TEA.2011.0130] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 5.5] [Reference Citation Analysis]
112 Badenes SM, Fernandes TG, Cordeiro CS, Boucher S, Kuninger D, Vemuri MC, Diogo MM, Cabral JM. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems. PLoS One 2016;11:e0151264. [PMID: 26999816 DOI: 10.1371/journal.pone.0151264] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
113 Zhu W, Yao X, Liang Y, Liang D, Song L, Jing N, Li J, Wang G. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling. Development 2015;142:465-76. [PMID: 25564654 DOI: 10.1242/dev.112946] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
114 Bang OY, Kim EH, Cha JM, Moon GJ. Adult Stem Cell Therapy for Stroke: Challenges and Progress. J Stroke 2016;18:256-66. [PMID: 27733032 DOI: 10.5853/jos.2016.01263] [Cited by in Crossref: 60] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
115 Wolfe RP, Ahsan T. Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnol Bioeng. 2013;110:1231-1242. [PMID: 23138937 DOI: 10.1002/bit.24782] [Cited by in Crossref: 68] [Cited by in F6Publishing: 47] [Article Influence: 8.5] [Reference Citation Analysis]
116 Zwi-Dantsis L, Huber I, Habib M, Winterstern A, Gepstein A, Arbel G, Gepstein L. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J. 2013;34:1575-1586. [PMID: 22621821 DOI: 10.1093/eurheartj/ehs096] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
117 Rahman N, Brauer PM, Ho L, Usenko T, Tewary M, Zúñiga-Pflücker JC, Zandstra PW. Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nat Commun 2017;8:15380. [PMID: 28541275 DOI: 10.1038/ncomms15380] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
118 Maartens JH, De-juan-pardo E, Wunner FM, Simula A, Voelcker NH, Barry SC, Hutmacher DW. Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opinion on Biological Therapy 2017;17:1221-33. [DOI: 10.1080/14712598.2017.1360273] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
119 Weegman BP, Essawy A, Nash P, Carlson AL, Voltzke KJ, Geng Z, Jahani M, Becker BB, Papas KK, Firpo MT. Nutrient Regulation by Continuous Feeding for Large-scale Expansion of Mammalian Cells in Spheroids. J Vis Exp 2016. [PMID: 27768027 DOI: 10.3791/52224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
120 Fairchild PJ. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol 2010;10:868-75. [DOI: 10.1038/nri2878] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
121 Ten Ham RMT, Nievaart JC, Hoekman J, Cooper RS, Frederix GWJ, Leufkens HGM, Klungel OH, Ovelgönne H, Hoefnagel MHN, Turner ML, Mountford JC. Estimation of manufacturing development costs of cell-based therapies: a feasibility study. Cytotherapy 2021;23:730-9. [PMID: 33593688 DOI: 10.1016/j.jcyt.2020.12.014] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
122 Dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM. Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol. 2010;223:27-35. [PMID: 20020504 DOI: 10.1002/jcp.21987] [Cited by in Crossref: 49] [Cited by in F6Publishing: 102] [Article Influence: 4.5] [Reference Citation Analysis]
123 Gärtner A, Pereira T, Alves MG, Armada-da-Silva PA, Amorim I, Gomes R, Ribeiro J, França ML, Lopes C, Carvalho RA. Use of poly(DL-lactide-epsilon-caprolactone) membranes and mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation. 2012;84:355-365. [PMID: 23142731 DOI: 10.1016/j.diff.2012.10.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 5.2] [Reference Citation Analysis]
124 Jiang J, Wang Y, Liu B, Chen X, Zhang S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev 2018;40:612-26. [PMID: 29661589 DOI: 10.1016/j.braindev.2018.03.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
125 Stephan MT, Irvine DJ. Enhancing Cell therapies from the Outside In: Cell Surface Engineering Using Synthetic Nanomaterials. Nano Today. 2011;6:309-325. [PMID: 21826117 DOI: 10.1016/j.nantod.2011.04.001] [Cited by in Crossref: 163] [Cited by in F6Publishing: 131] [Article Influence: 16.3] [Reference Citation Analysis]
126 Stephens N, Di Silvio L, Dunsford I, Ellis M, Glencross A, Sexton A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol. 2018;78:155-166. [PMID: 30100674 DOI: 10.1016/j.tifs.2018.04.010] [Cited by in Crossref: 137] [Cited by in F6Publishing: 71] [Article Influence: 45.7] [Reference Citation Analysis]
127 Wilson PG, Devkota L, Payne T, Crisp L, Winter A, Wang Z. Clonal populations of amniotic cells by dilution and direct plating: evidence for hidden diversity. Stem Cells Int 2012;2012:485950. [PMID: 23024659 DOI: 10.1155/2012/485950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
128 Rodrigues CA, Fernandes TG, Diogo MM, da Silva CL, Cabral JM. Stem cell cultivation in bioreactors. Biotechnol Adv. 2011;29:815-829. [PMID: 21726624 DOI: 10.1016/j.biotechadv.2011.06.009] [Cited by in Crossref: 144] [Cited by in F6Publishing: 103] [Article Influence: 14.4] [Reference Citation Analysis]
129 Housler GJ, Miki T, Schmelzer E, Pekor C, Zhang X, Kang L, Voskinarian-Berse V, Abbot S, Zeilinger K, Gerlach JC. Compartmental hollow fiber capillary membrane-based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells. Tissue Eng Part C Methods 2012;18:133-42. [PMID: 21933020 DOI: 10.1089/ten.TEC.2011.0305] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
130 Lipsitz YY, Zandstra PW. Human pluripotent stem cell process parameter optimization in a small scale suspension bioreactor. BMC Proc 2015;9. [DOI: 10.1186/1753-6561-9-s9-o10] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
131 Vera JF, Brenner MK, Dotti G. Immunotherapy of human cancers using gene modified T lymphocytes. Curr Gene Ther 2009;9:396-408. [PMID: 19860654 DOI: 10.2174/156652309789753338] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
132 Liu N, Zang R, Yang S, Li Y. Stem cell engineering in bioreactors for large-scale bioprocessing. Eng Life Sci 2014;14:4-15. [DOI: 10.1002/elsc.201300013] [Cited by in Crossref: 43] [Cited by in F6Publishing: 9] [Article Influence: 5.4] [Reference Citation Analysis]
133 Fernandes TG, Rodrigues CA, Diogo MM, Cabral JM. Stem cell bioprocessing for regenerative medicine: Stem cell bioprocessing. J Chem Technol Biotechnol 2014;89:34-47. [DOI: 10.1002/jctb.4189] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
134 Lipsitz YY, Woodford C, Yin T, Hanna JH, Zandstra PW. Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc Natl Acad Sci U S A 2018;115:6369-74. [PMID: 29866848 DOI: 10.1073/pnas.1714099115] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
135 Mondragon-Teran P, Tostoes R, Mason C, Lye GJ, Veraitch FS. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells. Regen Med 2013;8:171-82. [PMID: 23477397 DOI: 10.2217/rme.13.12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
136 Ratcliffe E, Thomas RJ, Stacey AJ. Visualizing medium and biodistribution in complex cell culture bioreactors using in vivo imaging. Biotechnol Progress 2014;30:256-60. [DOI: 10.1002/btpr.1840] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
137 French A, Buckler RL, Brindley DA. Commercialization of regenerative medicine: learning from spin-outs. Rejuvenation Res 2013;16:164-70. [PMID: 23470045 DOI: 10.1089/rej.2013.1423] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
138 Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human iPSCs in Cardiovascular Research: Current Approaches in Cardiac Differentiation, Maturation Strategies, and Scalable Production. Cardiovasc Res 2021:cvab115. [PMID: 33757124 DOI: 10.1093/cvr/cvab115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Nerem RM, Schutte SC. The Challenge of Imitating Nature. Principles of Tissue Engineering. Elsevier; 2014. pp. 9-24. [DOI: 10.1016/b978-0-12-398358-9.00002-1] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
140 Kim M, Kino‐oka M. Designing a blueprint for next‐generation stem cell bioprocessing development. Biotechnology and Bioengineering 2019;117:832-43. [DOI: 10.1002/bit.27228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Scibona E, Morbidelli M. Expansion processes for cell-based therapies. Biotechnol Adv 2019;37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
142 Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther. 2013;13:673-691. [PMID: 23339745 DOI: 10.1517/14712598.2013.763925] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 7.4] [Reference Citation Analysis]
143 Ratcliffe E, Glen K, Workman V, Stacey A, Thomas R. A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture. Journal of Biotechnology 2012;161:387-90. [DOI: 10.1016/j.jbiotec.2012.06.025] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
144 Patras L, Banciu M. Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression. CPD 2019;25:1980-2006. [DOI: 10.2174/1381612825666190701143845] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
145 Macown RJ, Veraitch FS, Szita N. Robust, microfabricated culture devices with improved control over the soluble microenvironment for the culture of embryonic stem cells. Biotechnol J 2014;9:805-13. [PMID: 24677785 DOI: 10.1002/biot.201300245] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
146 Lipsitz YY, Timmins NE, Zandstra PW. Quality cell therapy manufacturing by design. Nat Biotechnol 2016;34:393-400. [DOI: 10.1038/nbt.3525] [Cited by in Crossref: 130] [Cited by in F6Publishing: 93] [Article Influence: 26.0] [Reference Citation Analysis]
147 Regenberg AC, Hutchinson LA, Schanker B, Mathews DJ. Medicine on the fringe: stem cell-based interventions in advance of evidence. Stem Cells. 2009;27:2312-2319. [PMID: 19544406 DOI: 10.1002/stem.132] [Cited by in Crossref: 90] [Cited by in F6Publishing: 62] [Article Influence: 7.5] [Reference Citation Analysis]
148 Fluri DA, Tonge PD, Song H, Baptista RP, Shakiba N, Shukla S, Clarke G, Nagy A, Zandstra PW. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods. 2012;9:509-516. [PMID: 22447133 DOI: 10.1038/nmeth.1939] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 8.9] [Reference Citation Analysis]
149 Heathman TR, Nienow AW, Rafiq QA, Coopman K, Bo Kara, Hewitt CJ. Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochemical Engineering Journal 2019;141:200-9. [DOI: 10.1016/j.bej.2018.10.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
150 Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem Biol 2014;21:16-37. [PMID: 24269151 DOI: 10.1016/j.chembiol.2013.09.010] [Cited by in Crossref: 149] [Cited by in F6Publishing: 104] [Article Influence: 18.6] [Reference Citation Analysis]
151 Childs PG, Reid S, Salmeron-Sanchez M, Dalby MJ. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem J 2020;477:3349-66. [PMID: 32941644 DOI: 10.1042/BCJ20190382] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Reichen M, Veraitch FS, Szita N. Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. J Lab Autom 2013;18:519-29. [PMID: 23970473 DOI: 10.1177/2211068213499917] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
153 Fernandes TG, Diogo MM, Fernandes-platzgummer A, da Silva CL, Cabral JM. Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell Research 2010;5:76-89. [DOI: 10.1016/j.scr.2010.04.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
154 Ratcliffe E, Hourd P, Guijarro-leach J, Rayment E, Williams DJ, Thomas RJ. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture. Regenerative Medicine 2013;8:39-48. [DOI: 10.2217/rme.12.109] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
155 Almela T, Brook IM, Moharamzadeh K. The significance of cell-related challenges in the clinical application of tissue engineering: CELL-RELATED CHANGES IN TISSUE ENGINEERING. J Biomed Mater Res 2016;104:3157-63. [DOI: 10.1002/jbm.a.35856] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
156 dos Santos FF, Andrade PZ, da Silva CL, Cabral JM. Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J 2013;8:644-54. [PMID: 23625834 DOI: 10.1002/biot.201200373] [Cited by in Crossref: 70] [Cited by in F6Publishing: 53] [Article Influence: 8.8] [Reference Citation Analysis]
157 Conway MK, Gerger MJ, Balay EE, O'Connell R, Hanson S, Daily NJ, Wakatsuki T. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System. J Vis Exp 2015;:e52755. [PMID: 26068617 DOI: 10.3791/52755] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
158 Ilic N, Savic S, Siegel E, Atkinson K, Tasic L. Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Australia: part I--a method of manual documentary analysis. Stem Cells Transl Med 2012;1:898-908. [PMID: 23283551 DOI: 10.5966/sctm.2012-0037] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
159 Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 2011;29:274-85. [PMID: 21732485 DOI: 10.1002/stem.584] [Cited by in Crossref: 176] [Cited by in F6Publishing: 163] [Article Influence: 17.6] [Reference Citation Analysis]
160 Wilson JL, Najia MA, Saeed R, McDevitt TC. Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnol Bioeng 2014;111:618-31. [PMID: 24166004 DOI: 10.1002/bit.25121] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 6.9] [Reference Citation Analysis]
161 Mondragon-Teran P, Baboo JZ, Mason C, Lye GJ, Veraitch FS. The full spectrum of physiological oxygen tensions and step-changes in oxygen tension affects the neural differentiation of mouse embryonic stem cells. Biotechnol Prog 2011;27:1700-8. [PMID: 21901864 DOI: 10.1002/btpr.675] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
162 Shafa M, Day B, Yamashita A, Meng G, Liu S, Krawetz R, Rancourt DE. Derivation of iPSCs in stirred suspension bioreactors. Nat Methods 2012;9:465-6. [PMID: 22484846 DOI: 10.1038/nmeth.1973] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
163 Hunt MM, Meng G, Rancourt DE, Gates ID, Kallos MS. Factorial Experimental Design for the Culture of Human Embryonic Stem Cells as Aggregates in Stirred Suspension Bioreactors Reveals the Potential for Interaction Effects Between Bioprocess Parameters. Tissue Engineering Part C: Methods 2014;20:76-89. [DOI: 10.1089/ten.tec.2013.0040] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 6.1] [Reference Citation Analysis]