BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res. 2014;13:202-213. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Sivalingam J, Chen HY, Yang BX, Lim ZR, Lam ATL, Woo TL, Chen AK, Reuveny S, Loh YH, Oh SK. Improved erythroid differentiation of multiple human pluripotent stem cell lines in microcarrier culture by modulation of Wnt/β-Catenin signaling. Haematologica 2018;103:e279-83. [PMID: 29519863 DOI: 10.3324/haematol.2017.180919] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
2 Higuchi A, Ling Q, Kumar SS, Chang Y, Alarfaj AA, Munusamy MA, Murugan K, Hsu S, Umezawa A. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J Mater Chem B 2015;3:8032-58. [DOI: 10.1039/c5tb01276g] [Cited by in Crossref: 51] [Article Influence: 7.3] [Reference Citation Analysis]
3 Yu D, Wang X, Ye L. Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. J Cardiovasc Dev Dis 2021;8:153. [PMID: 34821706 DOI: 10.3390/jcdd8110153] [Reference Citation Analysis]
4 Sun L, Xiong Z, Zhou W, Liu R, Yan X, Li J, An W, Yuan G, Ma G, Su Z. Novel konjac glucomannan microcarriers for anchorage-dependent animal cell culture. Biochemical Engineering Journal 2015;96:46-54. [DOI: 10.1016/j.bej.2014.12.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
5 Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development. Stem Cell Reports 2016;7:764-76. [PMID: 27641648 DOI: 10.1016/j.stemcr.2016.08.008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
6 Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F, de la Roche J, Polten F, Christoph Wollert K, Kraft T, Fischer M, Martin U, Gruh I, Kempf H, Zweigerdt R. Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports 2019;13:366-79. [PMID: 31353227 DOI: 10.1016/j.stemcr.2019.06.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
7 Aguilar JS, Begum AN, Alvarez J, Zhang XB, Hong Y, Hao J. Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules. Biochem J 2015;469:235-41. [PMID: 26171831 DOI: 10.1042/BJ20150186] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
8 Schwedhelm I, Zdzieblo D, Appelt-Menzel A, Berger C, Schmitz T, Schuldt B, Franke A, Müller FJ, Pless O, Schwarz T, Wiedemann P, Walles H, Hansmann J. Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors. Sci Rep 2019;9:12297. [PMID: 31444389 DOI: 10.1038/s41598-019-48814-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
9 Soma Y, Morita Y, Kishino Y, Kanazawa H, Fukuda K, Tohyama S. The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Front Cardiovasc Med 2021;8:774389. [PMID: 34957258 DOI: 10.3389/fcvm.2021.774389] [Reference Citation Analysis]
10 Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019;6:E48. [PMID: 31137703 DOI: 10.3390/bioengineering6020048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
11 Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
12 Kropp C, Kempf H, Halloin C, Robles-Diaz D, Franke A, Scheper T, Kinast K, Knorpp T, Joos TO, Haverich A, Martin U, Zweigerdt R, Olmer R. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors. Stem Cells Transl Med. 2016;5:1289-1301. [PMID: 27369897 DOI: 10.5966/sctm.2015-0253] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 14.0] [Reference Citation Analysis]
13 Riehl BD, Donahue HJ, Lim JY. Fluid Flow Control of Stem Cells With Investigation of Mechanotransduction Pathways. Biology and Engineering of Stem Cell Niches. Elsevier; 2017. pp. 257-72. [DOI: 10.1016/b978-0-12-802734-9.00017-2] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
14 Borys BS, So T, Colter J, Dang T, Roberts EL, Revay T, Larijani L, Krawetz R, Lewis I, Argiropoulos B, Rancourt DE, Jung S, Hashimura Y, Lee B, Kallos MS. Optimized serial expansion of human induced pluripotent stem cells using low-density inoculation to generate clinically relevant quantities in vertical-wheel bioreactors. Stem Cells Transl Med 2020;9:1036-52. [PMID: 32445290 DOI: 10.1002/sctm.19-0406] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 2015;10:1345-61. [PMID: 26270394 DOI: 10.1038/nprot.2015.089] [Cited by in Crossref: 95] [Cited by in F6Publishing: 84] [Article Influence: 13.6] [Reference Citation Analysis]
16 Tsai AC, Liu Y, Yuan X, Chella R, Ma T. Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol J 2017;12. [PMID: 27996210 DOI: 10.1002/biot.201600448] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
17 Koh CH, Wu J, Chung YY, Liu Z, Zhang RR, Chong K, Korzh V, Ting S, Oh S, Shim W, Tian HY, Wei H. Identification of Na+/K+-ATPase inhibition-independent proarrhythmic ionic mechanisms of cardiac glycosides. Sci Rep 2017;7:2465. [PMID: 28550304 DOI: 10.1038/s41598-017-02496-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
18 Janaszak M, Wolfe R, Ahsan T. Biomechanics in Stem Cell Manufacturing. Stem Cell Manufacturing. Elsevier; 2016. pp. 27-42. [DOI: 10.1016/b978-0-444-63265-4.00002-9] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020;8:599674. [PMID: 33324625 DOI: 10.3389/fbioe.2020.599674] [Reference Citation Analysis]
20 Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol Bioeng 2017;114:2253-66. [PMID: 28627713 DOI: 10.1002/bit.26359] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
21 Badenes SM, Fernandes TG, Rodrigues CAV, Diogo MM, Cabral JMS. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. J Biotechnol 2016;234:71-82. [PMID: 27480342 DOI: 10.1016/j.jbiotec.2016.07.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
22 Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Cited by in Crossref: 71] [Cited by in F6Publishing: 62] [Article Influence: 10.1] [Reference Citation Analysis]
23 Tsai Y, Cutts J, Kimura A, Varun D, Brafman DA. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Stem Cell Research 2015;15:75-87. [DOI: 10.1016/j.scr.2015.05.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
24 Samaras JJ, Micheletti M, Ducci A. Suspension and Mixing Characterization of Intermittent Agitation Modes in DASGIP Bioreactors. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900069] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human iPSCs in Cardiovascular Research: Current Approaches in Cardiac Differentiation, Maturation Strategies, and Scalable Production. Cardiovasc Res 2021:cvab115. [PMID: 33757124 DOI: 10.1093/cvr/cvab115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Davis BM, Loghin ER, Conway KR, Zhang X. Automated Closed-System Expansion of Pluripotent Stem Cell Aggregates in a Rocking-Motion Bioreactor. SLAS Technol 2018;23:364-73. [PMID: 29481762 DOI: 10.1177/2472630318760745] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kahn-Krell A, Pretorius D, Ou J, Fast VG, Litovsky S, Berry J, Liu XM, Zhang J. Bioreactor Suspension Culture: Differentiation and Production of Cardiomyocyte Spheroids From Human Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2021;9:674260. [PMID: 34178964 DOI: 10.3389/fbioe.2021.674260] [Reference Citation Analysis]
28 Samaras JJ, Abecasis B, Serra M, Ducci A, Micheletti M. Impact of hydrodynamics on iPSC-derived cardiomyocyte differentiation processes. Journal of Biotechnology 2018;287:18-27. [DOI: 10.1016/j.jbiotec.2018.07.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Higuchi A, Suresh Kumar S, Ling Q, Alarfaj AA, Munusamy MA, Murugan K, Hsu S, Benelli G, Umezawa A. Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science 2017;65:83-126. [DOI: 10.1016/j.progpolymsci.2016.09.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
30 Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019;25:775-90. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
31 Sivalingam J, Lam AT, Chen HY, Yang BX, Chen AK, Reuveny S, Loh YH, Oh SK. Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform. Tissue Eng Part C Methods 2016;22:765-80. [PMID: 27392822 DOI: 10.1089/ten.TEC.2015.0579] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
32 Hamad S, Derichsweiler D, Papadopoulos S, Nguemo F, Šarić T, Sachinidis A, Brockmeier K, Hescheler J, Boukens BJ, Pfannkuche K. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 2019;9:7222-38. [PMID: 31695764 DOI: 10.7150/thno.32058] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
33 Liao S, Zhang Y, Ting S, Zhen Z, Luo F, Zhu Z, Jiang Y, Sun S, Lai WH, Lian Q, Tse HF. Potent immunomodulation and angiogenic effects of mesenchymal stem cells versus cardiomyocytes derived from pluripotent stem cells for treatment of heart failure. Stem Cell Res Ther 2019;10:78. [PMID: 30845990 DOI: 10.1186/s13287-019-1183-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
34 Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 2015;15:365-75. [PMID: 26318718 DOI: 10.1016/j.scr.2015.08.002] [Cited by in Crossref: 102] [Cited by in F6Publishing: 95] [Article Influence: 14.6] [Reference Citation Analysis]
35 Di Baldassarre A, Cimetta E, Bollini S, Gaggi G, Ghinassi B. Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells. 2018;7. [PMID: 29799480 DOI: 10.3390/cells7060048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
36 Torizal FG, Horiguchi I, Sakai Y. Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. TOBEJ 2019;13:41-54. [DOI: 10.2174/1874120701913010041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
37 Raimes W, Rubi M, Super A, Marques MPC, Veraitch F, Szita N. Transfection in perfused microfluidic cell culture devices: A case study. Process Biochem 2017;59:297-302. [PMID: 28989299 DOI: 10.1016/j.procbio.2016.09.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
38 Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021;9:658088. [PMID: 34055788 DOI: 10.3389/fcell.2021.658088] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Branco MA, Cabral JMS, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020;7:E92. [PMID: 32785039 DOI: 10.3390/bioengineering7030092] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Laco F, Lam AT, Woo TL, Tong G, Ho V, Soong PL, Grishina E, Lin KH, Reuveny S, Oh SK. Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor. Stem Cell Res Ther 2020;11:118. [PMID: 32183888 DOI: 10.1186/s13287-020-01618-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
41 Higashi K, Miki N. Hydrogel Fiber Cultivation Method for Forming Bacterial Cellulose Microspheres. Micromachines (Basel) 2018;9:E36. [PMID: 30393309 DOI: 10.3390/mi9010036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
42 Rivera-Ordaz A, Peli V, Manzini P, Barilani M, Lazzari L. Critical Analysis of cGMP Large-Scale Expansion Process in Bioreactors of Human Induced Pluripotent Stem Cells in the Framework of Quality by Design. BioDrugs 2021;35:693-714. [PMID: 34727354 DOI: 10.1007/s40259-021-00503-9] [Reference Citation Analysis]
43 Ting S, Lam A, Tong G, Chen A, Wei H, Wu J, Lam YN, Reuveny S, Oh S. Meticulous optimization of cardiomyocyte yields in a 3-stage continuous integrated agitation bioprocess. Stem Cell Research 2018;31:161-73. [DOI: 10.1016/j.scr.2018.07.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
44 Dunn KK, Palecek SP. Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Front Med (Lausanne) 2018;5:110. [PMID: 29740580 DOI: 10.3389/fmed.2018.00110] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
45 Myu Mai Ja KP, Lim KP, Chen A, Ting S, Li SQ, Tee N, Ramachandra C, Mehta A, Wong P, Oh S, Shim W. Construction of a vascularized hydrogel for cardiac tissue formation in a porcine model. J Tissue Eng Regen Med 2018;12:e2029-38. [PMID: 29266858 DOI: 10.1002/term.2634] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
46 Tohyama S, Fujita J, Fujita C, Yamaguchi M, Kanaami S, Ohno R, Sakamoto K, Kodama M, Kurokawa J, Kanazawa H, Seki T, Kishino Y, Okada M, Nakajima K, Tanosaki S, Someya S, Hirano A, Kawaguchi S, Kobayashi E, Fukuda K. Efficient Large-Scale 2D Culture System for Human Induced Pluripotent Stem Cells and Differentiated Cardiomyocytes. Stem Cell Reports 2017;9:1406-14. [PMID: 28988990 DOI: 10.1016/j.stemcr.2017.08.025] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
47 Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018;9:201. [PMID: 30053890 DOI: 10.1186/s13287-018-0947-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
48 Branco MA, Dias TP, Cotovio JP, Rodrigues CAV, Fernandes TG, Cabral JMS, Diogo MM. 3D Microwell Platform for Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Methods Mol Biol 2020. [PMID: 33145715 DOI: 10.1007/7651_2020_336] [Reference Citation Analysis]
49 Richardson T, Wiegand C, Adisa F, Ravikumar K, Candiello J, Kumta P, Banerjee I. Engineered peptide modified hydrogel platform for propagation of human pluripotent stem cells. Acta Biomater 2020;113:228-39. [PMID: 32603868 DOI: 10.1016/j.actbio.2020.06.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
50 Feng L, Liang S, Zhou Y, Luo Y, Chen R, Huang Y, Chen Y, Xu M, Yao R. Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomater Sci Eng 2020;6:2995-3004. [DOI: 10.1021/acsbiomaterials.9b01825] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
51 Lam AT, Chen AK, Ting SQ, Reuveny S, Oh SK. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures. Biochem Biophys Res Commun 2016;473:764-8. [PMID: 26385176 DOI: 10.1016/j.bbrc.2015.09.079] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
52 Chen ACH, Lee KF, Yeung WSB, Lee YL. Human embryonic stem cells as an in vitro model for studying developmental origins of type 2 diabetes. World J Stem Cells 2020; 12(8): 761-775 [PMID: 32952857 DOI: 10.4252/wjsc.v12.i8.761] [Reference Citation Analysis]
53 Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS Appl Bio Mater 2018;1:193-209. [DOI: 10.1021/acsabm.8b00057] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
54 Kulvinskiene I, Aldonyte R, Miksiunas R, Mobasheri A, Bironaite D. Biomatrices for Heart Regeneration and Cardiac Tissue Modelling In Vitro. Adv Exp Med Biol 2020;1298:43-77. [PMID: 32592155 DOI: 10.1007/5584_2020_564] [Reference Citation Analysis]