BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Materials Science and Engineering: C 2020;113:111008. [DOI: 10.1016/j.msec.2020.111008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Tao F, Ma S, Tao H, Jin L, Luo Y, Zheng J, Xiang W, Deng H. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment - A review. Carbohydr Polym 2021;251:117063. [PMID: 33142615 DOI: 10.1016/j.carbpol.2020.117063] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
2 Firmanda A, Syamsu K, Sari YW, Cabral J, Pletzer D, Mahadik B, Fisher J, Fahma F. 3D printed cellulose based product applications. Mater Chem Front 2022;6:254-79. [DOI: 10.1039/d1qm00390a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lai Z, Ye J, Xiong J. Energy transfer processes and structure of carboxymethyl cellulose-Tb/Eu nanocomplexes with color-tunable photoluminescence. Carbohydr Polym 2021;271:118386. [PMID: 34364585 DOI: 10.1016/j.carbpol.2021.118386] [Reference Citation Analysis]
4 Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021;:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Reference Citation Analysis]
5 Benwood C, Chrenek J, Kirsch RL, Masri NZ, Richards H, Teetzen K, Willerth SM. Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering (Basel) 2021;8:27. [PMID: 33672626 DOI: 10.3390/bioengineering8020027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
6 Janarthanan G, Lee S, Noh I. 3D Printing of Bioinspired Alginate‐Albumin Based Instant Gel Ink with Electroconductivity and Its Expansion to Direct Four‐Axis Printing of Hollow Porous Tubular Constructs without Supporting Materials. Adv Funct Materials 2021;31:2104441. [DOI: 10.1002/adfm.202104441] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Mallakpour S, Tukhani M, Hussain CM. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Adv Colloid Interface Sci 2021;292:102415. [PMID: 33892215 DOI: 10.1016/j.cis.2021.102415] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 16.0] [Reference Citation Analysis]
8 Zhao D, Wang X, Cheng B, Yin M, Hou Z, Li X, Liu K, Tie C, Yin M. Degradation-Kinetics-Controllable and Tissue-Regeneration-Matchable Photocross-linked Alginate Hydrogels for Bone Repair. ACS Appl Mater Interfaces 2022;14:21886-905. [PMID: 35507922 DOI: 10.1021/acsami.2c01739] [Reference Citation Analysis]
9 Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Additive Manufacturing 2021;37:101639. [DOI: 10.1016/j.addma.2020.101639] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
10 Cafiso D, Septevani AA, Noè C, Schiller T, Pirri CF, Roppolo I, Chiappone A. 3D printing of fully cellulose-based hydrogels by digital light processing. Sustainable Materials and Technologies 2022. [DOI: 10.1016/j.susmat.2022.e00444] [Reference Citation Analysis]
11 Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021;13:1345. [PMID: 33924089 DOI: 10.3390/polym13081345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Chen B, Wu S, Ye Q. Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohydr Polym 2021;259:117707. [PMID: 33673987 DOI: 10.1016/j.carbpol.2021.117707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021;10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 17.0] [Reference Citation Analysis]
14 Shahbazi M, Jäger H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS Appl Bio Mater 2021;4:325-69. [DOI: 10.1021/acsabm.0c01379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
15 Markovic MD, Seslija SI, Ugrinovic VD, Kunaver M, Panic VV, Pjanovic RV, Spasojevic PM. Green pH- and magnetic-responsive hybrid hydrogels based on poly(methacrylic acid) and Eucalyptus wood nanocellulose for controlled release of ibuprofen. Cellulose 2021;28:11109-32. [DOI: 10.1007/s10570-021-04222-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang X, Qi J, Zhang W, Pu Y, Yang R, Wang P, Liu S, Tan X, Chi B. 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair. Int J Biol Macromol 2021;187:91-104. [PMID: 34298048 DOI: 10.1016/j.ijbiomac.2021.07.115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]