BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sandri M. Autophagy in skeletal muscle. FEBS Letters 2010;584:1411-6. [DOI: 10.1016/j.febslet.2010.01.056] [Cited by in Crossref: 296] [Cited by in F6Publishing: 285] [Article Influence: 26.9] [Reference Citation Analysis]
Number Citing Articles
1 Biga PR, Latimer MN, Froehlich JM, Gabillard JC, Seiliez I. Distribution of H3K27me3, H3K9me3, and H3K4me3 along autophagy-related genes highly expressed in starved zebrafish myotubes. Biol Open 2017;6:1720-5. [PMID: 29025701 DOI: 10.1242/bio.029090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
2 Seiliez I, Gabillard J, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 2014;8:364-75. [DOI: 10.4161/auto.18863] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
3 Chang YC, Liu HW, Chen YT, Chen YA, Chen YJ, Chang SJ. Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux. J Food Drug Anal 2018;26:1066-74. [PMID: 29976399 DOI: 10.1016/j.jfda.2018.01.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
4 Tsutsumi R, Horikawa YT, Kume K, Tanaka K, Kasai A, Kadota T, Tsutsumi YM. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis. JPEN J Parenter Enteral Nutr 2015;39:552-61. [PMID: 24492312 DOI: 10.1177/0148607114520993] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
5 Rashid MM, Runci A, Polletta L, Carnevale I, Morgante E, Foglio E, Arcangeli T, Sansone L, Russo MA, Tafani M. Muscle LIM protein/CSRP3: a mechanosensor with a role in autophagy. Cell Death Discov 2015;1:15014. [PMID: 27551448 DOI: 10.1038/cddiscovery.2015.14] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
6 Rossetti ML, Steiner JL, Gordon BS. Androgen-mediated regulation of skeletal muscle protein balance. Mol Cell Endocrinol 2017;447:35-44. [PMID: 28237723 DOI: 10.1016/j.mce.2017.02.031] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
7 Kumar A, Bhatnagar S, Paul PK. TWEAK and TRAF6 regulate skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 2012;15:233-9. [PMID: 22366923 DOI: 10.1097/MCO.0b013e328351c3fc] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 6.8] [Reference Citation Analysis]
8 Shin JE, Park SJ, Ahn SI, Choung SY. Soluble Whey Protein Hydrolysate Ameliorates Muscle Atrophy Induced by Immobilization via Regulating the PI3K/Akt Pathway in C57BL/6 Mice. Nutrients 2020;12:E3362. [PMID: 33139592 DOI: 10.3390/nu12113362] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Kalamgi RC, Larsson L. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Front Physiol 2016;7:23. [PMID: 26869939 DOI: 10.3389/fphys.2016.00023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
10 Gang Q, Bettencourt C, Machado PM, Brady S, Holton JL, Pittman AM, Hughes D, Healy E, Parton M, Hilton-Jones D, Shieh PB, Needham M, Liang C, Zanoteli E, de Camargo LV, De Paepe B, De Bleecker J, Shaibani A, Ripolone M, Violano R, Moggio M, Barohn RJ, Dimachkie MM, Mora M, Mantegazza R, Zanotti S, Singleton AB, Hanna MG, Houlden H; Muscle Study Group and The International IBM Genetics Consortium. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiol Aging 2016;47:218.e1-9. [PMID: 27594680 DOI: 10.1016/j.neurobiolaging.2016.07.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
11 Rodrigues AM, Christen B, Martí M, Izpisúa Belmonte JC. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. BMC Dev Biol 2012;12:9. [PMID: 22369050 DOI: 10.1186/1471-213X-12-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
12 Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 2016;98:103-12. [PMID: 27184957 DOI: 10.1016/j.freeradbiomed.2016.05.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
13 Kimura A, Ishida Y, Inagaki M, Nakamura Y, Sanke T, Mukaida N, Kondo T. Interferon-γ is protective in cisplatin-induced renal injury by enhancing autophagic flux. Kidney International 2012;82:1093-104. [DOI: 10.1038/ki.2012.240] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
14 McClung JM, McCord TJ, Ryan TE, Schmidt CA, Green TD, Southerland KW, Reinardy JL, Mueller SB, Venkatraman TN, Lascola CD, Keum S, Marchuk DA, Spangenburg EE, Dokun A, Annex BH, Kontos CD. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy. Circulation 2017;136:281-96. [PMID: 28442482 DOI: 10.1161/CIRCULATIONAHA.116.024873] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
15 Joseph AM, Joanisse DR, Baillot RG, Hood DA. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res 2012;2012:642038. [PMID: 22203837 DOI: 10.1155/2012/642038] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 6.4] [Reference Citation Analysis]
16 Sato S, Ogura Y, Kumar A. TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol 2014;5:18. [PMID: 24478779 DOI: 10.3389/fimmu.2014.00018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
17 Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021;10:1054. [PMID: 33946883 DOI: 10.3390/cells10051054] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
18 Zhang J, He J, Johnson JL, Napolitano G, Ramadass M, Rahman F, Catz SD. Cross-regulation of defective endolysosome trafficking and enhanced autophagy through TFEB in UNC13D deficiency. Autophagy 2019;15:1738-56. [PMID: 30892133 DOI: 10.1080/15548627.2019.1596475] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
19 Goldberg AA, Nkengfac B, Sanchez AMJ, Moroz N, Qureshi ST, Koromilas AE, Wang S, Burelle Y, Hussain SN, Kristof AS. Regulation of ULK1 Expression and Autophagy by STAT1. J Biol Chem 2017;292:1899-909. [PMID: 28011640 DOI: 10.1074/jbc.M116.771584] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
20 Matsakas A, Macharia R, Otto A, Elashry MI, Mouisel E, Romanello V, Sartori R, Amthor H, Sandri M, Narkar V, Patel K. Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse: Myostatin and exercise. Experimental Physiology 2012;97:125-40. [DOI: 10.1113/expphysiol.2011.063008] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
21 Qi Z, He Q, Ji L, Ding S. Antioxidant supplement inhibits skeletal muscle constitutive autophagy rather than fasting-induced autophagy in mice. Oxid Med Cell Longev 2014;2014:315896. [PMID: 25028602 DOI: 10.1155/2014/315896] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
22 Jaśkiewicz A, Pająk B, Litwiniuk A, Urbańska K, Orzechowski A. Geranylgeraniol Prevents Statin-Dependent Myotoxicity in C2C12 Muscle Cells through RAP1 GTPase Prenylation and Cytoprotective Autophagy. Oxid Med Cell Longev 2018;2018:6463807. [PMID: 29951166 DOI: 10.1155/2018/6463807] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
23 Fiacco E, Castagnetti F, Bianconi V, Madaro L, De Bardi M, Nazio F, D'Amico A, Bertini E, Cecconi F, Puri PL, Latella L. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 2016;23:1839-49. [PMID: 27447110 DOI: 10.1038/cdd.2016.70] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 12.0] [Reference Citation Analysis]
24 Wei B, Dui W, Liu D, Xing Y, Yuan Z, Ji G. MST1, a key player, in enhancing fast skeletal muscle atrophy. BMC Biol 2013;11:12. [PMID: 23374633 DOI: 10.1186/1741-7007-11-12] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.8] [Reference Citation Analysis]
25 Grumati P, Bonaldo P. Autophagy in skeletal muscle homeostasis and in muscular dystrophies. Cells 2012;1:325-45. [PMID: 24710479 DOI: 10.3390/cells1030325] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
26 de Theije CC, Schols AMWJ, Lamers WH, Neumann D, Köhler SE, Langen RCJ. Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One 2018;13:e0203630. [PMID: 30212583 DOI: 10.1371/journal.pone.0203630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 2011;1:9. [PMID: 21798088 DOI: 10.1186/2044-5040-1-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 7.3] [Reference Citation Analysis]
28 Zhuang P, Zhang J, Wang Y, Zhang M, Song L, Lu Z, Zhang L, Zhang F, Wang J, Zhang Y, Wei H, Li H. Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia. Support Care Cancer 2016;24:1189-98. [DOI: 10.1007/s00520-015-2892-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
29 Pizon V, Rybina S, Gerbal F, Delort F, Vicart P, Baldacci G, Karsenti E. MURF2B, a novel LC3-binding protein, participates with MURF2A in the switch between autophagy and ubiquitin proteasome system during differentiation of C2C12 muscle cells. PLoS One 2013;8:e76140. [PMID: 24124537 DOI: 10.1371/journal.pone.0076140] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
30 Kuleesha Y, Puah WC, Wasser M. Live imaging of muscle histolysis in Drosophila metamorphosis. BMC Dev Biol 2016;16:12. [PMID: 27141974 DOI: 10.1186/s12861-016-0113-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
31 Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019;10:948. [PMID: 31681409 DOI: 10.3389/fgene.2019.00948] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
32 Desgeorges MM, Freyssenet D, Chanon S, Castells J, Pugnière P, Béchet D, Peinnequin A, Devillard X, Defour A. Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration. The International Journal of Biochemistry & Cell Biology 2014;54:208-16. [DOI: 10.1016/j.biocel.2014.07.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
33 de Theije CC, Langen RC, Lamers WH, Gosker HR, Schols AM, Köhler SE. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. J Appl Physiol (1985) 2015;118:200-11. [PMID: 25429096 DOI: 10.1152/japplphysiol.00624.2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
34 Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018;19:356-69. [PMID: 30065611 DOI: 10.2174/1389202919666180101153911] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
35 Huang J, Wang J, Gu L, Bao J, Yin J, Tang Z, Wang L, Yuan W. Effect of a low-protein diet supplemented with ketoacids on skeletal muscle atrophy and autophagy in rats with type 2 diabetic nephropathy. PLoS One 2013;8:e81464. [PMID: 24303049 DOI: 10.1371/journal.pone.0081464] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
36 Jaishy B, Abel ED. Lipids, lysosomes, and autophagy. J Lipid Res 2016;57:1619-35. [PMID: 27330054 DOI: 10.1194/jlr.R067520] [Cited by in Crossref: 99] [Cited by in F6Publishing: 64] [Article Influence: 19.8] [Reference Citation Analysis]
37 de Theije CC, Langen RC, Lamers WH, Schols AM, Köhler SE. Distinct responses of protein turnover regulatory pathways in hypoxia- and semistarvation-induced muscle atrophy. Am J Physiol Lung Cell Mol Physiol 2013;305:L82-91. [PMID: 23624791 DOI: 10.1152/ajplung.00354.2012] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
38 Bloemberg D, Quadrilatero J. Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. Am J Physiol Cell Physiol 2019;317:C111-30. [PMID: 31017800 DOI: 10.1152/ajpcell.00261.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
39 Sadoul B, Vijayan MM. Stress and Growth. Biology of Stress in Fish - Fish Physiology. Elsevier; 2016. pp. 167-205. [DOI: 10.1016/b978-0-12-802728-8.00005-9] [Cited by in Crossref: 41] [Article Influence: 8.2] [Reference Citation Analysis]
40 Conte E, Bresciani E, Rizzi L, Cappellari O, De Luca A, Torsello A, Liantonio A. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int J Mol Sci 2020;21:E1242. [PMID: 32069876 DOI: 10.3390/ijms21041242] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
41 Kim YA, Kim YS, Song W. Autophagic response to a single bout of moderate exercise in murine skeletal muscle. J Physiol Biochem 2012;68:229-35. [PMID: 22205581 DOI: 10.1007/s13105-011-0135-x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 4.1] [Reference Citation Analysis]
42 Kou X, Li J, Liu X, Yang X, Fan J, Chen N. Ampelopsin attenuates the atrophy of skeletal muscle from d-gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade. Biomed Pharmacother 2017;90:311-20. [PMID: 28364603 DOI: 10.1016/j.biopha.2017.03.070] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
43 Chang NC, Nguyen M, Bourdon J, Risse PA, Martin J, Danialou G, Rizzuto R, Petrof BJ, Shore GC. Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Hum Mol Genet. 2012;21:2277-2287. [PMID: 22343142 DOI: 10.1093/hmg/dds048] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 7.7] [Reference Citation Analysis]
44 Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle 2016;7:204-12. [PMID: 27493873 DOI: 10.1002/jcsm.12045] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 9.8] [Reference Citation Analysis]
45 Campbell TL, Mitchell AS, McMillan EM, Bloemberg D, Pavlov D, Messa I, Mielke JG, Quadrilatero J. High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle. Exp Biol Med (Maywood) 2015;240:657-68. [PMID: 25361772 DOI: 10.1177/1535370214557223] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
46 Pigna E, Greco E, Morozzi G, Grottelli S, Rotini A, Minelli A, Fulle S, Adamo S, Mancinelli R, Bellezza I, Moresi V. Denervation does not Induce Muscle Atrophy Through Oxidative Stress. Eur J Transl Myol 2017;27:6406. [PMID: 28458807 DOI: 10.4081/ejtm.2017.6406] [Cited by in Crossref: 9] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
47 Burattini S, Salucci S, Baldassarri V, Accorsi A, Piatti E, Madrona A, Espartero JL, Candiracci M, Zappia G, Falcieri E. Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food and Chemical Toxicology 2013;55:248-56. [DOI: 10.1016/j.fct.2012.12.049] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.1] [Reference Citation Analysis]
48 Vaughan VC, Martin P, Lewandowski PA. Cancer cachexia: impact, mechanisms and emerging treatments. J Cachexia Sarcopenia Muscle. 2013;4:95-109. [PMID: 23097000 DOI: 10.1007/s13539-012-0087-1] [Cited by in Crossref: 102] [Cited by in F6Publishing: 102] [Article Influence: 11.3] [Reference Citation Analysis]
49 Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014;588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
50 Marino FE, Risbridger G, Gold E. Activin-βC modulates cachexia by repressing the ubiquitin-proteasome and autophagic degradation pathways. J Cachexia Sarcopenia Muscle 2015;6:365-80. [PMID: 26673867 DOI: 10.1002/jcsm.12031] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
51 Chen CN, Graber TG, Bratten WM, Ferrington DA, Thompson LV. Immunoproteasome in animal models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2014;35:191-201. [PMID: 24934129 DOI: 10.1007/s10974-014-9385-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
52 Wang H, Wilson GJ, Zhou D, Lezmi S, Chen X, Layman DK, Pan Y. Induction of autophagy through the activating transcription factor 4 (ATF4)-dependent amino acid response pathway in maternal skeletal muscle may function as the molecular memory in response to gestational protein restriction to alert offspring to maternal nutrition. Br J Nutr 2015;114:519-32. [DOI: 10.1017/s0007114515002172] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
53 Rehman ZU, Blumbergs P, Swift J, Otto S, Smith C, Koszyca B, Manavis J, Limaye V. A novel ultrastructural finding in statin-exposed patients with inflammatory myositis. Pathology 2016;48:747-50. [PMID: 27956275 DOI: 10.1016/j.pathol.2016.08.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
54 Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294-4314. [PMID: 23517348 DOI: 10.1111/febs.12253] [Cited by in Crossref: 688] [Cited by in F6Publishing: 636] [Article Influence: 86.0] [Reference Citation Analysis]
55 Han S, Cui C, He H, Shen X, Chen Y, Wang Y, Li D, Zhu Q, Yin H. FHL1 regulates myoblast differentiation and autophagy through its interaction with LC3. J Cell Physiol 2020;235:4667-78. [DOI: 10.1002/jcp.29345] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
56 Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016;2:140-55. [PMID: 30775480 DOI: 10.1016/j.afos.2016.06.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
57 Erlich AT, Brownlee DM, Beyfuss K, Hood DA. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner. Am J Physiol Cell Physiol 2018;314:C62-72. [PMID: 29046293 DOI: 10.1152/ajpcell.00162.2017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
58 Li Y, Wang S, Ni HM, Huang H, Ding WX. Autophagy in alcohol-induced multiorgan injury: mechanisms and potential therapeutic targets. Biomed Res Int 2014;2014:498491. [PMID: 25140315 DOI: 10.1155/2014/498491] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
59 Chen D, Liu J, Lu L, Huang Y, Wang Y, Wang M, Liu Y, Xie D, Chen J, Diao J, Wei L, Wang M. Emodin attenuates TNF-α-induced apoptosis and autophagy in mouse C2C12 myoblasts though the phosphorylation of Akt. International Immunopharmacology 2016;34:107-13. [DOI: 10.1016/j.intimp.2016.02.023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
60 Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L. RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. Skelet Muscle 2019;9:9. [PMID: 30992050 DOI: 10.1186/s13395-019-0194-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
61 Shen L, Meng X, Zhang Z, Wang T. Physical Exercise for Muscle Atrophy. Adv Exp Med Biol 2018;1088:529-45. [PMID: 30390268 DOI: 10.1007/978-981-13-1435-3_24] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
62 Kaur N, Gupta P, Saini V, Sherawat S, Gupta S, Dua A, Kumar V, Injeti E, Mittal A. Cinnamaldehyde regulates H2 O 2 -induced skeletal muscle atrophy by ameliorating the proteolytic and antioxidant defense systems. J Cell Physiol 2019;234:6194-208. [PMID: 30317570 DOI: 10.1002/jcp.27348] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
63 Batistela E, Pereira MP, Siqueira JT, Paula-gomes S, Zanon NM, Oliveira EB, Navegantes LCC, Kettelhut IC, Andrade CMB, Kawashita NH, Baviera AM. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin–proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet. Can J Physiol Pharmacol 2014;92:445-54. [DOI: 10.1139/cjpp-2013-0290] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
64 Hentilä J, Nissinen TA, Korkmaz A, Lensu S, Silvennoinen M, Pasternack A, Ritvos O, Atalay M, Hulmi JJ. Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver. Front Physiol 2018;9:1917. [PMID: 30713500 DOI: 10.3389/fphys.2018.01917] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
65 Yamamoto J, Kamata S, Miura A, Nagata T, Kainuma R, Ishii I. Differential adaptive responses to 1- or 2-day fasting in various mouse tissues revealed by quantitative PCR analysis. FEBS Open Bio 2015;5:357-68. [PMID: 25973363 DOI: 10.1016/j.fob.2015.04.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
66 Theije CD, Costes F, Langen RC, Pison C, Gosker HR. Hypoxia and muscle maintenance regulation: implications for chronic respiratory disease. Current Opinion in Clinical Nutrition and Metabolic Care 2011;14:548-53. [DOI: 10.1097/mco.0b013e32834b6e79] [Cited by in Crossref: 30] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
67 Mooren FC, Krüger K. Exercise, Autophagy, and Apoptosis. Prog Mol Biol Transl Sci 2015;135:407-22. [PMID: 26477924 DOI: 10.1016/bs.pmbts.2015.07.023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
68 Belghit I, Panserat S, Sadoul B, Dias K, Skiba-Cassy S, Seiliez I. Macronutrient composition of the diet affects the feeding-mediated down regulation of autophagy in muscle of rainbow trout (O. mykiss). PLoS One 2013;8:e74308. [PMID: 24069294 DOI: 10.1371/journal.pone.0074308] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
69 Cid-Díaz T, Santos-Zas I, González-Sánchez J, Gurriarán-Rodríguez U, Mosteiro CS, Casabiell X, García-Caballero T, Mouly V, Pazos Y, Camiña JP. Obestatin controls the ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced muscle cell atrophy. J Cachexia Sarcopenia Muscle 2017;8:974-90. [PMID: 28675664 DOI: 10.1002/jcsm.12222] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
70 Smuder AJ, Kavazis AN, Min K, Powers SK. Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J Appl Physiol (1985). 2013;115:176-185. [PMID: 23703114 DOI: 10.1152/japplphysiol.00924.2012] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 5.5] [Reference Citation Analysis]
71 Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof B, Sandri M, Burelle Y, Hussain SN. Autophagy and skeletal muscles in sepsis. PLoS One 2012;7:e47265. [PMID: 23056618 DOI: 10.1371/journal.pone.0047265] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 8.8] [Reference Citation Analysis]
72 Tang Y, Wang H, Wei B, Guo Y, Gu L, Yang Z, Zhang Q, Wu Y, Yuan Q, Zhao G, Ji G. CUG-BP1 regulates RyR1 ASI alternative splicing in skeletal muscle atrophy. Sci Rep 2015;5:16083. [PMID: 26531141 DOI: 10.1038/srep16083] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
73 Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA. Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 2012;303:E31-9. [PMID: 22395111 DOI: 10.1152/ajpendo.00609.2011] [Cited by in Crossref: 134] [Cited by in F6Publishing: 125] [Article Influence: 14.9] [Reference Citation Analysis]
74 Argilés JM, Fontes-Oliveira CC, Toledo M, López-Soriano FJ, Busquets S. Cachexia: a problem of energetic inefficiency. J Cachexia Sarcopenia Muscle 2014;5:279-86. [PMID: 25118829 DOI: 10.1007/s13539-014-0154-x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 7.4] [Reference Citation Analysis]
75 Sato Y, Ohtsubo H, Nihei N, Kaneko T, Sato Y, Adachi SI, Kondo S, Nakamura M, Mizunoya W, Iida H, Tatsumi R, Rada C, Yoshizawa F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle. FASEB J 2018;32:1428-39. [PMID: 29127187 DOI: 10.1096/fj.201700493R] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
76 Torraco A, Carrozzo R, Piemonte F, Pastore A, Tozzi G, Verrigni D, Assenza M, Orecchioni A, D'egidio A, Marraffa E, Landoni G, Bertini E, Morelli A. Effects of levosimendan on mitochondrial function in patients with septic shock: A randomized trial. Biochimie 2014;102:166-73. [DOI: 10.1016/j.biochi.2014.03.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
77 Lijie G, Yueyue Z, Nan Z, Ling W, Xuan W, Weijie Y. Mitsugumin 53 promotes mitochondrial autophagy through regulating Ambra1 expression in C2C12 myoblast cells. Cell Biol Int 2019;43:290-8. [PMID: 30614598 DOI: 10.1002/cbin.11097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
78 Nakashima K, Ishida A. Regulation of Autophagy in Chick Myotubes: Effects of Insulin, Insulin-Like Growth Factor-I, and Amino Acids. J Poult Sci 2018;55:257-62. [PMID: 32055183 DOI: 10.2141/jpsa.0170196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Sato T, Ito Y, Nedachi T, Nagasawa T. Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes. Mol Cell Biochem 2014;391:37-46. [PMID: 24532005 DOI: 10.1007/s11010-014-1984-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
80 Hong Y, Kim J, Jin Y, Lee S, Park K, Lee Y, Chang K, Hong Y. Melatonin treatment combined with treadmill exercise accelerates muscular adaptation through early inhibition of CHOP-mediated autophagy in the gastrocnemius of rats with intra-articular collagenase-induced knee laxity. J Pineal Res 2014;56:175-88. [DOI: 10.1111/jpi.12110] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
81 Hong J, Park JS, Lee H, Jeong J, Hyeon Yun H, Yun Kim H, Ko YG, Lee JH. Myosin heavy chain is stabilized by BCL-2 interacting cell death suppressor (BIS) in skeletal muscle. Exp Mol Med 2016;48:e225. [PMID: 27034027 DOI: 10.1038/emm.2016.2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
82 Li D, Vogel P, Li-Harms X, Wang B, Kundu M. ATG14 and RB1CC1 play essential roles in maintaining muscle homeostasis. Autophagy 2021;:1-10. [PMID: 33794726 DOI: 10.1080/15548627.2021.1911549] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Zhang S, Li X, Li L, Yan X. Autophagy up-regulation by early weaning in the liver, spleen and skeletal muscle of piglets. Br J Nutr 2011;106:213-7. [PMID: 21521548 DOI: 10.1017/S0007114511001000] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
84 Jiang D, Chen K, Lu X, Gao HJ, Qin ZH, Lin F. Exercise ameliorates the detrimental effect of chloroquine on skeletal muscles in mice via restoring autophagy flux. Acta Pharmacol Sin 2014;35:135-42. [PMID: 24335841 DOI: 10.1038/aps.2013.144] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
85 Hirunsai M, Srikuea R. Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sci 2021;275:119352. [PMID: 33771521 DOI: 10.1016/j.lfs.2021.119352] [Reference Citation Analysis]
86 Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm Genome 2016;27:341-57. [PMID: 27215643 DOI: 10.1007/s00335-016-9643-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
87 Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 2013;45:83-7. [PMID: 23222957 DOI: 10.1038/ng.2497] [Cited by in Crossref: 165] [Cited by in F6Publishing: 153] [Article Influence: 18.3] [Reference Citation Analysis]
88 Wiedmer P, Jung T, Castro JP, Pomatto LCD, Sun PY, Davies KJA, Grune T. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021;65:101200. [PMID: 33130247 DOI: 10.1016/j.arr.2020.101200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
89 Perera S, Mankoo B, Gautel M. Developmental regulation of MURF E3 ubiquitin ligases in skeletal muscle. J Muscle Res Cell Motil 2012;33:107-22. [PMID: 22426552 DOI: 10.1007/s10974-012-9288-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
90 Qi Z, Zhai X, Ding S. How to explain exercise-induced phenotype from molecular data: rethink and reconstruction based on AMPK and mTOR signaling. Springerplus 2013;2:693. [PMID: 24404437 DOI: 10.1186/2193-1801-2-693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
91 Iovino S, Oriente F, Botta G, Cabaro S, Iovane V, Paciello O, Viggiano D, Perruolo G, Formisano P, Beguinot F. PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation. Cell Death Differ 2012;19:1127-38. [PMID: 22281705 DOI: 10.1038/cdd.2011.201] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
92 Vainshtein A, Grumati P, Sandri M, Bonaldo P. Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease. J Mol Med (Berl) 2014;92:127-37. [PMID: 24271008 DOI: 10.1007/s00109-013-1096-z] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 7.6] [Reference Citation Analysis]
93 Zhou H, Pu S, Zhou H, Guo Y. Klotho as Potential Autophagy Regulator and Therapeutic Target. Front Pharmacol 2021;12:755366. [PMID: 34737707 DOI: 10.3389/fphar.2021.755366] [Reference Citation Analysis]
94 Sachdev U, Cui X, Hong G, Namkoong S, Karlsson JM, Baty CJ, Tzeng E. High mobility group box 1 promotes endothelial cell angiogenic behavior in vitro and improves muscle perfusion in vivo in response to ischemic injury. J Vasc Surg 2012;55:180-91. [PMID: 21944908 DOI: 10.1016/j.jvs.2011.07.072] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 5.6] [Reference Citation Analysis]
95 Dave DT, Patel BM. Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target. Curr Drug Metab 2019;20:1141-53. [PMID: 31418657 DOI: 10.2174/1389200220666190816162658] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
96 Lin PH, Duann P, Komazaki S, Park KH, Li H, Sun M, Sermersheim M, Gumpper K, Parrington J, Galione A, Evans AM, Zhu MX, Ma J. Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem 2015;290:3377-89. [PMID: 25480788 DOI: 10.1074/jbc.M114.608471] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
97 Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021;22:e52507. [PMID: 34309183 DOI: 10.15252/embr.202152507] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
98 Zhang JZ, Gao Y, Lu QP, Sa RN, Zhang HF. iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes. J Zhejiang Univ Sci B 2015;16:465-78. [PMID: 26055908 DOI: 10.1631/jzus.B1400266] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
99 Hampton M, Melvin RG, Kendall AH, Kirkpatrick BR, Peterson N, Andrews MT. Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal. PLoS One 2011;6:e27021. [PMID: 22046435 DOI: 10.1371/journal.pone.0027021] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 7.1] [Reference Citation Analysis]
100 Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 2010;191:1395-411. [PMID: 21187332 DOI: 10.1083/jcb.201006098] [Cited by in Crossref: 153] [Cited by in F6Publishing: 149] [Article Influence: 15.3] [Reference Citation Analysis]
101 Fisher FM, Maratos-flier E. Stress heats up the adipocyte. Nat Med 2013;19:17-8. [DOI: 10.1038/nm.3058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
102 Ching JK, Ju JS, Pittman SK, Margeta M, Weihl CC. Increased autophagy accelerates colchicine-induced muscle toxicity. Autophagy 2014;9:2115-25. [DOI: 10.4161/auto.26150] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
103 Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. CMC 2020;27:2161-88. [DOI: 10.2174/0929867326666181129095309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
104 Wu H, Jang J, Dridi S, Ferrando AA, Wolfe RR, Kim IY, Baum JI. Net protein balance correlates with expression of autophagy, mitochondrial biogenesis, and fat metabolism-related genes in skeletal muscle from older adults. Physiol Rep 2020;8:e14575. [PMID: 33063954 DOI: 10.14814/phy2.14575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
105 Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125:85-93. [PMID: 25654554 DOI: 10.1172/jci73946] [Cited by in Crossref: 266] [Cited by in F6Publishing: 153] [Article Influence: 44.3] [Reference Citation Analysis]
106 Halon-Golabek M, Borkowska A, Herman-Antosiewicz A, Antosiewicz J. Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Front Neurosci 2019;13:165. [PMID: 30949015 DOI: 10.3389/fnins.2019.00165] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
107 Davegårdh C, Hall Wedin E, Broholm C, Henriksen TI, Pedersen M, Pedersen BK, Scheele C, Ling C. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther 2019;10:26. [PMID: 30646953 DOI: 10.1186/s13287-018-1118-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
108 Carbone JW, McClung JP, Pasiakos SM. Skeletal muscle responses to negative energy balance: effects of dietary protein. Adv Nutr 2012;3:119-26. [PMID: 22516719 DOI: 10.3945/an.111.001792] [Cited by in Crossref: 74] [Cited by in F6Publishing: 58] [Article Influence: 8.2] [Reference Citation Analysis]
109 Mofarrahi M, Guo Y, Haspel JA, Choi AM, Davis EC, Gouspillou G, Hepple RT, Godin R, Burelle Y, Hussain SN. Autophagic flux and oxidative capacity of skeletal muscles during acute starvation. Autophagy 2013;9:1604-20. [PMID: 23955121 DOI: 10.4161/auto.25955] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
110 Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle. 2012;3:163-179. [PMID: 22673968 DOI: 10.1007/s13539-012-0074-6] [Cited by in Crossref: 164] [Cited by in F6Publishing: 157] [Article Influence: 18.2] [Reference Citation Analysis]
111 Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 2015;6:6670. [PMID: 25858807 DOI: 10.1038/ncomms7670] [Cited by in Crossref: 304] [Cited by in F6Publishing: 293] [Article Influence: 50.7] [Reference Citation Analysis]
112 Pigna E, Renzini A, Greco E, Simonazzi E, Fulle S, Mancinelli R, Moresi V, Adamo S. HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses. Skelet Muscle 2018;8:6. [PMID: 29477142 DOI: 10.1186/s13395-018-0153-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
113 Minassian BA, Kalimo H. Autophagy in neuropathology. Acta Neuropathol 2015;129:333-5. [PMID: 25648862 DOI: 10.1007/s00401-015-1396-1] [Reference Citation Analysis]
114 Shen S, Liao Q, Liu J, Pan R, Lee SM, Lin L. Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle 2019;10:429-44. [PMID: 30793539 DOI: 10.1002/jcsm.12393] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
115 Webster JM, Kempen LJAP, Hardy RS, Langen RCJ. Inflammation and Skeletal Muscle Wasting During Cachexia. Front Physiol 2020;11:597675. [PMID: 33329046 DOI: 10.3389/fphys.2020.597675] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 18.0] [Reference Citation Analysis]
116 Goode JM, Pearen MA, Tuong ZK, Wang SC, Oh TG, Shao EX, Muscat GE. The Nuclear Receptor, Nor-1, Induces the Physiological Responses Associated With Exercise. Mol Endocrinol 2016;30:660-76. [PMID: 27144290 DOI: 10.1210/me.2015-1300] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
117 Serra C, Sandor NL, Jang H, Lee D, Toraldo G, Guarneri T, Wong S, Zhang A, Guo W, Jasuja R, Bhasin S. The effects of testosterone deprivation and supplementation on proteasomal and autophagy activity in the skeletal muscle of the male mouse: differential effects on high-androgen responder and low-androgen responder muscle groups. Endocrinology 2013;154:4594-606. [PMID: 24105483 DOI: 10.1210/en.2013-1004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
118 Couch ME, Dittus K, Toth MJ, Willis MS, Guttridge DC, George JR, Chang EY, Gourin CG, Der-Torossian H. Cancer cachexia update in head and neck cancer: Pathophysiology and treatment. Head Neck 2015;37:1057-72. [PMID: 24634283 DOI: 10.1002/hed.23696] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
119 Kishta OA, Guo Y, Mofarrahi M, Stana F, Lands LC, Hussain SNA. Pulmonary Pseudomonas aeruginosa infection induces autophagy and proteasome proteolytic pathways in skeletal muscles: effects of a pressurized whey protein-based diet in mice. Food Nutr Res 2017;61:1325309. [PMID: 28659735 DOI: 10.1080/16546628.2017.1325309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
120 Han S, Cui C, He H, Shen X, Chen Y, Wang Y, Li D, Zhu Q, Yin H. Myoferlin Regulates Wnt/β-Catenin Signaling-Mediated Skeletal Muscle Development by Stabilizing Dishevelled-2 Against Autophagy. Int J Mol Sci 2019;20:E5130. [PMID: 31623157 DOI: 10.3390/ijms20205130] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
121 Kwon I, Lee Y, Cosio-Lima LM, Cho JY, Yeom DC. Effects of long-term resistance exercise training on autophagy in rat skeletal muscle of chloroquine-induced sporadic inclusion body myositis. J Exerc Nutrition Biochem 2015;19:225-34. [PMID: 26525066 DOI: 10.5717/jenb.2015.15090710] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
122 Drummond MJ, Addison O, Brunker L, Hopkins PN, McClain DA, LaStayo PC, Marcus RL. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 2014;69:1040-8. [PMID: 24526667 DOI: 10.1093/gerona/glu004] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 10.3] [Reference Citation Analysis]
123 Doerr V, Montalvo RN, Kwon OS, Talbert EE, Hain BA, Houston FE, Smuder AJ. Prevention of Doxorubicin-Induced Autophagy Attenuates Oxidative Stress and Skeletal Muscle Dysfunction. Antioxidants (Basel) 2020;9:E263. [PMID: 32210013 DOI: 10.3390/antiox9030263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
124 Nemazanyy I, Blaauw B, Paolini C, Caillaud C, Protasi F, Mueller A, Proikas-Cezanne T, Russell RC, Guan KL, Nishino I, Sandri M, Pende M, Panasyuk G. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol Med 2013;5:870-90. [PMID: 23630012 DOI: 10.1002/emmm.201202057] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 8.1] [Reference Citation Analysis]
125 Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Pond A, Grim-Stieger M, Cvecka J, Sedliak M, Tirpáková V, Mayr W, Sarabon N, Rossini K, Barberi L, De Rossi M, Romanello V, Boncompagni S, Musarò A, Sandri M, Protasi F, Carraro U, Kern H. Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci 2015;70:163-73. [PMID: 24550352 DOI: 10.1093/gerona/glu006] [Cited by in Crossref: 127] [Cited by in F6Publishing: 141] [Article Influence: 18.1] [Reference Citation Analysis]
126 Memme JM, Slavin M, Moradi N, Hood DA. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse. Int J Mol Sci 2021;22:5179. [PMID: 34068411 DOI: 10.3390/ijms22105179] [Reference Citation Analysis]
127 Jang YC, Rodriguez K, Lustgarten MS, Muller FL, Bhattacharya A, Pierce A, Choi JJ, Lee NH, Chaudhuri A, Richardson AG, Van Remmen H. Superoxide-mediated oxidative stress accelerates skeletal muscle atrophy by synchronous activation of proteolytic systems. Geroscience 2020;42:1579-91. [PMID: 32451848 DOI: 10.1007/s11357-020-00200-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
128 Abadir P, Ko F, Marx R, Powell L, Kieserman E, Yang H, Walston J. Co-Localization of Macrophage Inhibitory Factor and Nix in Skeletal Muscle of the Aged Male Interleukin 10 Null Mouse. J Frailty Aging 2017;6:118-21. [PMID: 28721426 DOI: 10.14283/jfa.2017.18] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
129 Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L. Reconsidering the Role of Mitochondria in Aging. J Gerontol A Biol Sci Med Sci 2015;70:1334-42. [PMID: 25995290 DOI: 10.1093/gerona/glv070] [Cited by in Crossref: 127] [Cited by in F6Publishing: 116] [Article Influence: 21.2] [Reference Citation Analysis]
130 De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E. Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 2012;3:e418. [PMID: 23152054 DOI: 10.1038/cddis.2012.159] [Cited by in Crossref: 145] [Cited by in F6Publishing: 140] [Article Influence: 16.1] [Reference Citation Analysis]
131 Schwalm C, Jamart C, Benoit N, Naslain D, Prémont C, Prévet J, Van Thienen R, Deldicque L, Francaux M. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. The FASEB Journal 2015;29:3515-26. [DOI: 10.1096/fj.14-267187] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 13.8] [Reference Citation Analysis]
132 Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell 2019;18:e12876. [PMID: 30430746 DOI: 10.1111/acel.12876] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 19.0] [Reference Citation Analysis]
133 Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, Zentilin L, Filigheddu N, Gortan Cappellari G, Baldini G, Zweyer M, Barazzoni R, Graziani A, Zacchigna S, Giacca M. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun 2015;6:7388. [PMID: 26066847 DOI: 10.1038/ncomms8388] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
134 Zhou G, Gui X, Chen R, Fu X, Ji X, Ding H. Elevated serum Activin A in chronic obstructive pulmonary disease with skeletal muscle wasting. Clinics (Sao Paulo) 2019;74:e981. [PMID: 31271588 DOI: 10.6061/clinics/2019/e981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
135 Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid Med Cell Longev 2018;2018:2063179. [PMID: 29785242 DOI: 10.1155/2018/2063179] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 25.0] [Reference Citation Analysis]
136 Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, Naranian T, Paroutis P, Guo R, Ren Z, Nishino I, Chabrol B, Pellissier J, Minetti C, Udd B, Fardeau M, Tailor CS, Mahuran DJ, Kissel JT, Kalimo H, Levy N, Manolson MF, Ackerley CA, Minassian BA. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol 2013;125:439-57. [DOI: 10.1007/s00401-012-1073-6] [Cited by in Crossref: 90] [Cited by in F6Publishing: 83] [Article Influence: 11.3] [Reference Citation Analysis]
137 Timpani CA, Hayes A, Rybalka E. Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015;85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 10.8] [Reference Citation Analysis]
138 Bernardini C, Censi F, Lattanzi W, Barba M, Calcagnini G, Giuliani A, Tasca G, Sabatelli M, Ricci E, Michetti F. Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS One 2013;8:e57739. [PMID: 23469062 DOI: 10.1371/journal.pone.0057739] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
139 Parrington J, Tunn R. Ca(2+) signals, NAADP and two-pore channels: role in cellular differentiation. Acta Physiol (Oxf). 2014;211:285-296. [PMID: 24702694 DOI: 10.1111/apha.12298] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
140 Ljubicic V, Jasmin BJ. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med 2013;19:614-24. [PMID: 23891277 DOI: 10.1016/j.molmed.2013.07.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
141 Suryawan A, Davis TA. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J Anim Sci Biotechnol 2014;5:8. [PMID: 24438646 DOI: 10.1186/2049-1891-5-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
142 Wang D, Sun H, Song G, Yang Y, Zou X, Han P, Li S. Resveratrol Improves Muscle Atrophy by Modulating Mitochondrial Quality Control in STZ-Induced Diabetic Mice. Mol Nutr Food Res 2018;62:e1700941. [PMID: 29578301 DOI: 10.1002/mnfr.201700941] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 5.7] [Reference Citation Analysis]
143 Ferraro E, Giammarioli AM, Caldarola S, Lista P, Feraco A, Tinari A, Salvatore AM, Malorni W, Berghella L, Rosano G. The metabolic modulator trimetazidine triggers autophagy and counteracts stress-induced atrophy in skeletal muscle myotubes. FEBS J 2013;280:5094-108. [PMID: 23953053 DOI: 10.1111/febs.12484] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
144 Fritzen AM, Frøsig C, Jeppesen J, Jensen TE, Lundsgaard A, Serup AK, Schjerling P, Proud CG, Richter EA, Kiens B. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling 2016;28:663-74. [DOI: 10.1016/j.cellsig.2016.03.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
145 Jamart C, Benoit N, Raymackers JM, Kim HJ, Kim CK, Francaux M. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise. Eur J Appl Physiol 2012;112:3173-7. [PMID: 22194006 DOI: 10.1007/s00421-011-2287-3] [Cited by in Crossref: 74] [Cited by in F6Publishing: 66] [Article Influence: 7.4] [Reference Citation Analysis]
146 Scott BR, Slattery KM, Sculley DV, Dascombe BJ. Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Med. 2014;44:1037-1054. [PMID: 24715613 DOI: 10.1007/s40279-014-0177-7] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 10.8] [Reference Citation Analysis]
147 Sebastián D, Zorzano A. Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism. Dev Cell 2020;54:268-81. [PMID: 32693059 DOI: 10.1016/j.devcel.2020.06.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
148 Hindi SM, Sato S, Choi Y, Kumar A. Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet 2014;23:1492-505. [PMID: 24163132 DOI: 10.1093/hmg/ddt536] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
149 Smith SJ, Fabian L, Sheikh A, Noche R, Cui X, Moore SA, Dowling JJ. Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2021:ddab278. [PMID: 34568901 DOI: 10.1093/hmg/ddab278] [Reference Citation Analysis]
150 Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019;286:379-98. [PMID: 29239106 DOI: 10.1111/febs.14358] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
151 Schaaf GJ, Canibano-Fraile R, van Gestel TJM, van der Ploeg AT, Pijnappel WWMP. Restoring the regenerative balance in neuromuscular disorders: satellite cell activation as therapeutic target in Pompe disease. Ann Transl Med 2019;7:280. [PMID: 31392192 DOI: 10.21037/atm.2019.04.48] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Rezzani R, Stacchiotti A, Rodella LF. Morphological and biochemical studies on aging and autophagy. Ageing Research Reviews 2012;11:10-31. [DOI: 10.1016/j.arr.2011.09.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
153 Balasubramaniam S, Riley LG, Vasudevan A, Cowley MJ, Gayevskiy V, Sue CM, Edwards C, Edkins E, Junckerstorff R, Kiraly-Borri C, Rowe P, Christodoulou J. EPG5-Related Vici Syndrome: A Primary Defect of Autophagic Regulation with an Emerging Phenotype Overlapping with Mitochondrial Disorders. JIMD Rep 2018;42:19-29. [PMID: 29159459 DOI: 10.1007/8904_2017_71] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
154 Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, Green AE, Kemp BE, Hawke TJ, Schertzer JD, Steinberg GR. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 2015;21:883-90. [PMID: 26039451 DOI: 10.1016/j.cmet.2015.05.016] [Cited by in Crossref: 121] [Cited by in F6Publishing: 112] [Article Influence: 24.2] [Reference Citation Analysis]
155 Files DC, Sanchez MA, Morris PE. A conceptual framework: the early and late phases of skeletal muscle dysfunction in the acute respiratory distress syndrome. Crit Care 2015;19:266. [PMID: 26134116 DOI: 10.1186/s13054-015-0979-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
156 Tam BT, Siu PM. Autophagic Cellular Responses to Physical Exercise in Skeletal Muscle. Sports Med 2014;44:625-40. [DOI: 10.1007/s40279-013-0140-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
157 Kuleesha Y, Puah WC, Wasser M. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis. R Soc Open Sci 2016;3:150517. [PMID: 26998322 DOI: 10.1098/rsos.150517] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
158 Bohnert KR, Gallot YS, Sato S, Xiong G, Hindi SM, Kumar A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB J 2016;30:3053-68. [PMID: 27206451 DOI: 10.1096/fj.201600250RR] [Cited by in Crossref: 62] [Cited by in F6Publishing: 46] [Article Influence: 12.4] [Reference Citation Analysis]
159 Lőw P, Varga Á, Pircs K, Nagy P, Szatmári Z, Sass M, Juhász G. Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol 2013;14:29. [PMID: 23800266 DOI: 10.1186/1471-2121-14-29] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
160 Park J, Choi JH, Kim S, Jang I, Jeong S, Lee JY. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Acta Biomaterialia 2019;97:141-53. [DOI: 10.1016/j.actbio.2019.07.044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 16.0] [Reference Citation Analysis]
161 Kim YA, Kim YS, Oh SL, Kim H, Song W. Autophagic response to exercise training in skeletal muscle with age. J Physiol Biochem 2013;69:697-705. [DOI: 10.1007/s13105-013-0246-7] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 7.6] [Reference Citation Analysis]
162 Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, Pellegrino MA. The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 2012;590:5211-30. [PMID: 22848045 DOI: 10.1113/jphysiol.2012.240267] [Cited by in Crossref: 104] [Cited by in F6Publishing: 102] [Article Influence: 11.6] [Reference Citation Analysis]
163 Madaro L, Marrocco V, Carnio S, Sandri M, Bouché M. Intracellular signaling in ER stress-induced autophagy in skeletal muscle cells. FASEB J 2013;27:1990-2000. [PMID: 23388382 DOI: 10.1096/fj.12-215475] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
164 Hussain SN, Sandri M. Role of autophagy in COPD skeletal muscle dysfunction. J Appl Physiol (1985) 2013;114:1273-81. [PMID: 23085958 DOI: 10.1152/japplphysiol.00893.2012] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
165 Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 2011;23:1896-906. [PMID: 21821120 DOI: 10.1016/j.cellsig.2011.07.013] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 11.4] [Reference Citation Analysis]
166 Hentilä J, Ahtiainen JP, Paulsen G, Raastad T, Häkkinen K, Mero AA, Hulmi JJ. Autophagy is induced by resistance exercise in young men, but unfolded protein response is induced regardless of age. Acta Physiol (Oxf) 2018;224:e13069. [PMID: 29608242 DOI: 10.1111/apha.13069] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
167 Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, Chan LW, Wong CS, Siu PM. Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. Acta Physiol (Oxf) 2014;211:201-13. [PMID: 24581239 DOI: 10.1111/apha.12263] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
168 Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci. 2013;126:5325-5333. [PMID: 24293330 DOI: 10.1242/jcs.114041] [Cited by in Crossref: 129] [Cited by in F6Publishing: 124] [Article Influence: 18.4] [Reference Citation Analysis]
169 Seiliez I, Vélez EJ, Lutfi E, Dias K, Plagnes-juan E, Marandel L, Panserat S, Geurden I, Skiba-cassy S. Eating for two: Consequences of parental methionine nutrition on offspring metabolism in rainbow trout (Oncorhynchus mykiss). Aquaculture 2017;471:80-91. [DOI: 10.1016/j.aquaculture.2017.01.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
170 Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiol Rev 2014;94:519-608. [PMID: 24692355 DOI: 10.1152/physrev.00021.2013] [Cited by in Crossref: 201] [Cited by in F6Publishing: 194] [Article Influence: 28.7] [Reference Citation Analysis]
171 Smuder AJ, Sollanek KJ, Nelson WB, Min K, Talbert EE, Kavazis AN, Hudson MB, Sandri M, Szeto HH, Powers SK. Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation. Free Radic Biol Med 2018;115:179-90. [PMID: 29197632 DOI: 10.1016/j.freeradbiomed.2017.11.025] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 14.5] [Reference Citation Analysis]
172 Wannenes F, Magni L, Bonini M, Dimauro I, Caporossi D, Moretti C, Bonini S. In vitro effects of Beta-2 agonists on skeletal muscle differentiation, hypertrophy, and atrophy. World Allergy Organ J 2012;5:66-72. [PMID: 23283108 DOI: 10.1097/WOX.0b013e31825eff8b] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
173 Ko F, Abadir P, Marx R, Westbrook R, Cooke C, Yang H, Walston J. Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 10 null mouse. Exp Gerontol 2016;73:23-7. [PMID: 26596403 DOI: 10.1016/j.exger.2015.11.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
174 Philp A, Hamilton DL, Baar K. Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol (1985) 2011;110:561-8. [PMID: 21071597 DOI: 10.1152/japplphysiol.00941.2010] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 6.5] [Reference Citation Analysis]
175 Tajrishi MM, Sato S, Shin J, Zheng TS, Burkly LC, Kumar A. The TWEAK-Fn14 dyad is involved in age-associated pathological changes in skeletal muscle. Biochem Biophys Res Commun 2014;446:1219-24. [PMID: 24680686 DOI: 10.1016/j.bbrc.2014.03.084] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
176 Castets P, Ham DJ, Rüegg MA. The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player? Front Mol Neurosci 2020;13:162. [PMID: 32982690 DOI: 10.3389/fnmol.2020.00162] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
177 Overturf K, Barrows FT, Hardy RW, Brezas A, Dumas A. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhynchus mykiss). Aquaculture 2016;457:1-14. [DOI: 10.1016/j.aquaculture.2016.02.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
178 Guo Y, Gosker HR, Schols AM, Kapchinsky S, Bourbeau J, Sandri M, Jagoe RT, Debigaré R, Maltais F, Taivassalo T, Hussain SN. Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013;188:1313-20. [PMID: 24228729 DOI: 10.1164/rccm.201304-0732OC] [Cited by in Crossref: 69] [Cited by in F6Publishing: 40] [Article Influence: 9.9] [Reference Citation Analysis]
179 Jung WS, Kim SW, Kim JW, Park HY. Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021;11:106. [PMID: 33573198 DOI: 10.3390/life11020106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Barbiera A, Sorrentino S, Lepore E, Carfì A, Sica G, Dobrowolny G, Scicchitano BM. Taurine Attenuates Catabolic Processes Related to the Onset of Sarcopenia. Int J Mol Sci 2020;21:E8865. [PMID: 33238549 DOI: 10.3390/ijms21228865] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Pauly M, Daussin F, Burelle Y, Li T, Godin R, Fauconnier J, Koechlin-Ramonatxo C, Hugon G, Lacampagne A, Coisy-Quivy M. AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol. 2012;181:583-592. [PMID: 22683340 DOI: 10.1016/j.ajpath.2012.04.004] [Cited by in Crossref: 147] [Cited by in F6Publishing: 142] [Article Influence: 16.3] [Reference Citation Analysis]
182 Keipert S, Ost M, Johann K, Imber F, Jastroch M, van Schothorst EM, Keijer J, Klaus S. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. American Journal of Physiology-Endocrinology and Metabolism 2014;306:E469-82. [DOI: 10.1152/ajpendo.00330.2013] [Cited by in Crossref: 123] [Cited by in F6Publishing: 121] [Article Influence: 17.6] [Reference Citation Analysis]
183 Johnson AE, Shu H, Hauswirth AG, Tong A, Davis GW. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. Elife 2015;4. [PMID: 26167652 DOI: 10.7554/eLife.07366] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
184 Lawrence MM, Van Pelt DW, Confides AL, Hunt ER, Hettinger ZR, Laurin JL, Reid JJ, Peelor FF 3rd, Butterfield TA, Dupont-Versteegden EE, Miller BF. Massage as a mechanotherapy promotes skeletal muscle protein and ribosomal turnover but does not mitigate muscle atrophy during disuse in adult rats. Acta Physiol (Oxf) 2020;229:e13460. [PMID: 32125770 DOI: 10.1111/apha.13460] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
185 Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018;9:235. [PMID: 29615929 DOI: 10.3389/fphys.2018.00235] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 29.3] [Reference Citation Analysis]
186 Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121-2129. [PMID: 23665154 DOI: 10.1016/j.biocel.2013.04.023] [Cited by in Crossref: 350] [Cited by in F6Publishing: 335] [Article Influence: 43.8] [Reference Citation Analysis]
187 Rahman M, Mofarrahi M, Kristof AS, Nkengfac B, Harel S, Hussain SN. Reactive oxygen species regulation of autophagy in skeletal muscles. Antioxid Redox Signal 2014;20:443-59. [PMID: 24180497 DOI: 10.1089/ars.2013.5410] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 9.9] [Reference Citation Analysis]
188 Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle Mass. Front Cell Dev Biol 2021;9:636498. [PMID: 33718372 DOI: 10.3389/fcell.2021.636498] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Bertaggia E, Coletto L, Sandri M. Posttranslational modifications control FoxO3 activity during denervation. American Journal of Physiology-Cell Physiology 2012;302:C587-96. [DOI: 10.1152/ajpcell.00142.2011] [Cited by in Crossref: 79] [Cited by in F6Publishing: 70] [Article Influence: 8.8] [Reference Citation Analysis]
190 VanderVeen BN, Fix DK, Carson JA. Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation. Oxid Med Cell Longev 2017;2017:3292087. [PMID: 28785374 DOI: 10.1155/2017/3292087] [Cited by in Crossref: 77] [Cited by in F6Publishing: 75] [Article Influence: 19.3] [Reference Citation Analysis]
191 Yoo YM, Jung EM, Jeung EB. Rapamycin-induced autophagy decreases Myf5 and MyoD proteins in C2C12 myoblast cells. Toxicol In Vitro 2019;58:132-41. [PMID: 30905858 DOI: 10.1016/j.tiv.2019.03.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
192 Durbeej M. Laminin-α2 Chain-Deficient Congenital Muscular Dystrophy: Pathophysiology and Development of Treatment. Curr Top Membr 2015;76:31-60. [PMID: 26610911 DOI: 10.1016/bs.ctm.2015.05.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
193 Smuder AJ, Kavazis AN, Min K, Powers SK. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol (1985) 2011;111:1190-8. [PMID: 21778418 DOI: 10.1152/japplphysiol.00429.2011] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 7.8] [Reference Citation Analysis]
194 Puah WC, Wasser M. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis. Methods 2016;96:103-17. [PMID: 26431669 DOI: 10.1016/j.ymeth.2015.09.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
195 Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, Penna F, Rizzuto E, Pisu S, Musarò A, Costelli P, Rosano G, Ferraro E. The mitochondrial metabolic reprogramming agent trimetazidine as an 'exercise mimetic' in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle 2017;8:954-73. [PMID: 29130633 DOI: 10.1002/jcsm.12226] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 8.5] [Reference Citation Analysis]
196 Smith HK, Matthews KG, Oldham JM, Jeanplong F, Falconer SJ, Bass JJ, Senna-Salerno M, Bracegirdle JW, McMahon CD. Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS One 2014;9:e94356. [PMID: 24718581 DOI: 10.1371/journal.pone.0094356] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
197 Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020;40:1385-439. [PMID: 32043639 DOI: 10.1002/med.21662] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
198 Qaisar R, Bhaskaran S, Ranjit R, Sataranatarajan K, Premkumar P, Huseman K, Van Remmen H. Restoration of SERCA ATPase prevents oxidative stress-related muscle atrophy and weakness. Redox Biol 2019;20:68-74. [PMID: 30296699 DOI: 10.1016/j.redox.2018.09.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
199 Zheng R, Huang S, Zhu J, Lin W, Xu H, Zheng X. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res 2019;378:113-25. [PMID: 31020406 DOI: 10.1007/s00441-019-03021-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
200 Abrigo J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP, Simon F, Cabrera D, Arrese M, Karpen S, Cabello-Verrugio C. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 2021;236:260-72. [PMID: 32506638 DOI: 10.1002/jcp.29839] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
201 Shi Y, Xiao L, Yin Y, Wei L. Ligustilide inhibits tumour necrosis factor-alpha-induced autophagy during C2C12 cells differentiation. Biomedicine & Pharmacotherapy 2015;69:42-6. [DOI: 10.1016/j.biopha.2014.11.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
202 Martinez I, Wang PA, Slizyté R, Jorge A, Dahle SW, Cañas B, Yamashita M, Olsen RL, Erikson U. Protein expression and enzymatic activities in normal and soft textured Atlantic salmon (Salmo salar) muscle. Food Chemistry 2011;126:140-8. [DOI: 10.1016/j.foodchem.2010.10.090] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
203 Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 2014;8:1509-21. [PMID: 25176656 DOI: 10.1016/j.celrep.2014.07.061] [Cited by in Crossref: 211] [Cited by in F6Publishing: 200] [Article Influence: 30.1] [Reference Citation Analysis]
204 Lv P, Huang J, Yang J, Deng Y, Xu J, Zhang X, Li W, Zhang H, Yang Y. Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-induced hyperglycemia rats via selective activation of m-TOR or FoxO3. PLoS One 2014;9:e87254. [PMID: 24498304 DOI: 10.1371/journal.pone.0087254] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
205 Martín AI, Priego T, López-calderón A. Hormones and Muscle Atrophy. In: Xiao J, editor. Muscle Atrophy. Singapore: Springer; 2018. pp. 207-33. [DOI: 10.1007/978-981-13-1435-3_9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
206 Krishna S, Spaulding HR, Quindry TS, Hudson MB, Quindry JC, Selsby JT. Indices of Defective Autophagy in Whole Muscle and Lysosome Enriched Fractions From Aged D2-mdx Mice. Front Physiol 2021;12:691245. [PMID: 34305644 DOI: 10.3389/fphys.2021.691245] [Reference Citation Analysis]
207 Erdaide O, Lekube X, Olsen RL, Ganzedo U, Martinez I. Comparative study of muscle proteins in relation to the development of yake in three tropical tuna species yellowfin (Thunnus albacares), big eye (Thunnus obesus) and skipjack (Katsuwonus pelamis). Food Chem 2016;201:284-91. [PMID: 26868578 DOI: 10.1016/j.foodchem.2016.01.059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
208 Weihl CC, Pestronk A. Sporadic inclusion body myositis: possible pathogenesis inferred from biomarkers. Curr Opin Neurol 2010;23:482-8. [PMID: 20664349 DOI: 10.1097/WCO.0b013e32833d3897] [Cited by in Crossref: 42] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
209 Paré MF, Baechler BL, Fajardo VA, Earl E, Wong E, Campbell TL, Tupling AR, Quadrilatero J. Effect of acute and chronic autophagy deficiency on skeletal muscle apoptotic signaling, morphology, and function. Biochim Biophys Acta Mol Cell Res 2017;1864:708-18. [PMID: 27993671 DOI: 10.1016/j.bbamcr.2016.12.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
210 Castagnetti F, Fiacco E, Imbriano C, Latella L. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells. J Vis Exp 2017. [PMID: 28654079 DOI: 10.3791/55908] [Reference Citation Analysis]
211 Sugizaki T, Zhu S, Guo G, Matsumoto A, Zhao J, Endo M, Horiguchi H, Morinaga J, Tian Z, Kadomatsu T, Miyata K, Itoh H, Oike Y. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech Dis 2017;3:12. [PMID: 28900540 DOI: 10.1038/s41514-017-0012-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
212 De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D. Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 2014;6:188. [PMID: 25104934 DOI: 10.3389/fnagi.2014.00188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
213 Xu J, Cui X, Li J, Koutakis P, Pipinos I, Tzeng E, Chen A, Sachdev U. Chloroquine improves the response to ischemic muscle injury and increases HMGB1 after arterial ligation. J Vasc Surg 2018;67:910-21. [PMID: 28259568 DOI: 10.1016/j.jvs.2017.01.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
214 Ma W, Cai Y, Shen Y, Chen X, Zhang L, Ji Y, Chen Z, Zhu J, Yang X, Sun H. HDAC4 Knockdown Alleviates Denervation-Induced Muscle Atrophy by Inhibiting Myogenin-Dependent Atrogene Activation. Front Cell Neurosci 2021;15:663384. [PMID: 34276308 DOI: 10.3389/fncel.2021.663384] [Reference Citation Analysis]
215 Timmer LT, Hoogaars WMH, Jaspers RT. The Role of IGF-1 Signaling in Skeletal Muscle Atrophy. Adv Exp Med Biol. 2018;1088:109-137. [PMID: 30390250 DOI: 10.1007/978-981-13-1435-3_6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
216 Al Saedi A, Goodman CA, Myers DE, Hayes A, Duque G. Osteosarcopenia as a Lipotoxic Disease. In: Duque G, editor. Osteosarcopenia: Bone, Muscle and Fat Interactions. Cham: Springer International Publishing; 2019. pp. 123-43. [DOI: 10.1007/978-3-030-25890-0_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
217 Francaux M, Demeulder B, Naslain D, Fortin R, Lutz O, Caty G, Deldicque L. Aging Reduces the Activation of the mTORC1 Pathway after Resistance Exercise and Protein Intake in Human Skeletal Muscle: Potential Role of REDD1 and Impaired Anabolic Sensitivity. Nutrients 2016;8:E47. [PMID: 26784225 DOI: 10.3390/nu8010047] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 7.6] [Reference Citation Analysis]
218 Carmignac V, Svensson M, Körner Z, Elowsson L, Matsumura C, Gawlik KI, Allamand V, Durbeej M. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet 2011;20:4891-902. [PMID: 21920942 DOI: 10.1093/hmg/ddr427] [Cited by in Crossref: 85] [Cited by in F6Publishing: 86] [Article Influence: 8.5] [Reference Citation Analysis]
219 Khanal P, He L, Herbert AJ, Stebbings GK, Onambele-Pearson GL, Degens H, Morse CI, Thomis M, Williams AG. The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women. Genes (Basel) 2020;11:E1459. [PMID: 33291384 DOI: 10.3390/genes11121459] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
220 Rovetta F, Stacchiotti A, Faggi F, Catalani S, Apostoli P, Fanzani A, Aleo MF. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicology and Applied Pharmacology 2013;271:196-205. [DOI: 10.1016/j.taap.2013.05.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
221 D’agostino C, Nogalska A, Cacciottolo M, King Engel W, Askanas V. Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol 2011;122:627-36. [DOI: 10.1007/s00401-011-0874-3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 4.0] [Reference Citation Analysis]
222 Tajrishi MM, Shin J, Hetman M, Kumar A. DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy. J Biol Chem 2014;289:19985-99. [PMID: 24895120 DOI: 10.1074/jbc.M114.568626] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
223 Menzies K, Auwerx J. An acetylation rheostat for the control of muscle energy homeostasis. J Mol Endocrinol 2013;51:T101-13. [PMID: 23999889 DOI: 10.1530/JME-13-0140] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
224 Dutt V, Saini V, Gupta P, Kaur N, Bala M, Gujar R, Grewal A, Gupta S, Dua A, Mittal A. S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochimica et Biophysica Acta (BBA) - General Subjects 2018;1862:895-906. [DOI: 10.1016/j.bbagen.2017.12.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
225 Dallio M, Romeo M, Gravina AG, Masarone M, Larussa T, Abenavoli L, Persico M, Loguercio C, Federico A. Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients 2021;13:1679. [PMID: 34063372 DOI: 10.3390/nu13051679] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
226 Russ DW, Boyd IM, Mccoy KM, Mccorkle KW. Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism. Biogerontology 2015;16:747-59. [DOI: 10.1007/s10522-015-9598-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
227 Cui C, Han S, Tang S, He H, Shen X, Zhao J, Chen Y, Wei Y, Wang Y, Zhu Q, Li D, Yin AH. The Autophagy Regulatory Molecule CSRP3 Interacts with LC3 and Protects Against Muscular Dystrophy. Int J Mol Sci 2020;21:E749. [PMID: 31979369 DOI: 10.3390/ijms21030749] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
228 Bhattacharya A, Hamilton R, Jernigan A, Zhang Y, Sabia M, Rahman MM, Li Y, Wei R, Chaudhuri A, Van Remmen H. Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy. Free Radic Biol Med 2014;67:30-40. [PMID: 24121057 DOI: 10.1016/j.freeradbiomed.2013.10.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
229 Yogev O, Williams VC, Hinits Y, Hughes SM. eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biol 2013;11:e1001679. [PMID: 24143132 DOI: 10.1371/journal.pbio.1001679] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
230 Merlini L, Nishino I. 201st ENMC International Workshop: Autophagy in muscular dystrophies – Translational approach, 1–3 November 2013, Bussum, The Netherlands. Neuromuscular Disorders 2014;24:546-61. [DOI: 10.1016/j.nmd.2014.03.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
231 Belghit I, Skiba-Cassy S, Geurden I, Dias K, Surget A, Kaushik S, Panserat S, Seiliez I. Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Br J Nutr 2014;112:493-503. [PMID: 24877663 DOI: 10.1017/S0007114514001226] [Cited by in Crossref: 50] [Cited by in F6Publishing: 14] [Article Influence: 7.1] [Reference Citation Analysis]
232 Maes K, Stamiris A, Thomas D, Cielen N, Smuder A, Powers SK, Leite FS, Hermans G, Decramer M, Hussain SN, Gayan-Ramirez G. Effects of controlled mechanical ventilation on sepsis-induced diaphragm dysfunction in rats. Crit Care Med 2014;42:e772-82. [PMID: 25402297 DOI: 10.1097/CCM.0000000000000685] [Cited by in Crossref: 45] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
233 Spitali P, Grumati P, Hiller M, Chrisam M, Aartsma-Rus A, Bonaldo P. Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice. PLoS Curr 2013;5:ecurrents. [PMID: 24292657 DOI: 10.1371/currents.md.e1226cefa851a2f079bbc406c0a21e80] [Cited by in Crossref: 14] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
234 Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review. Front Physiol 2016;7:361. [PMID: 27610086 DOI: 10.3389/fphys.2016.00361] [Cited by in Crossref: 68] [Cited by in F6Publishing: 64] [Article Influence: 13.6] [Reference Citation Analysis]
235 Kast DJ, Dominguez R. The Cytoskeleton-Autophagy Connection. Curr Biol 2017;27:R318-26. [PMID: 28441569 DOI: 10.1016/j.cub.2017.02.061] [Cited by in Crossref: 97] [Cited by in F6Publishing: 93] [Article Influence: 32.3] [Reference Citation Analysis]
236 Kim JH, Choi TG, Park S, Yun HR, Nguyen NNY, Jo YH, Jang M, Kim J, Kim J, Kang I, Ha J, Murphy MP, Tang DG, Kim SS. Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death Differ 2018;25:1921-37. [PMID: 30042494 DOI: 10.1038/s41418-018-0165-9] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 17.0] [Reference Citation Analysis]
237 Tardif N, Klaude M, Lundell L, Thorell A, Rooyackers O. Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients. Am J Clin Nutr 2013;98:1485-92. [PMID: 24108784 DOI: 10.3945/ajcn.113.063859] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 7.1] [Reference Citation Analysis]
238 Chanon S, Chazarin B, Toubhans B, Durand C, Chery I, Robert M, Vieille-Marchiset A, Swenson JE, Zedrosser A, Evans AL, Brunberg S, Arnemo JM, Gauquelin-Koch G, Storey KB, Simon C, Blanc S, Bertile F, Lefai E. Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells. Sci Rep 2018;8:5525. [PMID: 29615761 DOI: 10.1038/s41598-018-23891-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
239 Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol 2016;594:5105-23. [PMID: 26503074 DOI: 10.1113/JP270659] [Cited by in Crossref: 70] [Cited by in F6Publishing: 49] [Article Influence: 11.7] [Reference Citation Analysis]
240 Pasiakos SM, Carbone JW. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life 2014;66:478-84. [PMID: 25052691 DOI: 10.1002/iub.1291] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
241 Rosa-Caldwell ME, Fix DK, Washington TA, Greene NP. Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review. J Appl Physiol (1985) 2020;128:25-41. [PMID: 31725360 DOI: 10.1152/japplphysiol.00622.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
242 Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Ménesi D, Puskás LG, Juhász G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012;8:1124-35. [PMID: 22562043 DOI: 10.4161/auto.20069] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 4.6] [Reference Citation Analysis]
243 Anjanappa M, Corden M, Green A, Roberts D, Hoskin P, McWilliam A, Choudhury A. Sarcopenia in cancer: Risking more than muscle loss. Tech Innov Patient Support Radiat Oncol 2020;16:50-7. [PMID: 33385074 DOI: 10.1016/j.tipsro.2020.10.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
244 Stana F, Vujovic M, Mayaki D, Leduc-Gaudet JP, Leblanc P, Huck L, Hussain SNA. Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis. Crit Care Med 2017;45:e971-9. [PMID: 28538438 DOI: 10.1097/CCM.0000000000002520] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
245 Yang X, Xue P, Liu X, Xu X, Chen Z. HMGB1/autophagy pathway mediates the atrophic effect of TGF-β1 in denervated skeletal muscle. Cell Commun Signal 2018;16:97. [PMID: 30526602 DOI: 10.1186/s12964-018-0310-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
246 Dethlefsen MM, Bertholdt L, Gudiksen A, Stankiewicz T, Bangsbo J, van Hall G, Plomgaard P, Pilegaard H. Training state and skeletal muscle autophagy in response to 36 h of fasting. Journal of Applied Physiology 2018;125:1609-19. [DOI: 10.1152/japplphysiol.01146.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
247 Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Research Reviews 2018;47:183-97. [DOI: 10.1016/j.arr.2018.08.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 21.3] [Reference Citation Analysis]
248 Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Volpi E, Rasmussen BB. Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 2013;68:599-607. [PMID: 23089333 DOI: 10.1093/gerona/gls209] [Cited by in Crossref: 105] [Cited by in F6Publishing: 98] [Article Influence: 11.7] [Reference Citation Analysis]
249 Jacquier A, Delorme C, Belotti E, Juntas-Morales R, Solé G, Dubourg O, Giroux M, Maurage CA, Castellani V, Rebelo A, Abrams A, Züchner S, Stojkovic T, Schaeffer L, Latour P. Cryptic amyloidogenic elements in mutant NEFH causing Charcot-Marie-Tooth 2 trigger aggresome formation and neuronal death. Acta Neuropathol Commun 2017;5:55. [PMID: 28709447 DOI: 10.1186/s40478-017-0457-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
250 Nemova NN, Lysenko LA, Kantserova NP. Degradation of skeletal muscle protein during growth and development of salmonid fish. Russ J Dev Biol 2016;47:161-72. [DOI: 10.1134/s1062360416040068] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
251 Fajardo VA, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers PJ, Bellissimo C, Quadrilatero J, Tupling AR. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS One 2017;12:e0173708. [PMID: 28278204 DOI: 10.1371/journal.pone.0173708] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
252 Bloemberg D, McDonald E, Dulay D, Quadrilatero J. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats. Acta Physiol (Oxf) 2014;210:381-91. [PMID: 24119246 DOI: 10.1111/apha.12178] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
253 Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel JL, Laporte J. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 2013;27:3384-94. [PMID: 23695157 DOI: 10.1096/fj.12-220947] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
254 Seiliez I, Gutierrez J, Salmerón C, Skiba-cassy S, Chauvin C, Dias K, Kaushik S, Tesseraud S, Panserat S. An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2010;157:258-66. [DOI: 10.1016/j.cbpb.2010.06.011] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 5.4] [Reference Citation Analysis]
255 Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015;80:67-78. [PMID: 26453497 DOI: 10.1016/j.bone.2015.04.015] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 14.4] [Reference Citation Analysis]
256 Banerjee A, Guttridge DC. Mechanisms for maintaining muscle. Curr Opin Support Palliat Care 2012;6:451-6. [PMID: 23108340 DOI: 10.1097/SPC.0b013e328359b681] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
257 Valenzuela CA, Ponce C, Zuloaga R, González P, Avendaño-Herrera R, Valdés JA, Molina A. Effects of crowding on the three main proteolytic mechanisms of skeletal muscle in rainbow trout (Oncorhynchus mykiss). BMC Vet Res 2020;16:294. [PMID: 32799856 DOI: 10.1186/s12917-020-02518-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
258 Gokulakrishnan G, Estrada IJ, Sosa HA, Fiorotto ML. In utero glucocorticoid exposure reduces fetal skeletal muscle mass in rats independent of effects on maternal nutrition. Am J Physiol Regul Integr Comp Physiol 2012;302:R1143-52. [PMID: 22422665 DOI: 10.1152/ajpregu.00466.2011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
259 Neel BA, Lin Y, Pessin JE. Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 2013;24:635-43. [PMID: 24182456 DOI: 10.1016/j.tem.2013.09.004] [Cited by in Crossref: 92] [Cited by in F6Publishing: 92] [Article Influence: 11.5] [Reference Citation Analysis]
260 Horton KA, Sporer KRB, Tempelman RJ, Malila Y, Reed KM, Velleman SG, Strasburg GM. Knockdown of Death-Associated Protein Expression Induces Global Transcriptome Changes in Proliferating and Differentiating Muscle Satellite Cells. Front Physiol 2020;11:1036. [PMID: 32922311 DOI: 10.3389/fphys.2020.01036] [Reference Citation Analysis]
261 Yoshida N, Endo J, Kinouchi K, Kitakata H, Moriyama H, Kataoka M, Yamamoto T, Shirakawa K, Morimoto S, Nishiyama A, Hashiguchi A, Higuchi I, Fukuda K, Ichihara A, Sano M. (Pro)renin receptor accelerates development of sarcopenia via activation of Wnt/YAP signaling axis. Aging Cell 2019;18:e12991. [PMID: 31282603 DOI: 10.1111/acel.12991] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
262 Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol 2014;592:4575-89. [PMID: 25128574 DOI: 10.1113/jphysiol.2014.275545] [Cited by in Crossref: 131] [Cited by in F6Publishing: 112] [Article Influence: 18.7] [Reference Citation Analysis]
263 Bhatnagar S, Mittal A, Gupta SK, Kumar A. TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J Cell Physiol 2012;227:1042-51. [PMID: 21567392 DOI: 10.1002/jcp.22821] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 5.9] [Reference Citation Analysis]
264 Webster JM, Fenton CG, Langen R, Hardy RS. Exploring the Interface between Inflammatory and Therapeutic Glucocorticoid Induced Bone and Muscle Loss. Int J Mol Sci 2019;20:E5768. [PMID: 31744114 DOI: 10.3390/ijms20225768] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
265 Siriguleng, Koike T, Natsume Y, Iwama S, Oshida Y. Effect of Prior Chronic Aerobic Exercise on Overload-Induced Skeletal Muscle Hypertrophy in Mice. Physiol Res. [DOI: 10.33549/physiolres.933786] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
266 Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, Chan LW, Wong CS, Siu PM. [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle. Mol Cell Endocrinol 2015;401:155-64. [PMID: 25450862 DOI: 10.1016/j.mce.2014.09.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
267 De Palma C, Morisi F, Pambianco S, Assi E, Touvier T, Russo S, Perrotta C, Romanello V, Carnio S, Cappello V, Pellegrino P, Moscheni C, Bassi MT, Sandri M, Cervia D, Clementi E. Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skelet Muscle 2014;4:22. [PMID: 25530838 DOI: 10.1186/s13395-014-0022-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
268 de Theije CC, Schols AMWJ, Lamers WH, Ceelen JJM, van Gorp RH, Hermans JJR, Köhler SE, Langen RCJ. Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology 2018;159:519-34. [DOI: 10.1210/en.2017-00603] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
269 Shin J, Tajrishi MM, Ogura Y, Kumar A. Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 2013;45:2266-79. [PMID: 23669245 DOI: 10.1016/j.biocel.2013.05.001] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 10.5] [Reference Citation Analysis]
270 Valenti MT, Dalle Carbonare L, Mottes M. Role of autophagy in bone and muscle biology. World J Stem Cells 2016; 8(12): 396-398 [PMID: 28074123 DOI: 10.4252/wjsc.v8.i12.396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
271 Ucci S, Renzini A, Russi V, Mangialardo C, Cammarata I, Cavioli G, Santaguida MG, Virili C, Centanni M, Adamo S, Moresi V, Verga-Falzacappa C. Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. Int J Mol Sci 2019;20:E5754. [PMID: 31731814 DOI: 10.3390/ijms20225754] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
272 Sanchez AM, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H. The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am J Physiol Cell Physiol 2012;303:C475-85. [PMID: 22700795 DOI: 10.1152/ajpcell.00125.2012] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 8.4] [Reference Citation Analysis]
273 Gallot YS, Bohnert KR. Confounding Roles of ER Stress and the Unfolded Protein Response in Skeletal Muscle Atrophy. Int J Mol Sci 2021;22:2567. [PMID: 33806433 DOI: 10.3390/ijms22052567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
274 Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 2018;233:67-78. [PMID: 28177127 DOI: 10.1002/jcp.25852] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 17.8] [Reference Citation Analysis]
275 MacNeil LG, Glover E, Bergstra TG, Safdar A, Tarnopolsky MA. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function. PLoS One 2014;9:e109189. [PMID: 25289940 DOI: 10.1371/journal.pone.0109189] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
276 Thornell LE. Sarcopenic obesity: satellite cells in the aging muscle. Curr Opin Clin Nutr Metab Care 2011;14:22-7. [PMID: 21088571 DOI: 10.1097/MCO.0b013e3283412260] [Cited by in Crossref: 44] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
277 Campbell TL, Quadrilatero J. Data on skeletal muscle apoptosis, autophagy, and morphology in mice treated with doxorubicin. Data Brief 2016;7:786-93. [PMID: 27077080 DOI: 10.1016/j.dib.2016.03.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
278 Davegårdh C, Säll J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brøns C, Hansson O, Pedersen M, Würthner JU, Pfeffer K, Nilsson E, Vaag A, Stener-Victorin E, Pircs K, Scheele C, Ling C. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 2021;12:2431. [PMID: 33893273 DOI: 10.1038/s41467-021-22068-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
279 Gupta VA, Beggs AH. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle 2014;4:11. [PMID: 24959344 DOI: 10.1186/2044-5040-4-11] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 12.1] [Reference Citation Analysis]
280 Yamada E, Bastie CC, Koga H, Wang Y, Cuervo AM, Pessin JE. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep 2012;1:557-69. [PMID: 22745922 DOI: 10.1016/j.celrep.2012.03.014] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 6.7] [Reference Citation Analysis]
281 Gnimassou O, Fernández‐verdejo R, Brook M, Naslain D, Balan E, Sayda M, Cegielski J, Nielens H, Decottignies A, Demoulin J, Smith K, Atherton PJ, Francaux M, Deldicque L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle. FASEB j 2018;32:5272-84. [DOI: 10.1096/fj.201800049rr] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
282 Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, Kumar A. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 2012;32:1248-59. [PMID: 22290431 DOI: 10.1128/MCB.06351-11] [Cited by in Crossref: 94] [Cited by in F6Publishing: 64] [Article Influence: 10.4] [Reference Citation Analysis]
283 Liu Z, Han S, Wang Y, Cui C, Zhu Q, Jiang X, Yang C, Du H, Yu C, Li Q, He H, Shen X, Chen Y, Zhang Y, Ye L, Zhang Z, Li D, Zhao X, Yin H. The LIM-Only Protein FHL2 is involved in Autophagy to Regulate the Development of Skeletal Muscle Cell. Int J Biol Sci 2019;15:838-46. [PMID: 30906214 DOI: 10.7150/ijbs.31371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
284 Girolamo F, Lia A, Amati A, Strippoli M, Coppola C, Virgintino D, Roncali L, Toscano A, Serlenga L, Trojano M. Overexpression of autophagic proteins in the skeletal muscle of sporadic inclusion body myositis. Neuropathol Appl Neurobiol 2013;39:736-49. [PMID: 23452291 DOI: 10.1111/nan.12040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
285 Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2016;3:127-55. [PMID: 27854220 DOI: 10.3233/JND-160153] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]