BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 2010;20:143-148. [PMID: 20060297 DOI: 10.1016/j.cub.2009.11.022] [Cited by in Crossref: 353] [Cited by in F6Publishing: 333] [Article Influence: 32.1] [Reference Citation Analysis]
Number Citing Articles
1 Lamark T, Svenning S, Johansen T. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 2017;61:609-624. [PMID: 29233872 DOI: 10.1042/ebc20170035] [Cited by in Crossref: 194] [Cited by in F6Publishing: 114] [Article Influence: 48.5] [Reference Citation Analysis]
2 Aygar G, Kaya M, Özkan N, Kocabıyık S, Volkan M. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins. Journal of Physics and Chemistry of Solids 2015;87:64-71. [DOI: 10.1016/j.jpcs.2015.08.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
3 Valenti MT, Dalle Carbonare L, Mottes M. Role of autophagy in bone and muscle biology. World J Stem Cells 2016; 8(12): 396-398 [PMID: 28074123 DOI: 10.4252/wjsc.v8.i12.396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021;95:1943-70. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wing SS, Lecker SH, Jagoe RT. Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks. Crit Rev Clin Lab Sci 2011;48:49-70. [PMID: 21699435 DOI: 10.3109/10408363.2011.586171] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.3] [Reference Citation Analysis]
6 Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016;9:93. [PMID: 27757073 DOI: 10.3389/fnmol.2016.00093] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
7 Rodríguez-Muela N. Autophagy in motor neuron diseases. Prog Mol Biol Transl Sci 2020;172:157-202. [PMID: 32620242 DOI: 10.1016/bs.pmbts.2020.03.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 2011;12:149-56. [PMID: 21252941 DOI: 10.1038/embor.2010.203] [Cited by in Crossref: 233] [Cited by in F6Publishing: 215] [Article Influence: 23.3] [Reference Citation Analysis]
9 Phuyal S, Baschieri F. Endomembranes: Unsung Heroes of Mechanobiology? Front Bioeng Biotechnol 2020;8:597721. [PMID: 33195167 DOI: 10.3389/fbioe.2020.597721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020;209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
11 Wadmore K, Azad AJ, Gehmlich K. The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021;22:3058. [PMID: 33802723 DOI: 10.3390/ijms22063058] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Kwok AS, Phadwal K, Turner BJ, Oliver PL, Raw A, Simon AK, Talbot K, Agashe VR. HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes: Deficient autophagy in a peripheral neuropathy. Journal of Neurochemistry 2011;119:1155-61. [DOI: 10.1111/j.1471-4159.2011.07521.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
13 Theocharopoulou G, Bobori C, Vlamos P. Formal Models of Biological Systems. Adv Exp Med Biol 2017;988:325-38. [PMID: 28971411 DOI: 10.1007/978-3-319-56246-9_27] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Schaefer L, Dikic I. Autophagy: Instructions from the extracellular matrix. Matrix Biol 2021;100-101:1-8. [PMID: 34217800 DOI: 10.1016/j.matbio.2021.06.002] [Reference Citation Analysis]
15 Chevessier F, Schuld J, Orfanos Z, Plank AC, Wolf L, Maerkens A, Unger A, Schlötzer-Schrehardt U, Kley RA, Von Hörsten S, Marcus K, Linke WA, Vorgerd M, van der Ven PF, Fürst DO, Schröder R. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum Mol Genet 2015;24:7207-20. [PMID: 26472074 DOI: 10.1093/hmg/ddv421] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
16 Irobi J, Holmgren A, Winter VD, Asselbergh B, Gettemans J, Adriaensen D, Groote CC, Coster RV, Jonghe PD, Timmerman V. Mutant HSPB8 causes protein aggregates and a reduced mitochondrial membrane potential in dermal fibroblasts from distal hereditary motor neuropathy patients. Neuromuscular Disorders 2012;22:699-711. [DOI: 10.1016/j.nmd.2012.04.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
17 De Falco F, Restucci B, Urraro C, Roperto S. Microautophagy upregulation in cutaneous lymph nodes of dogs naturally infected by Leishmania infantum. Parasitol Res 2020;119:2245-55. [PMID: 32447515 DOI: 10.1007/s00436-020-06718-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mukai R, Zablocki D, Sadoshima J. Intermittent Fasting Reverses an Advanced Form of Cardiomyopathy. J Am Heart Assoc 2019;8:e011863. [PMID: 30773085 DOI: 10.1161/JAHA.118.011863] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 2010;12:836-41. [PMID: 20811356 DOI: 10.1038/ncb0910-836] [Cited by in Crossref: 452] [Cited by in F6Publishing: 427] [Article Influence: 41.1] [Reference Citation Analysis]
20 Li F, Xiao H, Hu Z, Zhou F, Yang B. Exploring the multifaceted roles of heat shock protein B8 (HSPB8) in diseases. Eur J Cell Biol 2018;97:216-29. [PMID: 29555102 DOI: 10.1016/j.ejcb.2018.03.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
21 Batista-almeida D, Martins-marques T, Ribeiro-rodrigues T, Girao H. The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. In: Barrio R, Sutherland JD, Rodriguez MS, editors. Proteostasis and Disease. Cham: Springer International Publishing; 2020. pp. 279-302. [DOI: 10.1007/978-3-030-38266-7_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Fürst DO, Goldfarb LG, Kley RA, Vorgerd M, Olivé M, van der Ven PF. Filamin C-related myopathies: pathology and mechanisms. Acta Neuropathol 2013;125:33-46. [PMID: 23109048 DOI: 10.1007/s00401-012-1054-9] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 8.4] [Reference Citation Analysis]
23 Hong J, Park JS, Lee H, Jeong J, Hyeon Yun H, Yun Kim H, Ko YG, Lee JH. Myosin heavy chain is stabilized by BCL-2 interacting cell death suppressor (BIS) in skeletal muscle. Exp Mol Med 2016;48:e225. [PMID: 27034027 DOI: 10.1038/emm.2016.2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
24 Demontis F, Piccirillo R, Goldberg AL, Perrimon N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 2013;6:1339-52. [PMID: 24092876 DOI: 10.1242/dmm.012559] [Cited by in Crossref: 146] [Cited by in F6Publishing: 132] [Article Influence: 18.3] [Reference Citation Analysis]
25 Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, Ann DK, Anoopkumar-Dukie S, Aoki H, Apostolova N, Arancia G, Aris JP, Asanuma K, Asare NY, Ashida H, Askanas V, Askew DS, Auberger P, Baba M, Backues SK, Baehrecke EH, Bahr BA, Bai XY, Bailly Y, Baiocchi R, Baldini G, Balduini W, Ballabio A, Bamber BA, Bampton ET, Bánhegyi G, Bartholomew CR, Bassham DC, Bast RC Jr, Batoko H, Bay BH, Beau I, Béchet DM, Begley TJ, Behl C, Behrends C, Bekri S, Bellaire B, Bendall LJ, Benetti L, Berliocchi L, Bernardi H, Bernassola F, Besteiro S, Bhatia-Kissova I, Bi X, Biard-Piechaczyk M, Blum JS, Boise LH, Bonaldo P, Boone DL, Bornhauser BC, Bortoluci KR, Bossis I, Bost F, Bourquin JP, Boya P, Boyer-Guittaut M, Bozhkov PV, Brady NR, Brancolini C, Brech A, Brenman JE, Brennand A, Bresnick EH, Brest P, Bridges D, Bristol ML, Brookes PS, Brown EJ, Brumell JH, Brunetti-Pierri N, Brunk UT, Bulman DE, Bultman SJ, Bultynck G, Burbulla LF, Bursch W, Butchar JP, Buzgariu W, Bydlowski SP, Cadwell K, Cahová M, Cai D, Cai J, Cai Q, Calabretta B, Calvo-Garrido J, Camougrand N, Campanella M, Campos-Salinas J, Candi E, Cao L, Caplan AB, Carding SR, Cardoso SM, Carew JS, Carlin CR, Carmignac V, Carneiro LA, Carra S, Caruso RA, Casari G, Casas C, Castino R, Cebollero E, Cecconi F, Celli J, Chaachouay H, Chae HJ, Chai CY, Chan DC, Chan EY, Chang RC, Che CM, Chen CC, Chen GC, Chen GQ, Chen M, Chen Q, Chen SS, Chen W, Chen X, Chen X, Chen X, Chen YG, Chen Y, Chen Y, Chen YJ, Chen Z, Cheng A, Cheng CH, Cheng Y, Cheong H, Cheong JH, Cherry S, Chess-Williams R, Cheung ZH, Chevet E, Chiang HL, Chiarelli R, Chiba T, Chin LS, Chiou SH, Chisari FV, Cho CH, Cho DH, Choi AM, Choi D, Choi KS, Choi ME, Chouaib S, Choubey D, Choubey V, Chu CT, Chuang TH, Chueh SH, Chun T, Chwae YJ, Chye ML, Ciarcia R, Ciriolo MR, Clague MJ, Clark RS, Clarke PG, Clarke R, Codogno P, Coller HA, Colombo MI, Comincini S, Condello M, Condorelli F, Cookson MR, Coombs GH, Coppens I, Corbalan R, Cossart P, Costelli P, Costes S, Coto-Montes A, Couve E, Coxon FP, Cregg JM, Crespo JL, Cronjé MJ, Cuervo AM, Cullen JJ, Czaja MJ, D'Amelio M, Darfeuille-Michaud A, Davids LM, Davies FE, De Felici M, de Groot JF, de Haan CA, De Martino L, De Milito A, De Tata V, Debnath J, Degterev A, Dehay B, Delbridge LM, Demarchi F, Deng YZ, Dengjel J, Dent P, Denton D, Deretic V, Desai SD, Devenish RJ, Di Gioacchino M, Di Paolo G, Di Pietro C, Díaz-Araya G, Díaz-Laviada I, Diaz-Meco MT, Diaz-Nido J, Dikic I, Dinesh-Kumar SP, Ding WX, Distelhorst CW, Diwan A, Djavaheri-Mergny M, Dokudovskaya S, Dong Z, Dorsey FC, Dosenko V, Dowling JJ, Doxsey S, Dreux M, Drew ME, Duan Q, Duchosal MA, Duff K, Dugail I, Durbeej M, Duszenko M, Edelstein CL, Edinger AL, Egea G, Eichinger L, Eissa NT, Ekmekcioglu S, El-Deiry WS, Elazar Z, Elgendy M, Ellerby LM, Eng KE, Engelbrecht AM, Engelender S, Erenpreisa J, Escalante R, Esclatine A, Eskelinen EL, Espert L, Espina V, Fan H, Fan J, Fan QW, Fan Z, Fang S, Fang Y, Fanto M, Fanzani A, Farkas T, Farré JC, Faure M, Fechheimer M, Feng CG, Feng J, Feng Q, Feng Y, Fésüs L, Feuer R, Figueiredo-Pereira ME, Fimia GM, Fingar DC, Finkbeiner S, Finkel T, Finley KD, Fiorito F, Fisher EA, Fisher PB, Flajolet M, Florez-McClure ML, Florio S, Fon EA, Fornai F, Fortunato F, Fotedar R, Fowler DH, Fox HS, Franco R, Frankel LB, Fransen M, Fuentes JM, Fueyo J, Fujii J, Fujisaki K, Fujita E, Fukuda M, Furukawa RH, Gaestel M, Gailly P, Gajewska M, Galliot B, Galy V, Ganesh S, Ganetzky B, Ganley IG, Gao FB, Gao GF, Gao J, Garcia L, Garcia-Manero G, Garcia-Marcos M, Garmyn M, Gartel AL, Gatti E, Gautel M, Gawriluk TR, Gegg ME, Geng J, Germain M, Gestwicki JE, Gewirtz DA, Ghavami S, Ghosh P, Giammarioli AM, Giatromanolaki AN, Gibson SB, Gilkerson RW, Ginger ML, Ginsberg HN, Golab J, Goligorsky MS, Golstein P, Gomez-Manzano C, Goncu E, Gongora C, Gonzalez CD, Gonzalez R, González-Estévez C, González-Polo RA, Gonzalez-Rey E, Gorbunov NV, Gorski S, Goruppi S, Gottlieb RA, Gozuacik D, Granato GE, Grant GD, Green KN, Gregorc A, Gros F, Grose C, Grunt TW, Gual P, Guan JL, Guan KL, Guichard SM, Gukovskaya AS, Gukovsky I, Gunst J, Gustafsson AB, Halayko AJ, Hale AN, Halonen SK, Hamasaki M, Han F, Han T, Hancock MK, Hansen M, Harada H, Harada M, Hardt SE, Harper JW, Harris AL, Harris J, Harris SD, Hashimoto M, Haspel JA, Hayashi S, Hazelhurst LA, He C, He YW, Hébert MJ, Heidenreich KA, Helfrich MH, Helgason GV, Henske EP, Herman B, Herman PK, Hetz C, Hilfiker S, Hill JA, Hocking LJ, Hofman P, Hofmann TG, Höhfeld J, Holyoake TL, Hong MH, Hood DA, Hotamisligil GS, Houwerzijl EJ, Høyer-Hansen M, Hu B, Hu CA, Hu HM, Hua Y, Huang C, Huang J, Huang S, Huang WP, Huber TB, Huh WK, Hung TH, Hupp TR, Hur GM, Hurley JB, Hussain SN, Hussey PJ, Hwang JJ, Hwang S, Ichihara A, Ilkhanizadeh S, Inoki K, Into T, Iovane V, Iovanna JL, Ip NY, Isaka Y, Ishida H, Isidoro C, Isobe K, Iwasaki A, Izquierdo M, Izumi Y, Jaakkola PM, Jäättelä M, Jackson GR, Jackson WT, Janji B, Jendrach M, Jeon JH, Jeung EB, Jiang H, Jiang H, Jiang JX, Jiang M, Jiang Q, Jiang X, Jiang X, Jiménez A, Jin M, Jin S, Joe CO, Johansen T, Johnson DE, Johnson GV, Jones NL, Joseph B, Joseph SK, Joubert AM, Juhász G, Juillerat-Jeanneret L, Jung CH, Jung YK, Kaarniranta K, Kaasik A, Kabuta T, Kadowaki M, Kagedal K, Kamada Y, Kaminskyy VO, Kampinga HH, Kanamori H, Kang C, Kang KB, Kang KI, Kang R, Kang YA, Kanki T, Kanneganti TD, Kanno H, Kanthasamy AG, Kanthasamy A, Karantza V, Kaushal GP, Kaushik S, Kawazoe Y, Ke PY, Kehrl JH, Kelekar A, Kerkhoff C, Kessel DH, Khalil H, Kiel JA, Kiger AA, Kihara A, Kim DR, Kim DH, Kim DH, Kim EK, Kim HR, Kim JS, Kim JH, Kim JC, Kim JK, Kim PK, Kim SW, Kim YS, Kim Y, Kimchi A, Kimmelman AC, King JS, Kinsella TJ, Kirkin V, Kirshenbaum LA, Kitamoto K, Kitazato K, Klein L, Klimecki WT, Klucken J, Knecht E, Ko BC, Koch JC, Koga H, Koh JY, Koh YH, Koike M, Komatsu M, Kominami E, Kong HJ, Kong WJ, Korolchuk VI, Kotake Y, Koukourakis MI, Kouri Flores JB, Kovács AL, Kraft C, Krainc D, Krämer H, Kretz-Remy C, Krichevsky AM, Kroemer G, Krüger R, Krut O, Ktistakis NT, Kuan CY, Kucharczyk R, Kumar A, Kumar R, Kumar S, Kundu M, Kung HJ, Kurz T, Kwon HJ, La Spada AR, Lafont F, Lamark T, Landry J, Lane JD, Lapaquette P, Laporte JF, László L, Lavandero S, Lavoie JN, Layfield R, Lazo PA, Le W, Le Cam L, Ledbetter DJ, Lee AJ, Lee BW, Lee GM, Lee J, Lee JH, Lee M, Lee MS, Lee SH, Leeuwenburgh C, Legembre P, Legouis R, Lehmann M, Lei HY, Lei QY, Leib DA, Leiro J, Lemasters JJ, Lemoine A, Lesniak MS, Lev D, Levenson VV, Levine B, Levy E, Li F, Li JL, Li L, Li S, Li W, Li XJ, Li YB, Li YP, Liang C, Liang Q, Liao YF, Liberski PP, Lieberman A, Lim HJ, Lim KL, Lim K, Lin CF, Lin FC, Lin J, Lin JD, Lin K, Lin WW, Lin WC, Lin YL, Linden R, Lingor P, Lippincott-Schwartz J, Lisanti MP, Liton PB, Liu B, Liu CF, Liu K, Liu L, Liu QA, Liu W, Liu YC, Liu Y, Lockshin RA, Lok CN, Lonial S, Loos B, Lopez-Berestein G, López-Otín C, Lossi L, Lotze MT, Lőw P, Lu B, Lu B, Lu B, Lu Z, Luciano F, Lukacs NW, Lund AH, Lynch-Day MA, Ma Y, Macian F, MacKeigan JP, Macleod KF, Madeo F, Maiuri L, Maiuri MC, Malagoli D, Malicdan MC, Malorni W, Man N, Mandelkow EM, Manon S, Manov I, Mao K, Mao X, Mao Z, Marambaud P, Marazziti D, Marcel YL, Marchbank K, Marchetti P, Marciniak SJ, Marcondes M, Mardi M, Marfe G, Mariño G, Markaki M, Marten MR, Martin SJ, Martinand-Mari C, Martinet W, Martinez-Vicente M, Masini M, Matarrese P, Matsuo S, Matteoni R, Mayer A, Mazure NM, McConkey DJ, McConnell MJ, McDermott C, McDonald C, McInerney GM, McKenna SL, McLaughlin B, McLean PJ, McMaster CR, McQuibban GA, Meijer AJ, Meisler MH, Meléndez A, Melia TJ, Melino G, Mena MA, Menendez JA, Menna-Barreto RF, Menon MB, Menzies FM, Mercer CA, Merighi A, Merry DE, Meschini S, Meyer CG, Meyer TF, Miao CY, Miao JY, Michels PA, Michiels C, Mijaljica D, Milojkovic A, Minucci S, Miracco C, Miranti CK, Mitroulis I, Miyazawa K, Mizushima N, Mograbi B, Mohseni S, Molero X, Mollereau B, Mollinedo F, Momoi T, Monastyrska I, Monick MM, Monteiro MJ, Moore MN, Mora R, Moreau K, Moreira PI, Moriyasu Y, Moscat J, Mostowy S, Mottram JC, Motyl T, Moussa CE, Müller S, Muller S, Münger K, Münz C, Murphy LO, Murphy ME, Musarò A, Mysorekar I, Nagata E, Nagata K, Nahimana A, Nair U, Nakagawa T, Nakahira K, Nakano H, Nakatogawa H, Nanjundan M, Naqvi NI, Narendra DP, Narita M, Navarro M, Nawrocki ST, Nazarko TY, Nemchenko A, Netea MG, Neufeld TP, Ney PA, Nezis IP, Nguyen HP, Nie D, Nishino I, Nislow C, Nixon RA, Noda T, Noegel AA, Nogalska A, Noguchi S, Notterpek L, Novak I, Nozaki T, Nukina N, Nürnberger T, Nyfeler B, Obara K, Oberley TD, Oddo S, Ogawa M, Ohashi T, Okamoto K, Oleinick NL, Oliver FJ, Olsen LJ, Olsson S, Opota O, Osborne TF, Ostrander GK, Otsu K, Ou JH, Ouimet M, Overholtzer M, Ozpolat B, Paganetti P, Pagnini U, Pallet N, Palmer GE, Palumbo C, Pan T, Panaretakis T, Pandey UB, Papackova Z, Papassideri I, Paris I, Park J, Park OK, Parys JB, Parzych KR, Patschan S, Patterson C, Pattingre S, Pawelek JM, Peng J, Perlmutter DH, Perrotta I, Perry G, Pervaiz S, Peter M, Peters GJ, Petersen M, Petrovski G, Phang JM, Piacentini M, Pierre P, Pierrefite-Carle V, Pierron G, Pinkas-Kramarski R, Piras A, Piri N, Platanias LC, Pöggeler S, Poirot M, Poletti A, Poüs C, Pozuelo-Rubio M, Prætorius-Ibba M, Prasad A, Prescott M, Priault M, Produit-Zengaffinen N, Progulske-Fox A, Proikas-Cezanne T, Przedborski S, Przyklenk K, Puertollano R, Puyal J, Qian SB, Qin L, Qin ZH, Quaggin SE, Raben N, Rabinowich H, Rabkin SW, Rahman I, Rami A, Ramm G, Randall G, Randow F, Rao VA, Rathmell JC, Ravikumar B, Ray SK, Reed BH, Reed JC, Reggiori F, Régnier-Vigouroux A, Reichert AS, Reiners JJ Jr, Reiter RJ, Ren J, Revuelta JL, Rhodes CJ, Ritis K, Rizzo E, Robbins J, Roberge M, Roca H, Roccheri MC, Rocchi S, Rodemann HP, Rodríguez de Córdoba S, Rohrer B, Roninson IB, Rosen K, Rost-Roszkowska MM, Rouis M, Rouschop KM, Rovetta F, Rubin BP, Rubinsztein DC, Ruckdeschel K, Rucker EB 3rd, Rudich A, Rudolf E, Ruiz-Opazo N, Russo R, Rusten TE, Ryan KM, Ryter SW, Sabatini DM, Sadoshima J, Saha T, Saitoh T, Sakagami H, Sakai Y, Salekdeh GH, Salomoni P, Salvaterra PM, Salvesen G, Salvioli R, Sanchez AM, Sánchez-Alcázar JA, Sánchez-Prieto R, Sandri M, Sankar U, Sansanwal P, Santambrogio L, Saran S, Sarkar S, Sarwal M, Sasakawa C, Sasnauskiene A, Sass M, Sato K, Sato M, Schapira AH, Scharl M, Schätzl HM, Scheper W, Schiaffino S, Schneider C, Schneider ME, Schneider-Stock R, Schoenlein PV, Schorderet DF, Schüller C, Schwartz GK, Scorrano L, Sealy L, Seglen PO, Segura-Aguilar J, Seiliez I, Seleverstov O, Sell C, Seo JB, Separovic D, Setaluri V, Setoguchi T, Settembre C, Shacka JJ, Shanmugam M, Shapiro IM, Shaulian E, Shaw RJ, Shelhamer JH, Shen HM, Shen WC, Sheng ZH, Shi Y, Shibuya K, Shidoji Y, Shieh JJ, Shih CM, Shimada Y, Shimizu S, Shintani T, Shirihai OS, Shore GC, Sibirny AA, Sidhu SB, Sikorska B, Silva-Zacarin EC, Simmons A, Simon AK, Simon HU, Simone C, Simonsen A, Sinclair DA, Singh R, Sinha D, Sinicrope FA, Sirko A, Siu PM, Sivridis E, Skop V, Skulachev VP, Slack RS, Smaili SS, Smith DR, Soengas MS, Soldati T, Song X, Sood AK, Soong TW, Sotgia F, Spector SA, Spies CD, Springer W, Srinivasula SM, Stefanis L, Steffan JS, Stendel R, Stenmark H, Stephanou A, Stern ST, Sternberg C, Stork B, Strålfors P, Subauste CS, Sui X, Sulzer D, Sun J, Sun SY, Sun ZJ, Sung JJ, Suzuki K, Suzuki T, Swanson MS, Swanton C, Sweeney ST, Sy LK, Szabadkai G, Tabas I, Taegtmeyer H, Tafani M, Takács-Vellai K, Takano Y, Takegawa K, Takemura G, Takeshita F, Talbot NJ, Tan KS, Tanaka K, Tanaka K, Tang D, Tang D, Tanida I, Tannous BA, Tavernarakis N, Taylor GS, Taylor GA, Taylor JP, Terada LS, Terman A, Tettamanti G, Thevissen K, Thompson CB, Thorburn A, Thumm M, Tian F, Tian Y, Tocchini-Valentini G, Tolkovsky AM, Tomino Y, Tönges L, Tooze SA, Tournier C, Tower J, Towns R, Trajkovic V, Travassos LH, Tsai TF, Tschan MP, Tsubata T, Tsung A, Turk B, Turner LS, Tyagi SC, Uchiyama Y, Ueno T, Umekawa M, Umemiya-Shirafuji R, Unni VK, Vaccaro MI, Valente EM, Van den Berghe G, van der Klei IJ, van Doorn W, van Dyk LF, van Egmond M, van Grunsven LA, Vandenabeele P, Vandenberghe WP, Vanhorebeek I, Vaquero EC, Velasco G, Vellai T, Vicencio JM, Vierstra RD, Vila M, Vindis C, Viola G, Viscomi MT, Voitsekhovskaja OV, von Haefen C, Votruba M, Wada K, Wade-Martins R, Walker CL, Walsh CM, Walter J, Wan XB, Wang A, Wang C, Wang D, Wang F, Wang F, Wang G, Wang H, Wang HG, Wang HD, Wang J, Wang K, Wang M, Wang RC, Wang X, Wang X, Wang YJ, Wang Y, Wang Z, Wang ZC, Wang Z, Wansink DG, Ward DM, Watada H, Waters SL, Webster P, Wei L, Weihl CC, Weiss WA, Welford SM, Wen LP, Whitehouse CA, Whitton JL, Whitworth AJ, Wileman T, Wiley JW, Wilkinson S, Willbold D, Williams RL, Williamson PR, Wouters BG, Wu C, Wu DC, Wu WK, Wyttenbach A, Xavier RJ, Xi Z, Xia P, Xiao G, Xie Z, Xie Z, Xu DZ, Xu J, Xu L, Xu X, Yamamoto A, Yamamoto A, Yamashina S, Yamashita M, Yan X, Yanagida M, Yang DS, Yang E, Yang JM, Yang SY, Yang W, Yang WY, Yang Z, Yao MC, Yao TP, Yeganeh B, Yen WL, Yin JJ, Yin XM, Yoo OJ, Yoon G, Yoon SY, Yorimitsu T, Yoshikawa Y, Yoshimori T, Yoshimoto K, You HJ, Youle RJ, Younes A, Yu L, Yu L, Yu SW, Yu WH, Yuan ZM, Yue Z, Yun CH, Yuzaki M, Zabirnyk O, Silva-Zacarin E, Zacks D, Zacksenhaus E, Zaffaroni N, Zakeri Z, Zeh HJ 3rd, Zeitlin SO, Zhang H, Zhang HL, Zhang J, Zhang JP, Zhang L, Zhang L, Zhang MY, Zhang XD, Zhao M, Zhao YF, Zhao Y, Zhao ZJ, Zheng X, Zhivotovsky B, Zhong Q, Zhou CZ, Zhu C, Zhu WG, Zhu XF, Zhu X, Zhu Y, Zoladek T, Zong WX, Zorzano A, Zschocke J, Zuckerbraun B. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012;8:445-544. [PMID: 22966490 DOI: 10.4161/auto.19496] [Cited by in Crossref: 2580] [Cited by in F6Publishing: 2440] [Article Influence: 286.7] [Reference Citation Analysis]
26 Deracinois B, Camoin L, Lambert M, Boyer J, Dupont E, Bastide B, Cieniewski-bernard C. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Journal of Proteomics 2018;186:83-97. [DOI: 10.1016/j.jprot.2018.07.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
27 Kaushik S, Cuervo AM. Chaperones in autophagy. Pharmacol Res 2012;66:484-93. [PMID: 23059540 DOI: 10.1016/j.phrs.2012.10.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 4.8] [Reference Citation Analysis]
28 Zhan S, Wang T, Ge W. Multiple functions of the E3 ubiquitin ligase CHIP in immunity. Int Rev Immunol 2017;36:300-12. [PMID: 28574736 DOI: 10.1080/08830185.2017.1309528] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
29 Jiang D, Chen K, Lu X, Gao HJ, Qin ZH, Lin F. Exercise ameliorates the detrimental effect of chloroquine on skeletal muscles in mice via restoring autophagy flux. Acta Pharmacol Sin 2014;35:135-42. [PMID: 24335841 DOI: 10.1038/aps.2013.144] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
30 Carra S, Boncoraglio A, Kanon B, Brunsting JF, Minoia M, Rana A, Vos MJ, Seidel K, Sibon OC, Kampinga HH. Identification of the Drosophila ortholog of HSPB8: implication of HSPB8 loss of function in protein folding diseases. J Biol Chem 2010;285:37811-22. [PMID: 20858900 DOI: 10.1074/jbc.M110.127498] [Cited by in Crossref: 60] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
31 Santoro A, Nicolin V, Florenzano F, Rosati A, Capunzo M, Nori SL. BAG3 is involved in neuronal differentiation and migration. Cell Tissue Res 2017;368:249-58. [PMID: 28144784 DOI: 10.1007/s00441-017-2570-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
32 Bonam SR, Wang F, Muller S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option. J Autoimmun 2018;94:16-32. [PMID: 30219390 DOI: 10.1016/j.jaut.2018.08.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
33 Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19:365-381. [PMID: 29626215 DOI: 10.1038/s41580-018-0001-6] [Cited by in Crossref: 345] [Cited by in F6Publishing: 328] [Article Influence: 172.5] [Reference Citation Analysis]
34 Ranek MJ, Oeing C, Sanchez-Hodge R, Kokkonen-Simon KM, Dillard D, Aslam MI, Rainer PP, Mishra S, Dunkerly-Eyring B, Holewinski RJ, Virus C, Zhang H, Mannion MM, Agrawal V, Hahn V, Lee DI, Sasaki M, Van Eyk JE, Willis MS, Page RC, Schisler JC, Kass DA. CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. Nat Commun 2020;11:5237. [PMID: 33082318 DOI: 10.1038/s41467-020-18980-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
35 Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy. 2013;9:1937-1954. [PMID: 24121476 DOI: 10.4161/auto.26448] [Cited by in Crossref: 153] [Cited by in F6Publishing: 146] [Article Influence: 19.1] [Reference Citation Analysis]
36 Kathage B, Gehlert S, Ulbricht A, Lüdecke L, Tapia VE, Orfanos Z, Wenzel D, Bloch W, Volkmer R, Fleischmann BK, Fürst DO, Höhfeld J. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. Biochim Biophys Acta Mol Cell Res 2017;1864:62-75. [PMID: 27756573 DOI: 10.1016/j.bbamcr.2016.10.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
37 Liu X, Huang S, Wang X, Tang B, Li W, Mao Z. Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications. Neurosci Bull 2015;31:407-15. [PMID: 26206600 DOI: 10.1007/s12264-015-1542-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
38 Winter L, Unger A, Berwanger C, Spörrer M, Türk M, Chevessier F, Strucksberg KH, Schlötzer-Schrehardt U, Wittig I, Goldmann WH, Marcus K, Linke WA, Clemen CS, Schröder R. Imbalances in protein homeostasis caused by mutant desmin. Neuropathol Appl Neurobiol 2019;45:476-94. [PMID: 30179276 DOI: 10.1111/nan.12516] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
39 Myers VD, McClung JM, Wang J, Tahrir FG, Gupta MK, Gordon J, Kontos CH, Khalili K, Cheung JY, Feldman AM. The Multifunctional Protein BAG3: A Novel Therapeutic Target in Cardiovascular Disease. JACC Basic Transl Sci 2018;3:122-31. [PMID: 29938246 DOI: 10.1016/j.jacbts.2017.09.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
40 Knöll R, Buyandelger B, Lab M. The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011;2011:569628. [PMID: 22028589 DOI: 10.1155/2011/569628] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 6.9] [Reference Citation Analysis]
41 Kuscuoglu D, Janciauskiene S, Hamesch K, Haybaeck J, Trautwein C, Strnad P. Liver - master and servant of serum proteome. J Hepatol 2018;69:512-24. [PMID: 29709680 DOI: 10.1016/j.jhep.2018.04.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
42 Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen M, McDonald K, Stajich JM, Mahjneh I, Vihola A, Raheem O, Penttilä S, Lehtinen S, Huovinen S, Palmio J, Tasca G, Ricci E, Hackman P, Hauser M, Katsanis N, Udd B. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 2012;44:450-5, S1-2. [PMID: 22366786 DOI: 10.1038/ng.1103] [Cited by in Crossref: 155] [Cited by in F6Publishing: 142] [Article Influence: 17.2] [Reference Citation Analysis]
43 Sala AJ, Bott LC, Morimoto RI. Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol 2017;216:1231-41. [PMID: 28400444 DOI: 10.1083/jcb.201612111] [Cited by in Crossref: 120] [Cited by in F6Publishing: 99] [Article Influence: 30.0] [Reference Citation Analysis]
44 Piccolella M, Crippa V, Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Meroni M, Ferri N, Morelli FF, Carra S, Messi E, Poletti A. The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells. Oncotarget 2017;8:10400-15. [PMID: 28060751 DOI: 10.18632/oncotarget.14422] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
45 Maerkens A, Olivé M, Schreiner A, Feldkirchner S, Schessl J, Uszkoreit J, Barkovits K, Güttsches AK, Theis V, Eisenacher M, Tegenthoff M, Goldfarb LG, Schröder R, Schoser B, van der Ven PF, Fürst DO, Vorgerd M, Marcus K, Kley RA. New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun 2016;4:8. [PMID: 26842778 DOI: 10.1186/s40478-016-0280-0] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
46 Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol 2014;128:821-33. [PMID: 25273835 DOI: 10.1007/s00401-014-1344-5] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
47 Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 2015;16:267. [PMID: 26631063 DOI: 10.1186/s13059-015-0825-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
48 Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021;22:e52507. [PMID: 34309183 DOI: 10.15252/embr.202152507] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Carlisle C, Prill K, Pilgrim D. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle. Int J Mol Sci 2017;19:E32. [PMID: 29271938 DOI: 10.3390/ijms19010032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
50 Banduseela VC, Chen YW, Kultima HG, Norman HS, Aare S, Radell P, Eriksson LI, Hoffman EP, Larsson L. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics 2013;45:477-86. [PMID: 23572537 DOI: 10.1152/physiolgenomics.00141.2012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
51 Brancolini C, Iuliano L. Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020;12:E2385. [PMID: 32842524 DOI: 10.3390/cancers12092385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
52 Gentilella A, Khalili K. BAG3 expression in glioblastoma cells promotes accumulation of ubiquitinated clients in an Hsp70-dependent manner. J Biol Chem 2011;286:9205-15. [PMID: 21233200 DOI: 10.1074/jbc.M110.175836] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
53 Kityk R, Mayer MP. Hsp70-Substrate Interactions. In: Binder RJ, Srivastava PK, editors. Heat Shock Proteins in the Immune System. Cham: Springer International Publishing; 2018. pp. 3-20. [DOI: 10.1007/978-3-319-69042-1_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
54 Iwata Y, Suzuki N, Ohtake H, Kamauchi S, Hashimoto N, Kiyono T, Wakabayashi S. Cancer cachexia causes skeletal muscle damage via transient receptor potential vanilloid 2-independent mechanisms, unlike muscular dystrophy. J Cachexia Sarcopenia Muscle 2016;7:366-76. [PMID: 27239414 DOI: 10.1002/jcsm.12067] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
55 Claude-Taupin A, Codogno P, Dupont N. Links between autophagy and tissue mechanics. J Cell Sci 2021;134:jcs258589. [PMID: 34472605 DOI: 10.1242/jcs.258589] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Kwon D, Kim SM, Correia MA. Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): therapeutic and pathophysiological implications. Acta Pharm Sin B 2020;10:42-60. [PMID: 31993306 DOI: 10.1016/j.apsb.2019.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
57 Gonçalves CC, Sharon I, Schmeing TM, Ramos CHI, Young JC. The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70. Sci Rep 2021;11:17139. [PMID: 34429462 DOI: 10.1038/s41598-021-96518-x] [Reference Citation Analysis]
58 Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-petersen R. Redox Control of the Ubiquitin-Proteasome System: From Molecular Mechanisms to Functional Significance. Antioxidants & Redox Signaling 2011;15:2265-99. [DOI: 10.1089/ars.2010.3590] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 5.2] [Reference Citation Analysis]
59 Morrow G, Tanguay RM. Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. In: Tanguay RM, Hightower LE, editors. The Big Book on Small Heat Shock Proteins. Cham: Springer International Publishing; 2015. pp. 579-606. [DOI: 10.1007/978-3-319-16077-1_25] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
60 Rogon C, Ulbricht A, Hesse M, Alberti S, Vijayaraj P, Best D, Adams IR, Magin TM, Fleischmann BK, Höhfeld J. HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Mol Biol Cell 2014;25:2260-71. [PMID: 24899640 DOI: 10.1091/mbc.E14-02-0742] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
61 Assereto S, Piccirillo R, Baratto S, Scudieri P, Fiorillo C, Massacesi M, Traverso M, Galietta LJ, Bruno C, Minetti C, Zara F, Gazzerro E. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy. Lab Invest 2016;96:862-71. [DOI: 10.1038/labinvest.2016.63] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
62 Li S, Zhang HY, Wang T, Meng X, Zong ZH, Kong DH, Wang HQ, Du ZX. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy. J Clin Endocrinol Metab. 2014;99:E2298-E2307. [PMID: 25062457 DOI: 10.1210/jc.2014-1779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
63 Liton PB. The autophagic lysosomal system in outflow pathway physiology and pathophysiology. Exp Eye Res 2016;144:29-37. [PMID: 26226231 DOI: 10.1016/j.exer.2015.07.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
64 Overå KS, Garcia-Garcia J, Bhujabal Z, Jain A, Øvervatn A, Larsen KB, Deretic V, Johansen T, Lamark T, Sjøttem E. TRIM32, but not its muscular dystrophy-associated mutant, positively regulates and is targeted to autophagic degradation by p62/SQSTM1. J Cell Sci 2019;132:jcs236596. [PMID: 31685529 DOI: 10.1242/jcs.236596] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
65 Kettern N, Rogon C, Limmer A, Schild H, Höhfeld J. The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. PLoS One 2011;6:e16398. [PMID: 21283720 DOI: 10.1371/journal.pone.0016398] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
66 Smith DA, Carland CR, Guo Y, Bernstein SI. Getting Folded: Chaperone Proteins in Muscle Development, Maintenance and Disease: Chaperones In Sarcomere Protein Folding. Anat Rec 2014;297:1637-49. [DOI: 10.1002/ar.22980] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
67 Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, Ceuterick-de Groote C, Irobi J, Weis J, Timmerman V. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol 2018;135:131-48. [PMID: 28780615 DOI: 10.1007/s00401-017-1756-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
68 Wójtowicz I, Jabłońska J, Zmojdzian M, Taghli-Lamallem O, Renaud Y, Junion G, Daczewska M, Huelsmann S, Jagla K, Jagla T. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 2015;142:994-1005. [PMID: 25715399 DOI: 10.1242/dev.115352] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
69 Buchberger A, Bukau B, Sommer T. Protein Quality Control in the Cytosol and the Endoplasmic Reticulum: Brothers in Arms. Molecular Cell 2010;40:238-52. [DOI: 10.1016/j.molcel.2010.10.001] [Cited by in Crossref: 334] [Cited by in F6Publishing: 308] [Article Influence: 30.4] [Reference Citation Analysis]
70 Deffit SN, Blum JS. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Mol Immunol 2015;68:85-8. [PMID: 25953005 DOI: 10.1016/j.molimm.2015.04.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
71 Ferreira JV, Soares AR, Ramalho JS, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep 2015;5:10210. [PMID: 25958982 DOI: 10.1038/srep10210] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 7.7] [Reference Citation Analysis]
72 Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol. 2014;29:97-104. [PMID: 24929664 DOI: 10.1016/j.coi.2014.05.006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 10.4] [Reference Citation Analysis]
73 Can T, Faas L, Ashford DA, Dowle A, Thomas J, O'Toole P, Blanco G. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci 2014;12:25. [PMID: 25071420 DOI: 10.1186/1477-5956-12-25] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
74 Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, Vezzoli G, Tedesco B, Meroni M, Messi E, Piccolella M, Galbiati M, Garrè M, Morelli E, Vaccari T, Poletti A. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 2019;15:631-51. [PMID: 30335591 DOI: 10.1080/15548627.2018.1535292] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 32.3] [Reference Citation Analysis]
75 Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2015;21:1406-15. [PMID: 26646497 DOI: 10.1038/nm.4001] [Cited by in Crossref: 391] [Cited by in F6Publishing: 348] [Article Influence: 78.2] [Reference Citation Analysis]
76 Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, Behrends C, Fürst DO, Volkmer R, Hoffmann B, Kolanus W, Höhfeld J. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 2013;23:430-5. [PMID: 23434281 DOI: 10.1016/j.cub.2013.01.064] [Cited by in Crossref: 170] [Cited by in F6Publishing: 156] [Article Influence: 21.3] [Reference Citation Analysis]
77 Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. CMC 2020;27:2161-88. [DOI: 10.2174/0929867326666181129095309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
78 Kristensen LV, Oppermann FS, Rauen MJ, Fog K, Schmidt T, Schmidt J, Harmuth T, Hartmann-petersen R, Thirstrup K. Mass spectrometry analyses of normal and polyglutamine expanded ataxin-3 reveal novel interaction partners involved in mitochondrial function. Neurochemistry International 2018;112:5-17. [DOI: 10.1016/j.neuint.2017.10.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
79 Song S, Shi A, Lian H, Hu S, Nie Y. Filamin C in cardiomyopathy: from physiological roles to DNA variants. Heart Fail Rev 2021. [PMID: 34535832 DOI: 10.1007/s10741-021-10172-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Echeverría PC, Briand PA, Picard D. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation. Mol Cell Biol 2016;36:1310-21. [PMID: 26884463 DOI: 10.1128/MCB.01099-15] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 4.2] [Reference Citation Analysis]
81 Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PF, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014;127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
82 Fuchs M, Luthold C, Guilbert SM, Varlet AA, Lambert H, Jetté A, Elowe S, Landry J, Lavoie JN. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet 2015;11:e1005582. [PMID: 26496431 DOI: 10.1371/journal.pgen.1005582] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
83 Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294-4314. [PMID: 23517348 DOI: 10.1111/febs.12253] [Cited by in Crossref: 688] [Cited by in F6Publishing: 631] [Article Influence: 86.0] [Reference Citation Analysis]
84 Martin TG, Myers VD, Dubey P, Dubey S, Perez E, Moravec CS, Willis MS, Feldman AM, Kirk JA. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021;12:2942. [PMID: 34011988 DOI: 10.1038/s41467-021-23272-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
85 Echaniz-Laguna A, Lornage X, Lannes B, Schneider R, Bierry G, Dondaine N, Boland A, Deleuze JF, Böhm J, Thompson J, Laporte J, Biancalana V. HSPB8 haploinsufficiency causes dominant adult-onset axial and distal myopathy. Acta Neuropathol 2017;134:163-5. [PMID: 28501893 DOI: 10.1007/s00401-017-1724-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
86 Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Human Molecular Genetics 2010;19:3440-56. [DOI: 10.1093/hmg/ddq257] [Cited by in Crossref: 232] [Cited by in F6Publishing: 224] [Article Influence: 21.1] [Reference Citation Analysis]
87 Höhfeld J. Autophagy: Press and Push for Destruction. Curr Biol 2016;26:R703-5. [PMID: 27505239 DOI: 10.1016/j.cub.2016.06.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
88 Hwang YS, Ko MH, Kim YM, Park YH, Ono T, Han JY. The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy. Sci Rep 2016;6:36704. [PMID: 27827412 DOI: 10.1038/srep36704] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
89 Nicolau S, Liewluck T, Elliott JL, Engel AG, Milone M. A novel heterozygous mutation in the C-terminal region of HSPB8 leads to limb-girdle rimmed vacuolar myopathy. Neuromuscul Disord 2020;30:236-40. [PMID: 32165108 DOI: 10.1016/j.nmd.2020.02.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
90 Odnokoz O, Nakatsuka K, Wright C, Castellanos J, Klichko VI, Kretzschmar D, Orr WC, Radyuk SN. Mitochondrial Redox Signaling Is Critical to the Normal Functioning of the Neuronal System. Front Cell Dev Biol 2021;9:613036. [PMID: 33585478 DOI: 10.3389/fcell.2021.613036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci 2016;37:672-88. [PMID: 27162137 DOI: 10.1016/j.tips.2016.04.007] [Cited by in Crossref: 132] [Cited by in F6Publishing: 114] [Article Influence: 26.4] [Reference Citation Analysis]
92 Pathak P, Blech-Hermoni Y, Subedi K, Mpamugo J, Obeng-Nyarko C, Ohman R, Molloy I, Kates M, Hale J, Stauffer S, Sharan SK, Mankodi A. Myopathy associated LDB3 mutation causes Z-disc disassembly and protein aggregation through PKCα and TSC2-mTOR downregulation. Commun Biol 2021;4:355. [PMID: 33742095 DOI: 10.1038/s42003-021-01864-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
93 Ruggieri A, Saredi S, Zanotti S, Pasanisi MB, Maggi L, Mora M. DNAJB6 Myopathies: Focused Review on an Emerging and Expanding Group of Myopathies. Front Mol Biosci 2016;3:63. [PMID: 27747217 DOI: 10.3389/fmolb.2016.00063] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
94 Colinet H, Sciaussat D, Bozzolan F, Bowler K. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster. Journal of Experimental Biology. [DOI: 10.1242/jeb.076216] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
95 Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1-222. [PMID: 26799652 DOI: 10.1080/15548627.2015.1100356] [Cited by in Crossref: 3376] [Cited by in F6Publishing: 3349] [Article Influence: 675.2] [Reference Citation Analysis]
96 Morawe T, Hiebel C, Kern A, Behl C. Protein homeostasis, aging and Alzheimer's disease. Mol Neurobiol 2012;46:41-54. [PMID: 22361852 DOI: 10.1007/s12035-012-8246-0] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 7.1] [Reference Citation Analysis]
97 Papizan JB, Garry GA, Brezprozvannaya S, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice. J Clin Invest 2017;127:3730-40. [PMID: 28872460 DOI: 10.1172/JCI93445] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
98 Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014;77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 7.7] [Reference Citation Analysis]
99 Baeken MW, Behl C. On the origin of BAG(3) and its consequences for an expansion of BAG3's role in protein homeostasis. J Cell Biochem 2021. [PMID: 33942360 DOI: 10.1002/jcb.29925] [Reference Citation Analysis]
100 Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Front Neurosci 2019;13:796. [PMID: 31427919 DOI: 10.3389/fnins.2019.00796] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
101 Shemetov AA, Gusev NB. Biochemical characterization of small heat shock protein HspB8 (Hsp22)-Bag3 interaction. Arch Biochem Biophys 2011;513:1-9. [PMID: 21767525 DOI: 10.1016/j.abb.2011.06.014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
102 Ferreira JV, Fôfo H, Bejarano E, Bento CF, Ramalho JS, Girão H, Pereira P. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 2013;9:1349-66. [PMID: 23880665 DOI: 10.4161/auto.25190] [Cited by in Crossref: 100] [Cited by in F6Publishing: 90] [Article Influence: 12.5] [Reference Citation Analysis]
103 Bloemberg D, McDonald E, Dulay D, Quadrilatero J. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats. Acta Physiol (Oxf) 2014;210:381-91. [PMID: 24119246 DOI: 10.1111/apha.12178] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
104 Nillegoda NB, Wentink AS, Bukau B. Protein Disaggregation in Multicellular Organisms. Trends Biochem Sci 2018;43:285-300. [PMID: 29501325 DOI: 10.1016/j.tibs.2018.02.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 17.7] [Reference Citation Analysis]
105 Borlepawar A, Frey N, Rangrez AY. A systematic view on E3 ligase Ring TRIMmers with a focus on cardiac function and disease. Trends Cardiovasc Med 2019;29:1-8. [PMID: 29880235 DOI: 10.1016/j.tcm.2018.05.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
106 Mnich K, Carleton LA, Kavanagh ET, Doyle KM, Samali A, Gorman AM. Nerve growth factor-mediated inhibition of apoptosis post-caspase activation is due to removal of active caspase-3 in a lysosome-dependent manner. Cell Death Dis 2014;5:e1202. [PMID: 24787014 DOI: 10.1038/cddis.2014.173] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
107 Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Current Opinion in Pharmacology 2017;34:1-6. [DOI: 10.1016/j.coph.2017.03.009] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 16.5] [Reference Citation Analysis]
108 Jarmula A, Łusakowska A, Fichna JP, Topolewska M, Macias A, Johnson K, Töpf A, Straub V, Rosiak E, Szczepaniak K, Dunin-Horkawicz S, Maruszak A, Kaminska AM, Redowicz MJ. ANO5 mutations in the Polish limb girdle muscular dystrophy patients: Effects on the protein structure. Sci Rep 2019;9:11533. [PMID: 31395899 DOI: 10.1038/s41598-019-47849-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
109 Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014;588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
110 Dubińska-Magiera M, Niedbalska-Tarnowska J, Migocka-Patrzałek M, Posyniak E, Daczewska M. Characterization of Hspb8 in Zebrafish. Cells 2020;9:E1562. [PMID: 32604890 DOI: 10.3390/cells9061562] [Reference Citation Analysis]
111 Landis G, Shen J, Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany NY) 2012;4:768-89. [PMID: 23211361 DOI: 10.18632/aging.100499] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 10.3] [Reference Citation Analysis]
112 Al-Tahan S, Weiss L, Yu H, Tang S, Saporta M, Vihola A, Mozaffar T, Udd B, Kimonis V. New family with HSPB8-associated autosomal dominant rimmed vacuolar myopathy. Neurol Genet 2019;5:e349. [PMID: 31403083 DOI: 10.1212/NXG.0000000000000349] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
113 Luthold C, Varlet AA, Lambert H, Bordeleau F, Lavoie JN. Chaperone-Assisted Mitotic Actin Remodeling by BAG3 and HSPB8 Involves the Deacetylase HDAC6 and Its Substrate Cortactin. Int J Mol Sci 2020;22:E142. [PMID: 33375626 DOI: 10.3390/ijms22010142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012;2012:736905. [PMID: 22518139 DOI: 10.1155/2012/736905] [Cited by in Crossref: 232] [Cited by in F6Publishing: 226] [Article Influence: 25.8] [Reference Citation Analysis]
115 Wang G, Mao Z. Chaperone-mediated autophagy: roles in neurodegeneration. Transl Neurodegener 2014;3:20. [PMID: 25276349 DOI: 10.1186/2047-9158-3-20] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
116 Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev. 2011;91:1123-1159. [PMID: 22013208 DOI: 10.1152/physrev.00023.2010] [Cited by in Crossref: 282] [Cited by in F6Publishing: 262] [Article Influence: 28.2] [Reference Citation Analysis]
117 Chhangani D, Mishra A. Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol 2013;48:141-56. [PMID: 23378031 DOI: 10.1007/s12035-013-8411-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
118 Upadhyay A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharmaceutica Sinica B 2021;11:2995-3014. [DOI: 10.1016/j.apsb.2021.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
119 Zirin J, Nieuwenhuis J, Samsonova A, Tao R, Perrimon N. Regulators of autophagosome formation in Drosophila muscles. PLoS Genet 2015;11:e1005006. [PMID: 25692684 DOI: 10.1371/journal.pgen.1005006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
120 Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021;145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
121 Piccolella M, Cristofani R, Tedesco B, Chierichetti M, Ferrari V, Casarotto E, Cozzi M, Crippa V, Rusmini P, Galbiati M, Poletti A, Messi E. Retinoic Acid Downregulates HSPB8 Gene Expression in Human Breast Cancer Cells MCF-7. Front Oncol 2021;11:652085. [PMID: 34136389 DOI: 10.3389/fonc.2021.652085] [Reference Citation Analysis]
122 Rodríguez AE, López-Crisosto C, Peña-Oyarzún D, Salas D, Parra V, Quiroga C, Morawe T, Chiong M, Behl C, Lavandero S. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism. Autophagy 2016;12:287-96. [PMID: 26654586 DOI: 10.1080/15548627.2015.1124225] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
123 Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011;7:1273-94. [PMID: 21997368 DOI: 10.4161/auto.7.11.17661] [Cited by in Crossref: 182] [Cited by in F6Publishing: 165] [Article Influence: 18.2] [Reference Citation Analysis]
124 Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2019;126:30-43. [PMID: 30335577 DOI: 10.1152/japplphysiol.00685.2018] [Cited by in Crossref: 75] [Cited by in F6Publishing: 56] [Article Influence: 25.0] [Reference Citation Analysis]
125 Kley RA, Serdaroglu-Oflazer P, Leber Y, Odgerel Z, van der Ven PF, Olivé M, Ferrer I, Onipe A, Mihaylov M, Bilbao JM, Lee HS, Höhfeld J, Djinović-Carugo K, Kong K, Tegenthoff M, Peters SA, Stenzel W, Vorgerd M, Goldfarb LG, Fürst DO. Pathophysiology of protein aggregation and extended phenotyping in filaminopathy. Brain 2012;135:2642-60. [PMID: 22961544 DOI: 10.1093/brain/aws200] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 6.1] [Reference Citation Analysis]
126 Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020;7:585309. [PMID: 33195472 DOI: 10.3389/fcvm.2020.585309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
127 Tonione MA, Bi K, Tsutsui ND. Transcriptomic signatures of cold adaptation and heat stress in the winter ant (Prenolepis imparis). PLoS One 2020;15:e0239558. [PMID: 33002025 DOI: 10.1371/journal.pone.0239558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Jonson PH, Palmio J, Johari M, Penttilä S, Evilä A, Nelson I, Bonne G, Wiart N, Meyer V, Boland A, Deleuze J, Masson C, Stojkovic T, Chapon F, Romero NB, Solé G, Ferrer X, Ferreiro A, Hackman P, Richard I, Udd B. Novel mutations in DNAJB6 cause LGMD1D and distal myopathy in French families. Eur J Neurol 2018;25:790-4. [DOI: 10.1111/ene.13598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
129 Rusmini P, Bolzoni E, Crippa V, Onesto E, Sau D, Galbiati M, Piccolella M, Poletti A. Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiol Dis 2010;40:361-9. [PMID: 20621188 DOI: 10.1016/j.nbd.2010.06.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
130 Crippa V, Boncoraglio A, Galbiati M, Aggarwal T, Rusmini P, Giorgetti E, Cristofani R, Carra S, Pennuto M, Poletti A. Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Front Cell Neurosci 2013;7:234. [PMID: 24324403 DOI: 10.3389/fncel.2013.00234] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
131 Paul I, Ghosh MK. The E3 ligase CHIP: insights into its structure and regulation. Biomed Res Int 2014;2014:918183. [PMID: 24868554 DOI: 10.1155/2014/918183] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
132 Cristofani R, Crippa V, Rusmini P, Cicardi ME, Meroni M, Licata NV, Sala G, Giorgetti E, Grunseich C, Galbiati M, Piccolella M, Messi E, Ferrarese C, Carra S, Poletti A. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy 2017;13:1280-303. [PMID: 28402699 DOI: 10.1080/15548627.2017.1308985] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 13.7] [Reference Citation Analysis]
133 Olzscha H. Posttranslational modifications and proteinopathies: how guardians of the proteome are defeated. Biological Chemistry 2019;400:895-915. [DOI: 10.1515/hsz-2018-0458] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
134 Sakai K, Fukuda T, Iwadate K. Immunohistochemical analysis of the ubiquitin proteasome system and autophagy lysosome system induced after traumatic intracranial injury: association with time between the injury and death. Am J Forensic Med Pathol 2014;35:38-44. [PMID: 24317096 DOI: 10.1097/PAF.0000000000000067] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
135 Galbiati M, Crippa V, Rusmini P, Cristofani R, Cicardi ME, Giorgetti E, Onesto E, Messi E, Poletti A. ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 2014;79:70-8. [PMID: 25451799 DOI: 10.1016/j.neuint.2014.10.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
136 Cristofani R, Piccolella M, Crippa V, Tedesco B, Montagnani Marelli M, Poletti A, Moretti RM. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells 2021;10:335. [PMID: 33562660 DOI: 10.3390/cells10020335] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
137 Martin TG, Tawfik S, Moravec CS, Pak TR, Kirk JA. BAG3 expression and sarcomere localization in the human heart are linked to HSF-1 and are differentially affected by sex and disease. Am J Physiol Heart Circ Physiol 2021;320:H2339-50. [PMID: 33989081 DOI: 10.1152/ajpheart.00419.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
138 Perera S, Holt MR, Mankoo BS, Gautel M. Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol 2011;351:46-61. [PMID: 21185285 DOI: 10.1016/j.ydbio.2010.12.024] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
139 Yamamoto H, Kamegaya E, Sawada W, Hasegawa R, Yamamoto T, Hagino Y, Takamatsu Y, Imai K, Koga H, Mishina M, Ikeda K. Involvement of the N-methyl-D-aspartate receptor GluN2D subunit in phencyclidine-induced motor impairment, gene expression, and increased Fos immunoreactivity. Mol Brain 2013;6:56. [PMID: 24330819 DOI: 10.1186/1756-6606-6-56] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
140 Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019;24:295-308. [PMID: 30758704 DOI: 10.1007/s12192-019-00979-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 14.5] [Reference Citation Analysis]
141 Hiebel C, Stürner E, Hoffmeister M, Tascher G, Schwarz M, Nagel H, Behrends C, Münch C, Behl C. BAG3 Proteomic Signature under Proteostasis Stress. Cells 2020;9:E2416. [PMID: 33158300 DOI: 10.3390/cells9112416] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
142 Scaglione KM, Zavodszky E, Todi SV, Patury S, Xu P, Rodríguez-Lebrón E, Fischer S, Konen J, Djarmati A, Peng J, Gestwicki JE, Paulson HL. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol Cell 2011;43:599-612. [PMID: 21855799 DOI: 10.1016/j.molcel.2011.05.036] [Cited by in Crossref: 113] [Cited by in F6Publishing: 108] [Article Influence: 11.3] [Reference Citation Analysis]
143 Tarone G, Brancaccio M. Keep your heart in shape: molecular chaperone networks for treating heart disease. Cardiovasc Res 2014;102:346-61. [PMID: 24585203 DOI: 10.1093/cvr/cvu049] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
144 Chen SF, Kang ML, Chen YC, Tang HW, Huang CW, Li WH, Lin CP, Wang CY, Wang PY, Chen GC, Wang HD. Autophagy-related gene 7 is downstream of heat shock protein 27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila. J Biomed Sci 2012;19:52. [PMID: 22621211 DOI: 10.1186/1423-0127-19-52] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
145 Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol 2016;56 Suppl:S23-32. [PMID: 27345321 DOI: 10.1016/j.domaniend.2016.02.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
146 Mao Z, Nakamura F. Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020;21:E2696. [PMID: 32295012 DOI: 10.3390/ijms21082696] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
147 Jokl EJ, Blanco G. Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mamm Genome 2016;27:525-37. [PMID: 27484057 DOI: 10.1007/s00335-016-9659-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
148 Schubert J, Tariq M, Geddes G, Kindel S, Miller EM, Ware SM. Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy. Human Mutation 2018;39:2083-96. [DOI: 10.1002/humu.23661] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
149 Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 2016;26:6-16. [PMID: 26437584 DOI: 10.1016/j.tcb.2015.08.010] [Cited by in Crossref: 391] [Cited by in F6Publishing: 365] [Article Influence: 65.2] [Reference Citation Analysis]
150 Rusmini P, Cristofani R, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Vezzoli G, Tedesco B, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases. Front Mol Neurosci 2017;10:176. [PMID: 28680390 DOI: 10.3389/fnmol.2017.00176] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
151 Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020;21:E4354. [PMID: 32575374 DOI: 10.3390/ijms21124354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
152 Wang C, Arrington J, Ratliff AC, Chen J, Horton HE, Nie Y, Yue F, Hrycyna CA, Tao WA, Kuang S. Methyltransferase-like 21c methylates and stabilizes the heat shock protein Hspa8 in type I myofibers in mice. J Biol Chem 2019;294:13718-28. [PMID: 31346037 DOI: 10.1074/jbc.RA119.008430] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
153 Janssens J, Philtjens S, Kleinberger G, Van Mossevelde S, van der Zee J, Cacace R, Engelborghs S, Sieben A, Banzhaf-Strathmann J, Dillen L, Merlin C, Cuijt I, Robberecht C, Schmid B, Santens P, Ivanoiu A, Vandenbulcke M, Vandenberghe R, Cras P, De Deyn PP, Martin JJ, Maudsley S, Haass C, Cruts M, Van Broeckhoven C; Belgian Neurology (BELNEU) consortium. Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains. Acta Neuropathol Commun 2015;3:68. [PMID: 26555887 DOI: 10.1186/s40478-015-0246-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
154 Klimek C, Jahnke R, Wördehoff J, Kathage B, Stadel D, Behrends C, Hergovich A, Höhfeld J. The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy. Biochim Biophys Acta Mol Cell Res 2019;1866:1556-66. [PMID: 31326538 DOI: 10.1016/j.bbamcr.2019.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
155 Willis MS, Min JN, Wang S, McDonough H, Lockyer P, Wadosky KM, Patterson C. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct 2013;31:724-35. [PMID: 23553918 DOI: 10.1002/cbf.2962] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
156 Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy. 2015;11:538-546. [PMID: 25714469 DOI: 10.1080/15548627.2015.1017186] [Cited by in Crossref: 101] [Cited by in F6Publishing: 86] [Article Influence: 20.2] [Reference Citation Analysis]
157 Ruparelia AA, Mckaige EA, Williams C, Schulze KE, Fuchs M, Oorschot V, Lacene E, Meregalli M, Lee C, Serrano RJ, Baxter EC, Monro K, Torrente Y, Ramm G, Stojkovic T, Lavoie JN, Bryson-richardson RJ. Metformin rescues muscle function in BAG3 myofibrillar myopathy models. Autophagy. [DOI: 10.1080/15548627.2020.1833500] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
158 Cicardi ME, Cristofani R, Crippa V, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Galbiati M, Piccolella M, Messi E, Carra S, Pennuto M, Rusmini P, Poletti A. Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Front Endocrinol (Lausanne) 2019;10:569. [PMID: 31481932 DOI: 10.3389/fendo.2019.00569] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
159 Batonnet-Pichon S, Behin A, Cabet E, Delort F, Vicart P, Lilienbaum A. Myofibrillar Myopathies: New Perspectives from Animal Models to Potential Therapeutic Approaches. J Neuromuscul Dis 2017;4:1-15. [PMID: 28269794 DOI: 10.3233/JND-160203] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
160 Zirin J, Nieuwenhuis J, Perrimon N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 2013;11:e1001708. [PMID: 24265594 DOI: 10.1371/journal.pbio.1001708] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 8.5] [Reference Citation Analysis]
161 Gamerdinger M, Carra S, Behl C. Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med (Berl) 2011;89:1175-82. [PMID: 21818581 DOI: 10.1007/s00109-011-0795-6] [Cited by in Crossref: 81] [Cited by in F6Publishing: 69] [Article Influence: 8.1] [Reference Citation Analysis]
162 Kögel D, Linder B, Brunschweiger A, Chines S, Behl C. At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells 2020;9:E574. [PMID: 32121220 DOI: 10.3390/cells9030574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
163 Pokrzywa W, Lorenz R, Hoppe T. Chaperone-directed ubiquitylation maintains proteostasis at the expense of longevity. Worm 2017;6:e1371403. [PMID: 28959501 DOI: 10.1080/21624054.2017.1371403] [Reference Citation Analysis]
164 Cannizzo ES, Clement CC, Morozova K, Valdor R, Kaushik S, Almeida LN, Follo C, Sahu R, Cuervo AM, Macian F, Santambrogio L. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep 2012;2:136-49. [PMID: 22840404 DOI: 10.1016/j.celrep.2012.06.005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 5.7] [Reference Citation Analysis]
165 Mercer EJ, Lin YF, Cohen-Gould L, Evans T. Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 2018;435:41-55. [PMID: 29331499 DOI: 10.1016/j.ydbio.2018.01.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
166 Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 2018;293:13682-95. [PMID: 29986884 DOI: 10.1074/jbc.RA118.002607] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
167 Crippa V, D'Agostino VG, Cristofani R, Rusmini P, Cicardi ME, Messi E, Loffredo R, Pancher M, Piccolella M, Galbiati M, Meroni M, Cereda C, Carra S, Provenzani A, Poletti A. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci Rep 2016;6:22827. [PMID: 26961006 DOI: 10.1038/srep22827] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 10.6] [Reference Citation Analysis]
168 Huelsmann S, Rintanen N, Sethi R, Brown NH, Ylänne J. Evidence for the mechanosensor function of filamin in tissue development. Sci Rep 2016;6:32798. [PMID: 27597179 DOI: 10.1038/srep32798] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
169 Leber Y, Ruparelia AA, Kirfel G, van der Ven PF, Hoffmann B, Merkel R, Bryson-Richardson RJ, Fürst DO. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum Mol Genet 2016;25:2776-88. [PMID: 27206985 DOI: 10.1093/hmg/ddw135] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
170 Jayaraj GG, Hipp MS, Hartl FU. Functional Modules of the Proteostasis Network. Cold Spring Harb Perspect Biol 2020;12:a033951. [PMID: 30833457 DOI: 10.1101/cshperspect.a033951] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 47.0] [Reference Citation Analysis]
171 Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM. HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight 2018;3:99319. [PMID: 29875314 DOI: 10.1172/jci.insight.99319] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
172 Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279-296. [PMID: 21189453 DOI: 10.4161/auto.7.3.14487] [Cited by in Crossref: 1142] [Cited by in F6Publishing: 1083] [Article Influence: 114.2] [Reference Citation Analysis]
173 Argüello RJ, Reverendo M, Gatti E, Pierre P. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation. Immunol Rev 2016;272:28-38. [DOI: 10.1111/imr.12427] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
174 Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, Unger A, Kirfel G, van der Ven PFM, Marcus K, Linke WA, Clemen CS, Schröder R, Fürst DO. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun 2020;8:154. [PMID: 32887649 DOI: 10.1186/s40478-020-01001-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
175 Kevei É, Pokrzywa W, Hoppe T. Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 2017;591:2616-35. [PMID: 28699655 DOI: 10.1002/1873-3468.12750] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
176 Chakraborty D, Felzen V, Hiebel C, Stürner E, Perumal N, Manicam C, Sehn E, Grus F, Wolfrum U, Behl C. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. Redox Biol 2019;24:101181. [PMID: 30959460 DOI: 10.1016/j.redox.2019.101181] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
177 Sarparanta J, Jonson PH, Kawan S, Udd B. Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020;21:E1409. [PMID: 32093037 DOI: 10.3390/ijms21041409] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
178 Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012;22:407-417. [PMID: 22748206 DOI: 10.1016/j.tcb.2012.05.006] [Cited by in Crossref: 501] [Cited by in F6Publishing: 470] [Article Influence: 55.7] [Reference Citation Analysis]
179 Zhuang L, Peng F, Huang Y, Li W, Huang J, Chu Y, Ren P, Sun Y, Zhang Y, Xue E, Guo X, Shen X, Xue L. CHIP modulates APP-induced autophagy-dependent pathological symptoms in Drosophila. Aging Cell 2020;19:e13070. [PMID: 31777182 DOI: 10.1111/acel.13070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
180 Kokate SB, Dixit P, Poirah I, Roy AD, Chakraborty D, Rout N, Singh SP, Ashktorab H, Smoot DT, Bhattacharyya A. Testin and filamin-C downregulation by acetylated Siah2 increases invasiveness of Helicobacter pylori-infected gastric cancer cells. Int J Biochem Cell Biol 2018;103:14-24. [PMID: 30063986 DOI: 10.1016/j.biocel.2018.07.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
181 Tower J. Heat shock proteins and Drosophila aging. Exp Gerontol 2011;46:355-62. [PMID: 20840862 DOI: 10.1016/j.exger.2010.09.002] [Cited by in Crossref: 98] [Cited by in F6Publishing: 87] [Article Influence: 8.9] [Reference Citation Analysis]
182 Hipp MS, Park S, Hartl FU. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends in Cell Biology 2014;24:506-14. [DOI: 10.1016/j.tcb.2014.05.003] [Cited by in Crossref: 388] [Cited by in F6Publishing: 348] [Article Influence: 55.4] [Reference Citation Analysis]
183 Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 2013;6:25-39. [PMID: 23268536 DOI: 10.1242/dmm.010389] [Cited by in Crossref: 609] [Cited by in F6Publishing: 579] [Article Influence: 76.1] [Reference Citation Analysis]
184 Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet 2016;25:2131-42. [PMID: 26969713 DOI: 10.1093/hmg/ddw080] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
185 Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020;12:191. [PMID: 32792938 DOI: 10.3389/fnagi.2020.00191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Martin TG, Delligatti CE, Muntu NA, Stachowski-Doll MJ, Kirk JA. Pharmacological inhibition of BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for cardiomyocytes. J Cell Biochem 2021. [PMID: 34487557 DOI: 10.1002/jcb.30140] [Reference Citation Analysis]
187 Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017;22:553-67. [PMID: 28275944 DOI: 10.1007/s12192-017-0780-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
188 Dupont N, Codogno P. Autophagy transduces physical constraints into biological responses. Int J Biochem Cell Biol 2016;79:419-26. [PMID: 27566364 DOI: 10.1016/j.biocel.2016.08.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
189 Balaji V, Pokrzywa W, Hoppe T. Ubiquitylation Pathways In Insulin Signaling and Organismal Homeostasis. Bioessays 2018;40:e1700223. [PMID: 29611634 DOI: 10.1002/bies.201700223] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
190 Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2020;12:630743. [PMID: 33633561 DOI: 10.3389/fnagi.2020.630743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
191 Onesto E, Rusmini P, Crippa V, Ferri N, Zito A, Galbiati M, Poletti A. Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis. J Neurochem 2011;118:266-80. [PMID: 21554318 DOI: 10.1111/j.1471-4159.2011.07298.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 4.1] [Reference Citation Analysis]
192 Ghaoui R, Palmio J, Brewer J, Lek M, Needham M, Evilä A, Hackman P, Jonson PH, Penttilä S, Vihola A, Huovinen S, Lindfors M, Davis RL, Waddell L, Kaur S, Yiannikas C, North K, Clarke N, MacArthur DG, Sue CM, Udd B. Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 2016;86:391-8. [PMID: 26718575 DOI: 10.1212/WNL.0000000000002324] [Cited by in Crossref: 74] [Cited by in F6Publishing: 32] [Article Influence: 12.3] [Reference Citation Analysis]
193 Juo LY, Liao WC, Shih YL, Yang BY, Liu AB, Yan YT. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J Cell Sci 2016;129:1661-70. [PMID: 26929074 DOI: 10.1242/jcs.179887] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
194 Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017;591:2648-60. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 20.0] [Reference Citation Analysis]
195 Hara K, Nozaki K, Matsuo Y, Tawara N, Yamashita S. Biological significance of target fibres in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2020;91:1241-2. [PMID: 32732386 DOI: 10.1136/jnnp-2020-324151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
196 Ramírez-Rodríguez G, Babu H, Klempin F, Krylyshkina O, Baekelandt V, Gijsbers R, Debyser Z, Overall RW, Nicola Z, Fabel K, Kempermann G. The α crystallin domain of small heat shock protein b8 (Hspb8) acts as survival and differentiation factor in adult hippocampal neurogenesis. J Neurosci 2013;33:5785-96. [PMID: 23536091 DOI: 10.1523/JNEUROSCI.6452-11.2013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
197 Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, Deng WM. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 2020;18:e3000538. [PMID: 32339165 DOI: 10.1371/journal.pbio.3000538] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 27.0] [Reference Citation Analysis]
198 Feldman AM, Gordon J, Wang J, Song J, Zhang XQ, Myers VD, Tomar D, Gerhard GS, Khalili K, Cheung JY. Novel BAG3 Variants in African American Patients With Cardiomyopathy: Reduced β-Adrenergic Responsiveness in Excitation-Contraction. J Card Fail 2020;26:1075-85. [PMID: 32956817 DOI: 10.1016/j.cardfail.2020.09.009] [Reference Citation Analysis]
199 Vitali M, Sirri R, Zappaterra M, Zambonelli P, Giannini G, Lo Fiego DP, Davoli R. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations. PLoS One 2019;14:e0212449. [PMID: 30785965 DOI: 10.1371/journal.pone.0212449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
200 Ulbricht A, Arndt V, Höhfeld J. Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells. Commun Integr Biol 2013;6:e24925. [PMID: 23986815 DOI: 10.4161/cib.24925] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
201 Yun HH, Jung SY, Park BW, Ko JS, Yoo K, Yeo J, Kim HL, Park HJ, Youn HJ, Lee JH. An Adult Mouse Model of Dilated Cardiomyopathy Caused by Inducible Cardiac-Specific Bis Deletion. Int J Mol Sci 2021;22:1343. [PMID: 33572816 DOI: 10.3390/ijms22031343] [Reference Citation Analysis]
202 Razidlo GL, Wang Y, Chen J, Krueger EW, Billadeau DD, McNiven MA. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev Cell. 2013;24:573-585. [PMID: 23537630 DOI: 10.1016/j.devcel.2013.02.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 6.4] [Reference Citation Analysis]
203 Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Progress in Neurobiology 2017;159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
204 Robertson R, Conte TC, Dicaire MJ, Rymar VV, Sadikot AF, Bryson-Richardson RJ, Lavoie JN, O'Ferrall E, Young JC, Brais B. BAG3P215L/KO Mice as a Model of BAG3P209L Myofibrillar Myopathy. Am J Pathol 2020;190:554-62. [PMID: 31953038 DOI: 10.1016/j.ajpath.2019.11.005] [Reference Citation Analysis]
205 Lu W, Kim JD, Tabara S, Kwon C, Mizukami H, Kimura K, Fukamizu A. The N-terminal sequence of murine PRMT5 variant 2 is required for Hsp70 interaction and CHIP ligase-mediated degradation. Biochem Biophys Res Commun 2019;514:1185-91. [PMID: 31103260 DOI: 10.1016/j.bbrc.2019.05.077] [Reference Citation Analysis]
206 Bouvet M, Dubois-Deruy E, Turkieh A, Mulder P, Peugnet V, Chwastyniak M, Beseme O, Dechaumes A, Amouyel P, Richard V, Lamblin N, Pinet F. Desmin aggrephagy in rat and human ischemic heart failure through PKCζ and GSK3β as upstream signaling pathways. Cell Death Discov 2021;7:153. [PMID: 34226534 DOI: 10.1038/s41420-021-00549-2] [Reference Citation Analysis]
207 Oh KH, Kim H. Reduced IGF signaling prevents muscle cell death in a Caenorhabditis elegans model of muscular dystrophy. Proc Natl Acad Sci U S A 2013;110:19024-9. [PMID: 24191049 DOI: 10.1073/pnas.1308866110] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
208 Tobin SW, Yang D, Girgis J, Farahzad A, Blais A, McDermott JC. Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle atrophy. J Cell Sci 2016;129:4076-90. [PMID: 27632998 DOI: 10.1242/jcs.190009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
209 Fernández-Fernández MR, Valpuesta JM. Hsp70 chaperone: a master player in protein homeostasis. F1000Res 2018;7:F1000 Faculty Rev-1497. [PMID: 30338057 DOI: 10.12688/f1000research.15528.1] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 15.7] [Reference Citation Analysis]
210 Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242-1253. [PMID: 25375928 DOI: 10.1038/nm.3739] [Cited by in Crossref: 415] [Cited by in F6Publishing: 400] [Article Influence: 59.3] [Reference Citation Analysis]
211 Penna C, Sorge M, Femminò S, Pagliaro P, Brancaccio M. Redox Aspects of Chaperones in Cardiac Function. Front Physiol 2018;9:216. [PMID: 29615920 DOI: 10.3389/fphys.2018.00216] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
212 Ohta M, Takaiwa F. Emerging features of ER resident J-proteins in plants. Plant Signal Behav 2014;9:e28194. [PMID: 24614601 [PMID: 24614601 DOI: 10.4161/psb.28194] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
213 Kostera-Pruszczyk A, Suszek M, Płoski R, Franaszczyk M, Potulska-Chromik A, Pruszczyk P, Sadurska E, Karolczak J, Kamińska AM, Rędowicz MJ. BAG3-related myopathy, polyneuropathy and cardiomyopathy with long QT syndrome. J Muscle Res Cell Motil 2015;36:423-32. [PMID: 26545904 DOI: 10.1007/s10974-015-9431-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
214 Guilbert SM, Varlet A, Fuchs M, Lambert H, Landry J, Lavoie JN. Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. In: Tanguay RM, Hightower LE, editors. The Big Book on Small Heat Shock Proteins. Cham: Springer International Publishing; 2015. pp. 435-56. [DOI: 10.1007/978-3-319-16077-1_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
215 Dias C, Nita E, Faktor J, Tynan AC, Hernychova L, Vojtesek B, Nylandsted J, Hupp TR, Kunath T, Ball KL. CHIP-dependent regulation of the actin cytoskeleton is linked to neuronal cell membrane integrity. iScience 2021;24:102878. [PMID: 34401662 DOI: 10.1016/j.isci.2021.102878] [Reference Citation Analysis]
216 Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH, Carra S. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy. 2014;10:1603-1621. [PMID: 25046115 DOI: 10.4161/auto.29409] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 12.6] [Reference Citation Analysis]
217 Münz C. Antigen processing by macroautophagy for MHC presentation. Front Immunol 2011;2:42. [PMID: 22566832 DOI: 10.3389/fimmu.2011.00042] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
218 Sato T, Hayashi YK, Oya Y, Kondo T, Sugie K, Kaneda D, Houzen H, Yabe I, Sasaki H, Noguchi S, Nonaka I, Osawa M, Nishino I. DNAJB6 myopathy in an Asian cohort and cytoplasmic/nuclear inclusions. Neuromuscular Disorders 2013;23:269-76. [DOI: 10.1016/j.nmd.2012.12.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 4.9] [Reference Citation Analysis]
219 MacPhee DJ, Miskiewicz EI. The Potential Functions of Small Heat Shock Proteins in the Uterine Musculature during Pregnancy. Adv Anat Embryol Cell Biol 2017;222:95-116. [PMID: 28389752 DOI: 10.1007/978-3-319-51409-3_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
220 Perrett S, Papsdorf K, Richter K. Protein folding, misfolding and quality control: the role of molecular chaperones. Essays in Biochemistry 2014;56:53-68. [DOI: 10.1042/bse0560053] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
221 Brooks D, Naeem F, Stetsiv M, Goetting SC, Bawa S, Green N, Clark C, Bashirullah A, Geisbrecht ER. Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet 2020;16:e1008700. [PMID: 32320396 DOI: 10.1371/journal.pgen.1008700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
222 Kettern N, Dreiseidler M, Tawo R, Höhfeld J. Chaperone-assisted degradation: multiple paths to destruction. Biological Chemistry 2010;391:481-9. [DOI: 10.1515/bc.2010.058] [Cited by in Crossref: 118] [Cited by in F6Publishing: 112] [Article Influence: 10.7] [Reference Citation Analysis]
223 Agarwal R, Paulo JA, Toepfer CN, Ewoldt JK, Sundaram S, Chopra A, Zhang Q, Gorham J, DePalma SR, Chen CS, Gygi SP, Seidman CE, Seidman JG. Filamin C Cardiomyopathy Variants Cause Protein and Lysosome Accumulation. Circ Res 2021;129:751-66. [PMID: 34405687 DOI: 10.1161/CIRCRESAHA.120.317076] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Fernandes CFL, Iglesia RP, Melo-Escobar MI, Prado MB, Lopes MH. Chaperones and Beyond as Key Players in Pluripotency Maintenance. Front Cell Dev Biol 2019;7:150. [PMID: 31428613 DOI: 10.3389/fcell.2019.00150] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
225 Lupo V, Aguado C, Knecht E, Espinós C. Chaperonopathies: Spotlight on Hereditary Motor Neuropathies. Front Mol Biosci 2016;3:81. [PMID: 28018906 DOI: 10.3389/fmolb.2016.00081] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
226 Hirt J, Liton PB. Autophagy and mechanotransduction in outflow pathway cells. Exp Eye Res 2017;158:146-53. [PMID: 27373974 DOI: 10.1016/j.exer.2016.06.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
227 Merlini L, Nishino I. 201st ENMC International Workshop: Autophagy in muscular dystrophies – Translational approach, 1–3 November 2013, Bussum, The Netherlands. Neuromuscular Disorders 2014;24:546-61. [DOI: 10.1016/j.nmd.2014.03.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
228 Clemen CS, Stöckigt F, Strucksberg KH, Chevessier F, Winter L, Schütz J, Bauer R, Thorweihe JM, Wenzel D, Schlötzer-Schrehardt U, Rasche V, Krsmanovic P, Katus HA, Rottbauer W, Just S, Müller OJ, Friedrich O, Meyer R, Herrmann H, Schrickel JW, Schröder R. The toxic effect of R350P mutant desmin in striated muscle of man and mouse. Acta Neuropathol 2015;129:297-315. [PMID: 25394388 DOI: 10.1007/s00401-014-1363-2] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 7.1] [Reference Citation Analysis]
229 Zhang J, Lu W, Lei Q, Tao X, You H, Xie P. Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model. Neural Regen Res 2013;8:2327-35. [PMID: 25206542 DOI: 10.3969/j.issn.1673-5374.2013.25.003] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
230 Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GVW. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2021. [PMID: 33987872 DOI: 10.1002/jcb.29952] [Reference Citation Analysis]
231 Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Naujock M, Meister M, Minoia M, Kampinga HH, Poletti A. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 2013;368:20110409. [PMID: 23530259 DOI: 10.1098/rstb.2011.0409] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 6.9] [Reference Citation Analysis]
232 Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S. Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 2012;39:143-53. [PMID: 22727561 DOI: 10.1016/j.jaut.2012.05.016] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 4.6] [Reference Citation Analysis]
233 Albert MC, Brinkmann K, Pokrzywa W, Günther SD, Krönke M, Hoppe T, Kashkar H. CHIP ubiquitylates NOXA and induces its lysosomal degradation in response to DNA damage. Cell Death Dis 2020;11:740. [PMID: 32913203 DOI: 10.1038/s41419-020-02923-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol. 2012;44:1622-1631. [PMID: 22521623 DOI: 10.1016/j.biocel.2012.04.002] [Cited by in Crossref: 188] [Cited by in F6Publishing: 176] [Article Influence: 20.9] [Reference Citation Analysis]
235 Park C, Cuervo AM. Selective autophagy: talking with the UPS. Cell Biochem Biophys 2013;67:3-13. [PMID: 23709310 DOI: 10.1007/s12013-013-9623-7] [Cited by in Crossref: 78] [Cited by in F6Publishing: 75] [Article Influence: 11.1] [Reference Citation Analysis]
236 Judge LM, Perez-Bermejo JA, Truong A, Ribeiro AJ, Yoo JC, Jensen CL, Mandegar MA, Huebsch N, Kaake RM, So PL, Srivastava D, Pruitt BL, Krogan NJ, Conklin BR. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight. 2017;2. [PMID: 28724793 DOI: 10.1172/jci.insight.94623] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 13.5] [Reference Citation Analysis]
237 Martínez-Martínez S, Rodríguez-Ferri EF, Frandoloso R, Garrido-Pavón JJ, Zaldívar-López S, Barreiro C, Gutiérrez-Martín CB. Molecular analysis of lungs from pigs immunized with a mutant transferrin binding protein B-based vaccine and challenged with Haemophilus parasuis. Comp Immunol Microbiol Infect Dis 2016;48:69-78. [PMID: 27638122 DOI: 10.1016/j.cimid.2016.08.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
238 Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem. 2018;293:5414-5424. [PMID: 29247007 DOI: 10.1074/jbc.r117.818237] [Cited by in Crossref: 140] [Cited by in F6Publishing: 75] [Article Influence: 35.0] [Reference Citation Analysis]
239 Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018;373:20160530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
240 Hunt LC, Schadeberg B, Stover J, Haugen B, Pagala V, Wang YD, Puglise J, Barton ER, Peng J, Demontis F. Antagonistic control of myofiber size and muscle protein quality control by the ubiquitin ligase UBR4 during aging. Nat Commun 2021;12:1418. [PMID: 33658508 DOI: 10.1038/s41467-021-21738-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
241 Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Subcell Biochem. 2015;78:1-33. [PMID: 25487014 DOI: 10.1007/978-3-319-11731-7_1] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
242 Rusmini P, Polanco MJ, Cristofani R, Cicardi ME, Meroni M, Galbiati M, Piccolella M, Messi E, Giorgetti E, Lieberman AP, Milioto C, Rocchi A, Aggarwal T, Pennuto M, Crippa V, Poletti A. Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy. Sci Rep 2015;5:15174. [PMID: 26490709 DOI: 10.1038/srep15174] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
243 Wentink A, Nussbaum-Krammer C, Bukau B. Modulation of Amyloid States by Molecular Chaperones. Cold Spring Harb Perspect Biol 2019;11:a033969. [PMID: 30755450 DOI: 10.1101/cshperspect.a033969] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
244 Davis ME, Wick MP, Maquivar MG. Hormonal Regulation of Feed Efficiency. In: Hill RA, editor. Feed Efficiency in the Beef Industry. Oxford: Wiley-Blackwell; 2012. pp. 225-50. [DOI: 10.1002/9781118392331.ch14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
245 Zhang D, Ke L, Mackovicova K, Van Der Want JJ, Sibon OC, Tanguay RM, Morrow G, Henning RH, Kampinga HH, Brundel BJ. Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for Atrial Fibrillation. J Mol Cell Cardiol 2011;51:381-9. [PMID: 21745477 DOI: 10.1016/j.yjmcc.2011.06.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 4.8] [Reference Citation Analysis]
246 Malkeyeva D, Kiseleva E, Fedorova S. Small heat shock protein Hsp67Bc plays a significant role in Drosophila melanogaster cold stress tolerance. J Exp Biol 2020;223:jeb219592. [PMID: 32943578 DOI: 10.1242/jeb.219592] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
247 Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018;91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
248 Wen X, An P, Li H, Zhou Z, Sun Y, Wang J, Ma L, Lu B. Tau Accumulation via Reduced Autophagy Mediates GGGGCC Repeat Expansion-Induced Neurodegeneration in Drosophila Model of ALS. Neurosci Bull 2020;36:1414-28. [PMID: 32500377 DOI: 10.1007/s12264-020-00518-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
249 Adriaenssens E, Tedesco B, Mediani L, Asselbergh B, Crippa V, Antoniani F, Carra S, Poletti A, Timmerman V. BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes. Sci Rep 2020;10:8755. [PMID: 32472079 DOI: 10.1038/s41598-020-65664-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
250 Prill K, Dawson JF. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int J Mol Sci 2020;21:E542. [PMID: 31952119 DOI: 10.3390/ijms21020542] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
251 McDermott-Roe C, Lv W, Maximova T, Wada S, Bukowy J, Marquez M, Lai S, Shehu A, Benjamin I, Geurts A, Musunuru K. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight 2019;4:128799. [PMID: 31723063 DOI: 10.1172/jci.insight.128799] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
252 Radovanac K, Morgner J, Schulz JN, Blumbach K, Patterson C, Geiger T, Mann M, Krieg T, Eckes B, Fässler R, Wickström SA. Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO J 2013;32:1409-24. [PMID: 23612611 DOI: 10.1038/emboj.2013.90] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
253 Mathai BJ, Meijer AH, Simonsen A. Studying Autophagy in Zebrafish. Cells 2017;6:E21. [PMID: 28698482 DOI: 10.3390/cells6030021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
254 Schänzer A, Schumann E, Zengeler D, Gulatz L, Maroli G, Ahting U, Sprengel A, Gräf S, Hahn A, Jux C, Acker T, Fürst DO, Rupp S, Schuld J, van der Ven PFM. The p.Ala2430Val mutation in filamin C causes a "hypertrophic myofibrillar cardiomyopathy". J Muscle Res Cell Motil 2021;42:381-97. [PMID: 33710525 DOI: 10.1007/s10974-021-09601-1] [Reference Citation Analysis]
255 Scalabrin M, Adams V, Labeit S, Bowen TS. Emerging Strategies Targeting Catabolic Muscle Stress Relief. Int J Mol Sci 2020;21:E4681. [PMID: 32630118 DOI: 10.3390/ijms21134681] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
256 van Leeuwen FW, Kampinga HH. Heat Shock Proteins and Protein Quality Control in Alzheimer’s Disease. The Molecular and Cellular Basis of Neurodegenerative Diseases. Elsevier; 2018. pp. 269-98. [DOI: 10.1016/b978-0-12-811304-2.00010-9] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
257 Taylor K, Kleinhesselink K, George MD, Morgan R, Smallwood T, Hammonds AS, Fuller PM, Saelao P, Alley J, Gibbs AG, Hoshizaki DK, von Kalm L, Fuller CA, Beckingham KM, Kimbrell DA. Toll mediated infection response is altered by gravity and spaceflight in Drosophila. PLoS One 2014;9:e86485. [PMID: 24475130 DOI: 10.1371/journal.pone.0086485] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
258 Roperto S, Russo V, Rosati A, Ceccarelli DM, Munday JS, Turco MC, Roperto F. Chaperone-assisted selective autophagy in healthy and papillomavirus-associated neoplastic urothelium of cattle. Vet Microbiol 2018;221:134-42. [PMID: 29981700 DOI: 10.1016/j.vetmic.2018.06.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
259 Padilla F, Puts R, Vico L, Guignandon A, Raum K. Stimulation of Bone Repair with Ultrasound. Adv Exp Med Biol 2016;880:385-427. [PMID: 26486349 DOI: 10.1007/978-3-319-22536-4_21] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
260 Jabłońska J, Dubińska-Magiera M, Jagla T, Jagla K, Daczewska M. Drosophila Hsp67Bc hot-spot variants alter muscle structure and function. Cell Mol Life Sci 2018;75:4341-56. [PMID: 30032358 DOI: 10.1007/s00018-018-2875-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
261 Schänzer A, Rupp S, Gräf S, Zengeler D, Jux C, Akintürk H, Gulatz L, Mazhari N, Acker T, Van Coster R, Garvalov BK, Hahn A. Dysregulated autophagy in restrictive cardiomyopathy due to Pro209Leu mutation in BAG3. Mol Genet Metab 2018;123:388-99. [PMID: 29338979 DOI: 10.1016/j.ymgme.2018.01.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
262 Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jäättelä M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Münz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G. Molecular definitions of autophagy and related processes. EMBO J 2017;36:1811-36. [PMID: 28596378 DOI: 10.15252/embj.201796697] [Cited by in Crossref: 688] [Cited by in F6Publishing: 668] [Article Influence: 172.0] [Reference Citation Analysis]
263 Wang YC, Lauwers E, Verstreken P. Presynaptic protein homeostasis and neuronal function. Curr Opin Genet Dev 2017;44:38-46. [PMID: 28213157 DOI: 10.1016/j.gde.2017.01.015] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
264 Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C, Ruppert V, Arbustini E, Wichter T, Germain M, Dubourg O, Tavazzi L, Aumont MC, DeGroote P, Fauchier L, Trochu JN, Gibelin P, Aupetit JF, Stark K, Erdmann J, Hetzer R, Roberts AM, Barton PJ, Regitz-Zagrosek V, Aslam U, Duboscq-Bidot L, Meyborg M, Maisch B, Madeira H, Waldenström A, Galve E, Cleland JG, Dorent R, Roizes G, Zeller T, Blankenberg S, Goodall AH, Cook S, Tregouet DA, Tiret L, Isnard R, Komajda M, Charron P, Cambien F; Cardiogenics Consortium. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 2011;32:1065-76. [PMID: 21459883 DOI: 10.1093/eurheartj/ehr105] [Cited by in Crossref: 205] [Cited by in F6Publishing: 178] [Article Influence: 20.5] [Reference Citation Analysis]
265 Yan Y, Wang H, Hu M, Jiang L, Wang Y, Liu P, Liang X, Liu J, Li C, Lindström-battle A, Lam SM, Shui G, Deng W, Jiao R. HDAC6 Suppresses Age-Dependent Ectopic Fat Accumulation by Maintaining the Proteostasis of PLIN2 in Drosophila. Developmental Cell 2017;43:99-111.e5. [DOI: 10.1016/j.devcel.2017.09.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
266 Esslinger U, Garnier S, Korniat A, Proust C, Kararigas G, Müller-Nurasyid M, Empana JP, Morley MP, Perret C, Stark K, Bick AG, Prasad SK, Kriebel J, Li J, Tiret L, Strauch K, O'Regan DP, Marguiles KB, Seidman JG, Boutouyrie P, Lacolley P, Jouven X, Hengstenberg C, Komajda M, Hakonarson H, Isnard R, Arbustini E, Grallert H, Cook SA, Seidman CE, Regitz-Zagrosek V, Cappola TP, Charron P, Cambien F, Villard E. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One 2017;12:e0172995. [PMID: 28296976 DOI: 10.1371/journal.pone.0172995] [Cited by in Crossref: 61] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
267 Oda T, Xiong H, Kobayashi K, Wang S, Satake W, Jiao H, Yang Y, Cha PC, Hayashi YK, Nishino I, Suzuki Y, Sugano S, Wu X, Toda T. A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy. Hum Genome Var 2015;2:15022. [PMID: 27081534 DOI: 10.1038/hgv.2015.22] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
268 Guilbert SM, Lambert H, Rodrigue M, Fuchs M, Landry J, Lavoie JN. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency. FASEB j 2018;32:3518-35. [DOI: 10.1096/fj.201700558rr] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 8.7] [Reference Citation Analysis]
269 Tsai P, Tsai Y, Soong B, Huang Y, Wu H, Chen Y, Lin K, Liao Y, Lee Y. A novel DNAJB6 mutation causes dominantly inherited distal-onset myopathy and compromises DNAJB6 function: TSAI et al. Clin Genet 2017;92:150-7. [DOI: 10.1111/cge.13001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
270 Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 2019;20:421-35. [PMID: 30733602 DOI: 10.1038/s41580-019-0101-y] [Cited by in Crossref: 306] [Cited by in F6Publishing: 250] [Article Influence: 306.0] [Reference Citation Analysis]
271 Sandri M. New findings of lysosomal proteolysis in skeletal muscle: . Current Opinion in Clinical Nutrition and Metabolic Care 2011;14:223-9. [DOI: 10.1097/mco.0b013e3283457a75] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
272 Kimura K, Ooms A, Graf-Riesen K, Kuppusamy M, Unger A, Schuld J, Daerr J, Lother A, Geisen C, Hein L, Takahashi S, Li G, Röll W, Bloch W, van der Ven PFM, Linke WA, Wu SM, Huesgen PF, Höhfeld J, Fürst DO, Fleischmann BK, Hesse M. Overexpression of human BAG3P209L in mice causes restrictive cardiomyopathy. Nat Commun 2021;12:3575. [PMID: 34117258 DOI: 10.1038/s41467-021-23858-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
273 Page N, Gros F, Schall N, Décossas M, Bagnard D, Briand JP, Muller S. HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann Rheum Dis 2011;70:837-43. [PMID: 21173017 DOI: 10.1136/ard.2010.139832] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 6.7] [Reference Citation Analysis]
274 Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324-332. [PMID: 21776078 DOI: 10.1038/nature10317] [Cited by in Crossref: 1969] [Cited by in F6Publishing: 1729] [Article Influence: 196.9] [Reference Citation Analysis]
275 Liao WC, Juo LY, Shih YL, Chen YH, Yan YT. HSPB7 prevents cardiac conduction system defect through maintaining intercalated disc integrity. PLoS Genet 2017;13:e1006984. [PMID: 28827800 DOI: 10.1371/journal.pgen.1006984] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
276 Cohen-kaplan V, Livneh I, Avni N, Cohen-rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. The International Journal of Biochemistry & Cell Biology 2016;79:403-18. [DOI: 10.1016/j.biocel.2016.07.019] [Cited by in Crossref: 88] [Cited by in F6Publishing: 85] [Article Influence: 17.6] [Reference Citation Analysis]
277 Jungverdorben J, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy. J Mol Med (Berl) 2017;95:705-18. [PMID: 28593578 DOI: 10.1007/s00109-017-1533-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
278 Kundra R, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M. Protein homeostasis of a metastable subproteome associated with Alzheimer's disease. Proc Natl Acad Sci U S A 2017;114:E5703-11. [PMID: 28652376 DOI: 10.1073/pnas.1618417114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 11.8] [Reference Citation Analysis]
279 Cristofani R, Crippa V, Vezzoli G, Rusmini P, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Tedesco B, Piccolella M, Messi E, Carra S, Poletti A. The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress Chaperones 2018;23:1-12. [PMID: 28608264 DOI: 10.1007/s12192-017-0806-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
280 Martin TG, Kirk JA. Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020;148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
281 Carra S, Crippa V, Rusmini P, Boncoraglio A, Minoia M, Giorgetti E, Kampinga HH, Poletti A. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol 2012;97:83-100. [PMID: 21971574 DOI: 10.1016/j.pneurobio.2011.09.009] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
282 Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J Pathol 2012;226:255-73. [PMID: 21990109 DOI: 10.1002/path.3025] [Cited by in Crossref: 183] [Cited by in F6Publishing: 183] [Article Influence: 18.3] [Reference Citation Analysis]
283 Morani F, Doccini S, Sirica R, Paterno M, Pezzini F, Ricca I, Simonati A, Delledonne M, Santorelli FM. Functional Transcriptome Analysis in ARSACS KO Cell Model Reveals a Role of Sacsin in Autophagy. Sci Rep 2019;9:11878. [PMID: 31417125 DOI: 10.1038/s41598-019-48047-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
284 Jacomin AC, Gohel R, Hussain Z, Varga A, Maruzs T, Eddison M, Sica M, Jain A, Moffat KG, Johansen T, Jenny A, Juhasz G, Nezis IP. Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in Drosophila. Life Sci Alliance 2021;4:e202000965. [PMID: 33318080 DOI: 10.26508/lsa.202000965] [Reference Citation Analysis]
285 Klimek C, Kathage B, Wördehoff J, Höhfeld J. BAG3-mediated proteostasis at a glance. Journal of Cell Science. [DOI: 10.1242/jcs.203679] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 10.8] [Reference Citation Analysis]
286 Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019;8:E849. [PMID: 31394830 DOI: 10.3390/cells8080849] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
287 Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015;576:17-31. [PMID: 25447815 DOI: 10.1016/j.abb.2014.10.008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
288 Reimann L, Schwäble AN, Fricke AL, Mühlhäuser WWD, Leber Y, Lohanadan K, Puchinger MG, Schäuble S, Faessler E, Wiese H, Reichenbach C, Knapp B, Peikert CD, Drepper F, Hahn U, Kreutz C, van der Ven PFM, Radziwill G, Djinović-Carugo K, Fürst DO, Warscheid B. Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C. Commun Biol 2020;3:253. [PMID: 32444788 DOI: 10.1038/s42003-020-0982-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
289 Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017;10:177. [PMID: 28680391 DOI: 10.3389/fnmol.2017.00177] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 19.8] [Reference Citation Analysis]
290 Ranganathan S, Fischbeck KH. Therapeutic approaches to spinal and bulbar muscular atrophy. Trends Pharmacol Sci 2010;31:523-7. [PMID: 20863580 DOI: 10.1016/j.tips.2010.08.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
291 Upadhyay A, Amanullah A, Chhangani D, Mishra R, Prasad A, Mishra A. Mahogunin Ring Finger-1 (MGRN1), a Multifaceted Ubiquitin Ligase: Recent Unraveling of Neurobiological Mechanisms. Mol Neurobiol 2016;53:4484-96. [PMID: 26255182 DOI: 10.1007/s12035-015-9379-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
292 Quintana MT, Parry TL, He J, Yates CC, Sidorova TN, Murray KT, Bain JR, Newgard CB, Muehlbauer MJ, Eaton SC, Hishiya A, Takayama S, Willis MS. Cardiomyocyte-Specific Human Bcl2-Associated Anthanogene 3 P209L Expression Induces Mitochondrial Fragmentation, Bcl2-Associated Anthanogene 3 Haploinsufficiency, and Activates p38 Signaling. Am J Pathol 2016;186:1989-2007. [PMID: 27321750 DOI: 10.1016/j.ajpath.2016.03.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
293 Tang Y, Wang XW, Liu ZH, Sun YM, Tang YX, Zhou DH. Chaperone-mediated autophagy substrate proteins in cancer. Oncotarget 2017;8:51970-85. [PMID: 28881704 DOI: 10.18632/oncotarget.17583] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
294 Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Carra S, Poletti A. Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy. Neurobiol Aging 2013;34:2585-603. [PMID: 23810450 DOI: 10.1016/j.neurobiolaging.2013.05.026] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
295 Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2015;2:10. [PMID: 26913285 DOI: 10.3389/fmolb.2015.00010] [Cited by in Crossref: 100] [Cited by in F6Publishing: 100] [Article Influence: 16.7] [Reference Citation Analysis]
296 Sun C, De Mello V, Mohamed A, Ortuste Quiroga HP, Garcia-Munoz A, Al Bloshi A, Tremblay AM, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage H, Zammit PS. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. Stem Cells 2017;35:1958-72. [PMID: 28589555 DOI: 10.1002/stem.2652] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 13.8] [Reference Citation Analysis]
297 Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017;38:303-16. [PMID: 29119312 DOI: 10.1007/s10974-017-9487-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
298 Li W, Yang Q, Mao Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 2011;68:749-63. [PMID: 20976518 DOI: 10.1007/s00018-010-0565-6] [Cited by in Crossref: 80] [Cited by in F6Publishing: 72] [Article Influence: 7.3] [Reference Citation Analysis]
299 Gordon KL, Glenn KA, Bode N, Wen HM, Paulson HL, Gonzalez-Alegre P. The ubiquitin ligase F-box/G-domain protein 1 promotes the degradation of the disease-linked protein torsinA through the ubiquitin-proteasome pathway and macroautophagy. Neuroscience 2012;224:160-71. [PMID: 22917612 DOI: 10.1016/j.neuroscience.2012.08.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
300 Mulakkal NC, Nagy P, Takats S, Tusco R, Juhász G, Nezis IP. Autophagy in Drosophila: from historical studies to current knowledge. Biomed Res Int 2014;2014:273473. [PMID: 24949430 DOI: 10.1155/2014/273473] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
301 Jokl EJ, Hughes GL, Cracknell T, Pownall ME, Blanco G. Transcriptional upregulation of Bag3, a chaperone-assisted selective autophagy factor, in animal models of KY-deficient hereditary myopathy. Dis Model Mech 2018;11:dmm033225. [PMID: 29914939 DOI: 10.1242/dmm.033225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
302 Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018;38:1916-73. [DOI: 10.1002/med.21502] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
303 Sandri M. Autophagy in skeletal muscle. FEBS Letters 2010;584:1411-6. [DOI: 10.1016/j.febslet.2010.01.056] [Cited by in Crossref: 296] [Cited by in F6Publishing: 283] [Article Influence: 26.9] [Reference Citation Analysis]
304 Upadhyay A, Amanullah A, Mishra R, Kumar A, Mishra A. Lanosterol Suppresses the Aggregation and Cytotoxicity of Misfolded Proteins Linked with Neurodegenerative Diseases. Mol Neurobiol 2018;55:1169-82. [PMID: 28102469 DOI: 10.1007/s12035-016-0377-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
305 Fischer N, Preuße C, Radke J, Pehl D, Allenbach Y, Schneider U, Feist E, von Casteleyn V, Hahn K, Ruck T, Meuth SG, Goebel HH, Graf R, Mammen A, Benveniste O, Stenzel W. Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies. Brain Pathol 2020;30:261-71. [PMID: 31376301 DOI: 10.1111/bpa.12772] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
306 Rusmini P, Crippa V, Cristofani R, Rinaldi C, Cicardi ME, Galbiati M, Carra S, Malik B, Greensmith L, Poletti A. The Role of the Protein Quality Control System in SBMA. J Mol Neurosci 2016;58:348-64. [PMID: 26572535 DOI: 10.1007/s12031-015-0675-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
307 Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121-2129. [PMID: 23665154 DOI: 10.1016/j.biocel.2013.04.023] [Cited by in Crossref: 350] [Cited by in F6Publishing: 334] [Article Influence: 43.8] [Reference Citation Analysis]
308 Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, Ruffenach F, Page A, Ciura S, Kabashi E, Charlet-Berguerand N. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 2016;35:1276-97. [PMID: 27103069 DOI: 10.15252/embj.201593350] [Cited by in Crossref: 238] [Cited by in F6Publishing: 225] [Article Influence: 47.6] [Reference Citation Analysis]
309 Hnia K, Clausen T, Moog-Lutz C. Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019;25:760-74. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
310 Telonis-Scott M, Clemson AS, Johnson TK, Sgrò CM. Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits. Mol Ecol 2014;23:6135-51. [PMID: 25401770 DOI: 10.1111/mec.13000] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
311 Meister-Broekema M, Freilich R, Jagadeesan C, Rauch JN, Bengoechea R, Motley WW, Kuiper EFE, Minoia M, Furtado GV, van Waarde MAWH, Bird SJ, Rebelo A, Zuchner S, Pytel P, Scherer SS, Morelli FF, Carra S, Weihl CC, Bergink S, Gestwicki JE, Kampinga HH. Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat Commun 2018;9:5342. [PMID: 30559338 DOI: 10.1038/s41467-018-07718-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
312 Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 2010;143:813-25. [PMID: 21111239 DOI: 10.1016/j.cell.2010.10.007] [Cited by in Crossref: 396] [Cited by in F6Publishing: 358] [Article Influence: 36.0] [Reference Citation Analysis]
313 Kenific CM, Wittmann T, Debnath J. Autophagy in adhesion and migration. J Cell Sci 2016;129:3685-93. [PMID: 27672021 DOI: 10.1242/jcs.188490] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 10.6] [Reference Citation Analysis]
314 Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441:523-540. [PMID: 22187934 DOI: 10.1042/bj20111451] [Cited by in Crossref: 931] [Cited by in F6Publishing: 488] [Article Influence: 103.4] [Reference Citation Analysis]
315 Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, Miao X, Baggi F, Ostrom RS, Zhang Y, Chen X, Xu C. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy 2017;13:1981-94. [PMID: 28933591 DOI: 10.1080/15548627.2017.1375633] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
316 Moreno-Blas D, Gorostieta-Salas E, Castro-Obregón S. Connecting chaperone-mediated autophagy dysfunction to cellular senescence. Ageing Res Rev 2018;41:34-41. [PMID: 29113832 DOI: 10.1016/j.arr.2017.11.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
317 Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020;25:601-13. [PMID: 32253742 DOI: 10.1007/s12192-020-01095-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
318 Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2016;3:127-55. [PMID: 27854220 DOI: 10.3233/JND-160153] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
319 Ding S, Hong Y. The fluorescence toolbox for visualizing autophagy. Chem Soc Rev 2020;49:8354-89. [PMID: 33156302 DOI: 10.1039/d0cs00913j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
320 Tawo R, Pokrzywa W, Kevei É, Akyuz ME, Balaji V, Adrian S, Höhfeld J, Hoppe T. The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell 2017;169:470-482.e13. [PMID: 28431247 DOI: 10.1016/j.cell.2017.04.003] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 16.0] [Reference Citation Analysis]
321 Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020;154:354-71. [PMID: 32149395 DOI: 10.1111/jnc.15002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 25.0] [Reference Citation Analysis]
322 Lane JD, Korolchuk VI, Murray JT, Catarino S, Pereira P, Girão H. Molecular control of chaperone-mediated autophagy. Essays in Biochemistry 2017;61:663-74. [DOI: 10.1042/ebc20170057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
323 Zhang X, Qian SB. Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol Biol Cell 2011;22:3277-88. [PMID: 21775628 DOI: 10.1091/mbc.E11-05-0388] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 6.2] [Reference Citation Analysis]
324 Liu BQ, Du ZX, Zong ZH, Li C, Li N, Zhang Q, Kong DH, Wang HQ. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells. Autophagy 2013;9:905-16. [PMID: 23575457 DOI: 10.4161/auto.24292] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
325 Crippa V, Galbiati M, Boncoraglio A, Rusmini P, Onesto E, Giorgetti E, Cristofani R, Zito A, Poletti A. Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochem Soc Trans 2013;41:1598-604. [PMID: 24256261 DOI: 10.1042/BST20130118] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
326 Camera DM, Burniston JG, Pogson MA, Smiles WJ, Hawley JA. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J 2017;31:5478-94. [PMID: 28855275 DOI: 10.1096/fj.201700531R] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
327 Tan KT, Ang SJ, Tsai SY. Sarcopenia: Tilting the Balance of Protein Homeostasis. Proteomics 2020;20:e1800411. [PMID: 31722440 DOI: 10.1002/pmic.201800411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
328 Lai HH, Li JN, Wang MY, Huang HY, Croce CM, Sun HL, Lyu YJ, Kang JW, Chiu CF, Hung MC, Suzuki HI, Chen PS. HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis. J Clin Invest 2018;128:625-43. [PMID: 29251629 DOI: 10.1172/JCI89212] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
329 Steffan JS. Does Huntingtin play a role in selective macroautophagy? Cell Cycle 2010;9:3401-13. [PMID: 20703094 DOI: 10.4161/cc.9.17.12718] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 4.6] [Reference Citation Analysis]
330 Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020;40:1385-439. [PMID: 32043639 DOI: 10.1002/med.21662] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
331 Gavriilidis C, Laredj L, Solinhac R, Messaddeq N, Viaud J, Laporte J, Sumara I, Hnia K. The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 2018;20:198-210. [PMID: 29358706 DOI: 10.1038/s41556-017-0024-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
332 Sariyer IK, Merabova N, Patel PK, Knezevic T, Rosati A, Turco MC, Khalili K. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag. PLoS One 2012;7:e45000. [PMID: 22984599 DOI: 10.1371/journal.pone.0045000] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
333 Marsh NM, Wareham A, White BG, Miskiewicz EI, Landry J, MacPhee DJ. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod 2015;92:131. [PMID: 25904010 DOI: 10.1095/biolreprod.114.125401] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]