BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Cited by in Crossref: 71] [Cited by in F6Publishing: 62] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Nakano Y, Iwanaga S, Mizumoto H, Kajiwara T. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells. Cytotechnology 2018;70:975-82. [PMID: 29502285 DOI: 10.1007/s10616-018-0210-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry 2017;59:244-54. [DOI: 10.1016/j.procbio.2016.09.032] [Cited by in Crossref: 78] [Cited by in F6Publishing: 30] [Article Influence: 19.5] [Reference Citation Analysis]
3 Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021;20:429-57. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Lin H, Du Q, Li Q, Wang O, Wang Z, Liu K, Akert L, Zhang C, Chung S, Duan B, Lei Y. Differentiating human pluripotent stem cells into vascular smooth muscle cells in three dimensional thermoreversible hydrogels. Biomater Sci 2018;7:347-61. [PMID: 30483691 DOI: 10.1039/c8bm01128a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kempf H, Zweigerdt R. Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. Adv Biochem Eng Biotechnol 2018;163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
6 Mai HN, Kim EJ, Jung HS. Application of hiPSCs in tooth regeneration via cellular modulation. J Oral Biosci 2021:S1349-0079(21)00057-8. [PMID: 34033906 DOI: 10.1016/j.job.2021.05.002] [Reference Citation Analysis]
7 Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019;6:E48. [PMID: 31137703 DOI: 10.3390/bioengineering6020048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
8 Amini N, Paluh JL, Xie Y, Saxena V, Sharfstein ST. Insulin production from hiPSC-derived pancreatic cells in a novel wicking matrix bioreactor. Biotechnol Bioeng 2020;117:2247-61. [PMID: 32314809 DOI: 10.1002/bit.27359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018;9:201. [PMID: 30053890 DOI: 10.1186/s13287-018-0947-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
10 Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol. 2018;58:83-103. [PMID: 28992430 DOI: 10.1146/annurev-pharmtox-010617-053110] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
11 Williams B, Löbel W, Finklea F, Halloin C, Ritzenhoff K, Manstein F, Mohammadi S, Hashemi M, Zweigerdt R, Lipke E, Cremaschi S. Prediction of Human Induced Pluripotent Stem Cell Cardiac Differentiation Outcome by Multifactorial Process Modeling. Front Bioeng Biotechnol 2020;8:851. [PMID: 32793579 DOI: 10.3389/fbioe.2020.00851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
12 Terao Y, Kurashina Y, Tohyama S, Fukuma Y, Fukuda K, Fujita J, Takemura K. An effective detachment system for human induced pluripotent stem cells cultured on multilayered cultivation substrates using resonance vibrations. Sci Rep 2019;9:15655. [PMID: 31666563 DOI: 10.1038/s41598-019-51944-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Sart S, Bejoy J, Li Y. Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochemistry 2017;59:276-88. [DOI: 10.1016/j.procbio.2016.05.024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
14 Wnorowski A, Wu JC. 3-Dimensionally Printed, Native-Like Scaffolds for Myocardial Tissue Engineering. Circ Res 2017;120:1224-6. [PMID: 28408446 DOI: 10.1161/CIRCRESAHA.117.310862] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Manstein F, Halloin C, Zweigerdt R. Human Pluripotent Stem Cell Expansion in Stirred Tank Bioreactors. In: Mandenius C, Ross JA, editors. Cell-Based Assays Using iPSCs for Drug Development and Testing. New York: Springer; 2019. pp. 79-91. [DOI: 10.1007/978-1-4939-9477-9_7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Tohyama S, Fujita J, Fujita C, Yamaguchi M, Kanaami S, Ohno R, Sakamoto K, Kodama M, Kurokawa J, Kanazawa H, Seki T, Kishino Y, Okada M, Nakajima K, Tanosaki S, Someya S, Hirano A, Kawaguchi S, Kobayashi E, Fukuda K. Efficient Large-Scale 2D Culture System for Human Induced Pluripotent Stem Cells and Differentiated Cardiomyocytes. Stem Cell Reports 2017;9:1406-14. [PMID: 28988990 DOI: 10.1016/j.stemcr.2017.08.025] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
17 Chuah JKC, Zink D. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnol Adv 2017;35:150-67. [PMID: 28017905 DOI: 10.1016/j.biotechadv.2016.12.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
18 Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, Robles-Diaz D, Coffee M, Göhring G, Dräger G, Pötz O, Joos T, Martinez-Hackert E, Haverich A, Buettner FFR, Martin U, Zweigerdt R. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun 2016;7:13602. [PMID: 27934856 DOI: 10.1038/ncomms13602] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
19 Massai D, Bolesani E, Diaz DR, Kropp C, Kempf H, Halloin C, Martin U, Braniste T, Isu G, Harms V, Morbiducci U, Dräger G, Zweigerdt R. Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development. Sci Rep 2017;7:3950. [PMID: 28638147 DOI: 10.1038/s41598-017-04158-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
20 Haake K, Neehus AL, Buchegger T, Kühnel MP, Blank P, Philipp F, Oleaga-Quintas C, Schulz A, Grimley M, Goethe R, Jonigk D, Kalinke U, Boisson-Dupuis S, Casanova JL, Bustamante J, Lachmann N. Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-γ Responsive Pathway. Cells 2020;9:E483. [PMID: 32093117 DOI: 10.3390/cells9020483] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Fujita B, Zimmermann WH. Myocardial Tissue Engineering for Regenerative Applications. Curr Cardiol Rep 2017;19:78. [PMID: 28752277 DOI: 10.1007/s11886-017-0892-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
22 Scibona E, Morbidelli M. Expansion processes for cell-based therapies. Biotechnol Adv 2019;37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Torizal FG, Horiguchi I, Sakai Y. Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. TOBEJ 2019;13:41-54. [DOI: 10.2174/1874120701913010041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Finklea FB, Tian Y, Kerscher P, Seeto WJ, Ellis ME, Lipke EA. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021;274:120818. [PMID: 34023620 DOI: 10.1016/j.biomaterials.2021.120818] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Kropp C, Kempf H, Halloin C, Robles-Diaz D, Franke A, Scheper T, Kinast K, Knorpp T, Joos TO, Haverich A, Martin U, Zweigerdt R, Olmer R. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors. Stem Cells Transl Med. 2016;5:1289-1301. [PMID: 27369897 DOI: 10.5966/sctm.2015-0253] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 16.8] [Reference Citation Analysis]
26 Srinivasan G, Morgan D, Varun D, Brookhouser N, Brafman DA. An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Acta Biomater 2018;74:168-79. [PMID: 29775730 DOI: 10.1016/j.actbio.2018.05.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
27 Ting S, Lam A, Tong G, Chen A, Wei H, Wu J, Lam YN, Reuveny S, Oh S. Meticulous optimization of cardiomyocyte yields in a 3-stage continuous integrated agitation bioprocess. Stem Cell Research 2018;31:161-73. [DOI: 10.1016/j.scr.2018.07.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
28 Burns AB, Doris C, Vehar K, Saxena V, Bardliving C, Shamlou PA, Phillips MI. Novel low shear 3D bioreactor for high purity mesenchymal stem cell production. PLoS One 2021;16:e0252575. [PMID: 34133442 DOI: 10.1371/journal.pone.0252575] [Reference Citation Analysis]
29 Manstein F, Ullmann K, Kropp C, Halloin C, Triebert W, Franke A, Farr CM, Sahabian A, Haase A, Breitkreuz Y, Peitz M, Brüstle O, Kalies S, Martin U, Olmer R, Zweigerdt R. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling. Stem Cells Transl Med 2021;10:1063-80. [PMID: 33660952 DOI: 10.1002/sctm.20-0453] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
30 Mills RJ, Hudson JE. Bioengineering adult human heart tissue: How close are we? APL Bioeng 2019;3:010901. [PMID: 31069330 DOI: 10.1063/1.5070106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
31 Quinn RK, Drury HR, Lim R, Callister RJ, Tadros MA. Differentiation of Sensory Neuron Lineage During the Late First and Early Second Trimesters of Human Foetal Development. Neuroscience 2021;467:28-38. [PMID: 34033872 DOI: 10.1016/j.neuroscience.2021.05.018] [Reference Citation Analysis]
32 Jara-Avaca M, Kempf H, Rückert M, Robles-Diaz D, Franke A, de la Roche J, Fischer M, Malan D, Sasse P, Solodenko W, Dräger G, Kirschning A, Martin U, Zweigerdt R. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports 2017;8:305-17. [PMID: 28089668 DOI: 10.1016/j.stemcr.2016.12.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
33 Maartens JH, De-juan-pardo E, Wunner FM, Simula A, Voelcker NH, Barry SC, Hutmacher DW. Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opinion on Biological Therapy 2017;17:1221-33. [DOI: 10.1080/14712598.2017.1360273] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
34 Lin H, Du Q, Li Q, Wang O, Wang Z, Elowsky C, Liu K, Zhang C, Chung S, Duan B, Lei Y. Manufacturing human pluripotent stem cell derived endothelial cells in scalable and cell-friendly microenvironments. Biomater Sci 2019;7:373-88. [DOI: 10.1039/c8bm01095a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
35 Lee B, Borys BS, Kallos MS, Rodrigues CAV, Silva TP, Cabral JMS. Challenges and Solutions for Commercial Scale Manufacturing of Allogeneic Pluripotent Stem Cell Products. Bioengineering (Basel) 2020;7:E31. [PMID: 32231012 DOI: 10.3390/bioengineering7020031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Lin H, Du Q, Li Q, Wang O, Wang Z, Sahu N, Elowsky C, Liu K, Zhang C, Chung S, Duan B, Lei Y. A Scalable and Efficient Bioprocess for Manufacturing Human Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cell Reports 2018;11:454-69. [PMID: 30078557 DOI: 10.1016/j.stemcr.2018.07.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
37 Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. Micromachines (Basel) 2021;12:386. [PMID: 33916254 DOI: 10.3390/mi12040386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Lavon N, Zimerman M, Itskovitz-Eldor J. Scalable Expansion of Pluripotent Stem Cells. Adv Biochem Eng Biotechnol 2018;163:23-37. [PMID: 29085956 DOI: 10.1007/10_2017_26] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
39 Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, Wang Z, Anderson D, Liu K, Gu L, Zhang C, Lei Y. Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports. 2019;12:84-97. [PMID: 30527760 DOI: 10.1016/j.stemcr.2018.11.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
40 Lin H, Du Q, Li Q, Wang O, Wang Z, Liu K, Elowsky C, Zhang C, Lei Y. Hydrogel-Based Bioprocess for Scalable Manufacturing of Human Pluripotent Stem Cell-Derived Neural Stem Cells. ACS Appl Mater Interfaces 2018;10:29238-50. [PMID: 30091584 DOI: 10.1021/acsami.8b05780] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
41 Ikeda K, Nagata S, Okitsu T, Takeuchi S. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Sci Rep 2017;7:2850. [PMID: 28588295 DOI: 10.1038/s41598-017-03246-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
42 Smith A, Manoli H, Jaw S, Frutoz K, Epstein AL, Khawli LA, Theil FP. Unraveling the Effect of Immunogenicity on the PK/PD, Efficacy, and Safety of Therapeutic Proteins. J Immunol Res 2016;2016:2342187. [PMID: 27579329 DOI: 10.1155/2016/2342187] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
43 Borys BS, So T, Roberts EL, Ferrie L, Larijani L, Abraham B, Krawetz R, Rancourt DE, Kallos MS. Large-scale expansion of feeder-free mouse embryonic stem cells serially passaged in stirred suspension bioreactors at low inoculation densities directly from cryopreservation. Biotechnol Bioeng 2020;117:1316-28. [PMID: 31960947 DOI: 10.1002/bit.27279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Kahn-Krell A, Pretorius D, Ou J, Fast VG, Litovsky S, Berry J, Liu XM, Zhang J. Bioreactor Suspension Culture: Differentiation and Production of Cardiomyocyte Spheroids From Human Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2021;9:674260. [PMID: 34178964 DOI: 10.3389/fbioe.2021.674260] [Reference Citation Analysis]
45 Li Q, Lin H, Du Q, Liu K, Wang O, Evans C, Christian H, Zhang C, Lei Y. Scalable and physiologically relevant microenvironments for human pluripotent stem cell expansion and differentiation. Biofabrication 2018;10:025006. [PMID: 29319535 DOI: 10.1088/1758-5090/aaa6b5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
46 Prochazka L, Benenson Y, Zandstra PW. Synthetic gene circuits and cellular decision-making in human pluripotent stem cells. Current Opinion in Systems Biology 2017;5:93-103. [DOI: 10.1016/j.coisb.2017.09.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
47 Fujita K, Feng Z, Sato D, Kosawada T, Nakamura T, Shiraishi Y, Umezu M; 1 Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan, 2 Graduate School of Medical Science, Yamagata University, Yamagata, Japan, 3 Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan, 4 Integrative Bioscience and Biomedical Engineering, Waseda University, Tokyo, Japan. . AIMS Materials Science 2018;5:54-74. [DOI: 10.3934/matersci.2018.1.54] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Correia C, Koshkin A, Duarte P, Hu D, Carido M, Sebastião MJ, Gomes-Alves P, Elliott DA, Domian IJ, Teixeira AP, Alves PM, Serra M. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol Bioeng 2018;115:630-44. [PMID: 29178315 DOI: 10.1002/bit.26504] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 14.0] [Reference Citation Analysis]
49 Radisic M. Editorial: Tissue engineering of the heart. Adv Drug Deliv Rev 2016;96:1-2. [PMID: 26724336 DOI: 10.1016/j.addr.2015.12.006] [Reference Citation Analysis]
50 Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int. 2019;2019:4508470. [PMID: 31149014 DOI: 10.1155/2019/4508470] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
51 Badenes SM, Fernandes TG, Rodrigues CAV, Diogo MM, Cabral JMS. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. J Biotechnol 2016;234:71-82. [PMID: 27480342 DOI: 10.1016/j.jbiotec.2016.07.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
52 Nemade H, Acharya A, Chaudhari U, Nembo E, Nguemo F, Riet N, Abken H, Hescheler J, Papadopoulos S, Sachinidis A. Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells. Cells 2020;9:E554. [PMID: 32120775 DOI: 10.3390/cells9030554] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021;:1-15. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Brady EL, Kirby MA, Olszewski E, Grosjean P, Johansson F, Davis J, Wang RK, Stevens KR. Guided vascularization in the rat heart leads to transient vessel patterning. APL Bioeng 2020;4:016105. [PMID: 32161835 DOI: 10.1063/1.5122804] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Kobayashi H, Ichimura H, Ohashi N, Shiba Y. Transplantation of Pluripotent Stem Cell-Derived Cardiomyocytes into a Myocardial Infarction Model of Cynomolgus Monkey. Methods Mol Biol 2021;2320:295-302. [PMID: 34302666 DOI: 10.1007/978-1-0716-1484-6_25] [Reference Citation Analysis]
56 Haake K, Ackermann M, Lachmann N. Concise Review: Towards the Clinical Translation of Induced Pluripotent Stem Cell-Derived Blood Cells-Ready for Take-Off. Stem Cells Transl Med 2019;8:332-9. [PMID: 30585439 DOI: 10.1002/sctm.18-0134] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
57 Schwach V, Gomes Fernandes M, Maas S, Gerhardt S, Tsonaka R, van der Weerd L, Passier R, Mummery CL, Birket MJ, Salvatori DCF. Expandable human cardiovascular progenitors from stem cells for regenerating mouse heart after myocardial infarction. Cardiovasc Res 2020;116:545-53. [PMID: 31287499 DOI: 10.1093/cvr/cvz181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
58 Siede D, Rapti K, Gorska A, Katus H, Altmüller J, Boeckel J, Meder B, Maack C, Völkers M, Müller O, Backs J, Dieterich C. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. Journal of Molecular and Cellular Cardiology 2017;109:48-56. [DOI: 10.1016/j.yjmcc.2017.06.015] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 14.3] [Reference Citation Analysis]
59 Hausburg F, Jung JJ, David R. Specific Cell (Re-)Programming: Approaches and Perspectives. Adv Biochem Eng Biotechnol 2018;163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
60 Gentemann L, Kalies S, Coffee M, Meyer H, Ripken T, Heisterkamp A, Zweigerdt R, Heinemann D. Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles. Biomed Opt Express 2017;8:177-92. [PMID: 28101410 DOI: 10.1364/BOE.8.000177] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]
61 Wolling H, Konze SA, Höfer A, Erdmann J, Pich A, Zweigerdt R, Buettner FFR. Quantitative Secretomics Reveals Extrinsic Signals Involved in Human Pluripotent Stem Cell Cardiomyogenesis. Proteomics 2018;18:1800102. [DOI: 10.1002/pmic.201800102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
62 Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B, Dos Remedios CG, Martin U, Zweigerdt R, Kraft T, Brenner B. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms. Front Physiol 2017;8:1111. [PMID: 29403388 DOI: 10.3389/fphys.2017.01111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]