BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harrison MR, Feng X, Mo G, Aguayo A, Villafuerte J, Yoshida T, Pearson CA, Schulte-Merker S, Lien CL. Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. Elife 2019;8:e42762. [PMID: 31702553 DOI: 10.7554/eLife.42762] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Liao R, Li Z, Wang Q, Lin H, Sun H. Revascularization of chronic total occlusion coronary artery and cardiac regeneration. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.940808] [Reference Citation Analysis]
2 Chen J, He J, Luo L. Brain vascular damage-induced lymphatic ingrowth is directed by Cxcl12b/Cxcr4a. Development 2022;149:dev200729. [PMID: 35694896 DOI: 10.1242/dev.200729] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 González-Rosa JM. Zebrafish Models of Cardiac Disease: From Fortuitous Mutants to Precision Medicine. Circ Res 2022;130:1803-26. [PMID: 35679360 DOI: 10.1161/CIRCRESAHA.122.320396] [Reference Citation Analysis]
4 Sun J, Peterson EA, Wang AZ, Ou J, Smith KE, Poss KD, Wang J. hapln1 Defines an Epicardial Cell Subpopulation Required for Cardiomyocyte Expansion During Heart Morphogenesis and Regeneration. Circulation 2022;:101161CIRCULATIONAHA121055468. [PMID: 35652354 DOI: 10.1161/CIRCULATIONAHA.121.055468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhao F, Lu Y, Li Z, He J, Cui N, Luo L, Li L. The CXCR4-CXCL12 axis promotes T-cell reconstitution via efficient hematopoietic immigration. J Genet Genomics 2022:S1673-8527(22)00125-4. [PMID: 35483564 DOI: 10.1016/j.jgg.2022.04.005] [Reference Citation Analysis]
6 Liu X, Oliver G. Functional roles of lymphatics in health and disease. The Vasculome 2022. [DOI: 10.1016/b978-0-12-822546-2.24001-x] [Reference Citation Analysis]
7 Chowdhury K, Lai S, Marín-juez R. Modulation of VEGFA Signaling During Heart Regeneration in Zebrafish. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2217-9_22] [Reference Citation Analysis]
8 Filosa A, Sawamiphak S. Heart development and regeneration-a multi-organ effort. FEBS J 2021. [PMID: 34894086 DOI: 10.1111/febs.16319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Harris NR, Nielsen NR, Pawlak JB, Aghajanian A, Rangarajan K, Serafin DS, Farber G, Dy DM, Nelson-Maney NP, Xu W, Ratra D, Hurr SH, Qian L, Scallan J, Caron KM. VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circ Res 2021. [PMID: 34789016 DOI: 10.1161/CIRCRESAHA.121.318852] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021;8:738325. [PMID: 34504884 DOI: 10.3389/fcvm.2021.738325] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
11 Alvarez-Argote S, O'Meara CC. The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair. Int J Mol Sci 2021;22:7923. [PMID: 34360689 DOI: 10.3390/ijms22157923] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
12 Guan G, Huo D, Li Y, Zhao X, Li Y, Qin Z, Sun D, Yang G, Yang M, Tan J, Zeng W, Zhu C. Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart. Bioact Mater 2021;6:4415-29. [PMID: 33997517 DOI: 10.1016/j.bioactmat.2021.04.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
13 Lowe V, Wisniewski L, Pellet-Many C. The Zebrafish Cardiac Endothelial Cell-Roles in Development and Regeneration. J Cardiovasc Dev Dis 2021;8:49. [PMID: 34062899 DOI: 10.3390/jcdd8050049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Jafree DJ, Long DA, Scambler PJ, Ruhrberg C. Mechanisms and cell lineages in lymphatic vascular development. Angiogenesis 2021;24:271-88. [PMID: 33825109 DOI: 10.1007/s10456-021-09784-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
15 Zheng L, Du J, Wang Z, Zhou Q, Zhu X, Xiong JW. Molecular regulation of myocardial proliferation and regeneration. Cell Regen 2021;10:13. [PMID: 33821373 DOI: 10.1186/s13619-021-00075-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Suárez I, Schulte-Merker S. Cells with Many Talents: Lymphatic Endothelial Cells in the Brain Meninges. Cells 2021;10:799. [PMID: 33918497 DOI: 10.3390/cells10040799] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Nakajima H, Chiba A, Fukumoto M, Morooka N, Mochizuki N. Zebrafish Vascular Development: General and Tissue-Specific Regulation. J Lipid Atheroscler 2021;10:145-59. [PMID: 34095009 DOI: 10.12997/jla.2021.10.2.145] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Feng X, Travisano S, Pearson CA, Lien CL, Harrison MRM. The Lymphatic System in Zebrafish Heart Development, Regeneration and Disease Modeling. J Cardiovasc Dev Dis 2021;8:21. [PMID: 33669620 DOI: 10.3390/jcdd8020021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021;18:368-79. [PMID: 33462421 DOI: 10.1038/s41569-020-00489-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
20 Potts HG, Stockdale WT, Mommersteeg MTM. Unlocking the Secrets of the Regenerating Fish Heart: Comparing Regenerative Models to Shed Light on Successful Regeneration. J Cardiovasc Dev Dis 2021;8:4. [PMID: 33467137 DOI: 10.3390/jcdd8010004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 2021;24:251-69. [PMID: 33449300 DOI: 10.1007/s10456-020-09761-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
22 Castranova D, Samasa B, Venero Galanternik M, Jung HM, Pham VN, Weinstein BM. Live Imaging of Intracranial Lymphatics in the Zebrafish. Circ Res 2021;128:42-58. [PMID: 33135960 DOI: 10.1161/CIRCRESAHA.120.317372] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
23 She P, Zhang H, Peng X, Sun J, Gao B, Zhou Y, Zhu X, Hu X, Lai KS, Wong J, Zhou B, Wang L, Zhong TP. The Gridlock transcriptional repressor impedes vertebrate heart regeneration by restricting expression of lysine methyltransferase. Development 2020;147:dev190678. [PMID: 32988975 DOI: 10.1242/dev.190678] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
24 Gutierrez-Miranda L, Yaniv K. Cellular Origins of the Lymphatic Endothelium: Implications for Cancer Lymphangiogenesis. Front Physiol 2020;11:577584. [PMID: 33071831 DOI: 10.3389/fphys.2020.577584] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
25 Ryan R, Moyse BR, Richardson RJ. Zebrafish cardiac regeneration-looking beyond cardiomyocytes to a complex microenvironment. Histochem Cell Biol 2020;154:533-48. [PMID: 32926230 DOI: 10.1007/s00418-020-01913-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
26 Okuda KS, Hogan BM. Endothelial Cell Dynamics in Vascular Development: Insights From Live-Imaging in Zebrafish. Front Physiol 2020;11:842. [PMID: 32792978 DOI: 10.3389/fphys.2020.00842] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
27 Castranova D, Samasa B, Galanternik MV, Jung HM, Pham VN, Weinstein BM. Live Imaging of Intracranial Lymphatics in the Zebrafish.. [DOI: 10.1101/2020.05.13.094581] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Jaźwińska A, Blanchoud S. Towards deciphering variations of heart regeneration in fish. Current Opinion in Physiology 2020;14:21-6. [DOI: 10.1016/j.cophys.2019.11.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Nielsen NR, Rangarajan KV, Mao L, Rockman HA, Caron KM. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. Am J Physiol Heart Circ Physiol 2020;318:H895-907. [PMID: 32142379 DOI: 10.1152/ajpheart.00436.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
30 Pronobis MI, Poss KD. Signals for cardiomyocyte proliferation during zebrafish heart regeneration. Curr Opin Physiol 2020;14:78-85. [PMID: 32368708 DOI: 10.1016/j.cophys.2020.02.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
31 Pfefferli C, Jaźwińska A. Lymphatic vessels help mend broken hearts. Elife 2019;8:e52200. [PMID: 31709981 DOI: 10.7554/eLife.52200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]