BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, Tian J, Chen X. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 2014;4:1072-84. [PMID: 25250092 DOI: 10.7150/thno.9899] [Cited by in Crossref: 197] [Cited by in F6Publishing: 185] [Article Influence: 24.6] [Reference Citation Analysis]
Number Citing Articles
1 Ma H, Wang J, Zhang X. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coordination Chemistry Reviews 2021;448:214184. [DOI: 10.1016/j.ccr.2021.214184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zanoni DK, Stambuk HE, Madajewski B, Montero PH, Matsuura D, Busam KJ, Ma K, Turker MZ, Sequeira S, Gonen M, Zanzonico P, Wiesner U, Bradbury MS, Patel SG. Use of Ultrasmall Core-Shell Fluorescent Silica Nanoparticles for Image-Guided Sentinel Lymph Node Biopsy in Head and Neck Melanoma: A Nonrandomized Clinical Trial. JAMA Netw Open 2021;4:e211936. [PMID: 33734415 DOI: 10.1001/jamanetworkopen.2021.1936] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Sharma SK, Nemieboka B, Sala E, Lewis JS, Zeglis BM. Molecular Imaging of Ovarian Cancer. J Nucl Med 2016;57:827-33. [PMID: 27127223 DOI: 10.2967/jnumed.115.172023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
4 Harmand TJ, Islam A, Pishesha N, Ploegh HL. Nanobodies as in vivo, non-invasive, imaging agents. RSC Chem Biol 2021;2:685-701. [PMID: 34212147 DOI: 10.1039/d1cb00023c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Russell LM, Liu CH, Grodzinski P. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 2020;242:119926. [DOI: 10.1016/j.biomaterials.2020.119926] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
6 Peng CL, Shih YH, Chiang PF, Chen CT, Chang MC. Multifunctional Cyanine-Based Theranostic Probe for Cancer Imaging and Therapy. Int J Mol Sci 2021;22:12214. [PMID: 34830094 DOI: 10.3390/ijms222212214] [Reference Citation Analysis]
7 Gao J, Li J, Wei D, Yang H, Duan Y, Zhang Y, Gong X, Wang H, Ding D, Wu X, Chang J. Enabling AIEgens close assembly in tumor-overexpressed protein cluster for boosted image-guided cancer surgery. Sci China Chem 2020;63:1694-702. [DOI: 10.1007/s11426-020-9829-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Sato K, Gorka AP, Nagaya T, Michie MS, Nani RR, Nakamura Y, Coble VL, Vasalatiy OV, Swenson RE, Choyke PL, Schnermann MJ, Kobayashi H. Role of Fluorophore Charge on the In Vivo Optical Imaging Properties of Near-Infrared Cyanine Dye/Monoclonal Antibody Conjugates. Bioconjug Chem 2016;27:404-13. [PMID: 26444497 DOI: 10.1021/acs.bioconjchem.5b00492] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
9 Mao Y, Wang K, He K, Ye J, Yang F, Zhou J, Li H, Chen X, Wang J, Chi C, Tian J. Development and application of the near-infrared and white-light thoracoscope system for minimally invasive lung cancer surgery. J Biomed Opt 2017;22:1. [DOI: 10.1117/1.jbo.22.6.066002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yokomizo S, Henary M, Buabeng ER, Fukuda T, Monaco H, Baek Y, Manganiello S, Wang H, Kubota J, Ulumben AD, Lv X, Wang C, Inoue K, Fukushi M, Kang H, Bao K, Kashiwagi S, Choi HS. Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. Adv Sci (Weinh) 2022;:e2201416. [PMID: 35567348 DOI: 10.1002/advs.202201416] [Reference Citation Analysis]
11 Yoshii Y, Yoshimoto M, Matsumoto H, Tashima H, Iwao Y, Takuwa H, Yoshida E, Wakizaka H, Yamaya T, Zhang MR, Sugyo A, Hanadate S, Tsuji AB, Higashi T. Integrated treatment using intraperitoneal radioimmunotherapy and positron emission tomography-guided surgery with 64Cu-labeled cetuximab to treat early- and late-phase peritoneal dissemination in human gastrointestinal cancer xenografts. Oncotarget 2018;9:28935-50. [PMID: 29989003 DOI: 10.18632/oncotarget.25649] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Odenthal J, Rijpkema M, Bos D, Wagena E, Croes H, Grenman R, Boerman O, Takes R, Friedl P. Targeting CD44v6 for fluorescence-guided surgery in head and neck squamous cell carcinoma. Sci Rep 2018;8:10467. [PMID: 29992954 DOI: 10.1038/s41598-018-28059-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
13 Jin Y, Li Y, Yang X, Tian J. Neuroblastoma-targeting triangular gadolinium oxide nanoplates for precise excision of cancer. Acta Biomater 2019;87:223-34. [PMID: 30669004 DOI: 10.1016/j.actbio.2019.01.042] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
14 Jin Y, Wang K, Tian J. Preoperative Examination and Intraoperative Identification of Hepatocellular Carcinoma Using a Targeted Bimodal Imaging Probe. Bioconjugate Chem 2018;29:1475-84. [DOI: 10.1021/acs.bioconjchem.8b00161] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
15 An Y, Wang K, Tian J. Recent methodology advances in fluorescence molecular tomography. Vis Comput Ind Biomed Art 2018;1:1. [PMID: 32240398 DOI: 10.1186/s42492-018-0001-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol. 2019;21:200-218. [PMID: 29942988 DOI: 10.1007/s11307-018-1239-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
17 Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020;10:2631-44. [PMID: 32194825 DOI: 10.7150/thno.40808] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
18 Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022;20:24. [PMID: 34991595 DOI: 10.1186/s12951-021-01232-5] [Reference Citation Analysis]
19 Tsai WK, Zettlitz KA, Tavaré R, Kobayashi N, Reiter RE, Wu AM. Dual-Modality ImmunoPET/Fluorescence Imaging of Prostate Cancer with an Anti-PSCA Cys-Minibody. Theranostics 2018;8:5903-14. [PMID: 30613270 DOI: 10.7150/thno.27679] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
20 Liu R, Xu Y, Xu K, Dai Z. Current trends and key considerations in the clinical translation of targeted fluorescent probes for intraoperative navigation. Aggregate 2021;2. [DOI: 10.1002/agt2.23] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
21 Deng Y, Zhan W, Liang G. Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Adv Healthc Mater 2021;10:e2001211. [PMID: 32902191 DOI: 10.1002/adhm.202001211] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
22 Zhu M, Chen F, Liu J, Wang G, Liao H. Ex vivo classification of spinal cord tumors using autofluorescence spectroscopy and immunohistochemical indexes. Biomed Opt Express 2018;9:4401-12. [PMID: 30615743 DOI: 10.1364/BOE.9.004401] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Buckle T, Hensbergen AW, van Willigen DM, Bosse F, Bauwens K, Pelger RCM, van Leeuwen FWB. Intraoperative visualization of nerves using a myelin protein-zero specific fluorescent tracer. EJNMMI Res 2021;11:50. [PMID: 34052912 DOI: 10.1186/s13550-021-00792-9] [Reference Citation Analysis]
24 Anastasopoulou M, Gorpas D, Koch M, Liapis E, Glasl S, Klemm U, Karlas A, Lasser T, Ntziachristos V. Fluorescence imaging reversion using spatially variant deconvolution. Sci Rep 2019;9:18123. [PMID: 31792293 DOI: 10.1038/s41598-019-54578-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Gao W, Ma Y, Liu Y, Ma S, Lin W. Observation of endogenous HClO in living mice with inflammation, tissue injury and bacterial infection by a near-infrared fluorescent probe. Sensors and Actuators B: Chemical 2021;327:128884. [DOI: 10.1016/j.snb.2020.128884] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
26 Chen Q, Shang W, Zeng C, Wang K, Liang X, Chi C, Liang X, Yang J, Fang C, Tian J. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Oncotarget. 2017;8:32741-32751. [PMID: 28416757 DOI: 10.18632/oncotarget.15642] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
27 Buckle T, van der Wal S, van Willigen DM, Aalderink G, KleinJan GH, van Leeuwen FWB. Fluorescence background quenching as a means to increase Signal to Background ratio - a proof of concept during Nerve Imaging. Theranostics 2020;10:9890-8. [PMID: 32863966 DOI: 10.7150/thno.46806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kim J, Park W, Kim D, Lee ES, Lee DH, Jeong S, Park JM, Na K. Tumor‐Specific Aptamer‐Conjugated Polymeric Photosensitizer for Effective Endo‐Laparoscopic Photodynamic Therapy. Adv Funct Mater 2019;29:1900084. [DOI: 10.1002/adfm.201900084] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
29 Rho J, Quan YH, Choi BH, Han KN, Kim BM, Choi YH, Kim HK. Near-infrared fluorescent imaging with indocyanine green in rabbit and patient specimens of esophageal cancer. J Thorac Dis 2021;13:6314-22. [PMID: 34992811 DOI: 10.21037/jtd-21-790] [Reference Citation Analysis]
30 Cheng M, Zhou L, Ma J, Mu J, Yi C, Li M. Iridium(III) and gadolinium(III) loaded and peptide-modified silica nanoparticles for photoluminescence and magnetic resonance (dual) imaging. Materials Science and Engineering: C 2019;104:109972. [DOI: 10.1016/j.msec.2019.109972] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Li S, Zhang Y, Liu X, Tian Y, Cheng Y, Tang L, Lin H. Smart NIR-II croconaine dye-peptide for enhanced photo-sonotheranostics of hepatocellular carcinoma. Theranostics 2022;12:76-86. [PMID: 34987635 DOI: 10.7150/thno.64759] [Reference Citation Analysis]
32 Kim T, O'brien C, Choi HS, Jeong MY. Fluorescence molecular imaging systems for intraoperative image-guided surgery. Applied Spectroscopy Reviews 2017;53:349-59. [DOI: 10.1080/05704928.2017.1323311] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
33 Yang R, Chen M, Zhang Q, Gao Y, Lou K, Lin T, Huang W, Zeng Y, Zhang Y, Dang Y, Ren L, Zhang G. Development and Preclinical Evaluation of a Near-Infrared Fluorescence Probe Based on Tailored Hepatitis B Core Particles for Imaging-Guided Surgery in Breast Cancer. IJN 2022;Volume 17:1343-60. [DOI: 10.2147/ijn.s343479] [Reference Citation Analysis]
34 Liu Y, Chen Q, Sun Y, Chen L, Yuan Y, Gu M. Aggregation-induced emission shining in the biomedical field: From bench to bedside. Engineered Regeneration 2021;2:206-18. [DOI: 10.1016/j.engreg.2021.11.001] [Reference Citation Analysis]
35 Craig SEL, Wright J, Sloan AE, Brady-Kalnay SM. Fluorescent-Guided Surgical Resection of Glioma with Targeted Molecular Imaging Agents: A Literature Review. World Neurosurg 2016;90:154-63. [PMID: 26915698 DOI: 10.1016/j.wneu.2016.02.060] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
36 Liu Y, Wang Z, Li X, Ma X, Wang S, Kang F, Yang W, Ma W, Wang J. Near-Infrared Fluorescent Peptides with High Tumor Selectivity: Novel Probes for Image-Guided Surgical Resection of Orthotopic Glioma. Mol Pharm 2019;16:108-17. [PMID: 30517013 DOI: 10.1021/acs.molpharmaceut.8b00888] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
37 Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. Adv Mater 2019;31:e1900321. [PMID: 31025403 DOI: 10.1002/adma.201900321] [Cited by in Crossref: 200] [Cited by in F6Publishing: 160] [Article Influence: 66.7] [Reference Citation Analysis]
38 Xu L, Cai K, Yang R, Lin Q, Yue H, Liu F. Simulation of multi-probe radiofrequency ablation guided by optical surgery navigation system under different active modes. Computer Assisted Surgery 2016;21:107-16. [DOI: 10.1080/24699322.2016.1210679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Zhang H, Desai P, Koike Y, Houghton J, Carlin S, Tandon N, Touijer K, Weber WA. Dual-Modality Imaging of Prostate Cancer with a Fluorescent and Radiogallium-Labeled Gastrin-Releasing Peptide Receptor Antagonist. J Nucl Med 2017;58:29-35. [PMID: 27516447 DOI: 10.2967/jnumed.116.176099] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
40 Lwin TM, Hernot S, Hollandsworth H, Amirfakhri S, Filemoni F, Debie P, Hoffman RM, Bouvet M. Tumor-specific near-infrared nanobody probe rapidly labels tumors in an orthotopic mouse model of pancreatic cancer. Surgery 2020;168:85-91. [PMID: 32370916 DOI: 10.1016/j.surg.2020.02.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
41 Zeng C, Shang W, Liang X, Liang X, Chen Q, Chi C, Du Y, Fang C, Tian J. Cancer Diagnosis and Imaging-Guided Photothermal Therapy Using a Dual-Modality Nanoparticle. ACS Appl Mater Interfaces 2016;8:29232-41. [PMID: 27731621 DOI: 10.1021/acsami.6b06883] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 9.2] [Reference Citation Analysis]
42 Luby BM, Charron DM, MacLaughlin CM, Zheng G. Activatable fluorescence: From small molecule to nanoparticle. Adv Drug Deliv Rev 2017;113:97-121. [PMID: 27593264 DOI: 10.1016/j.addr.2016.08.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 8.3] [Reference Citation Analysis]
43 Li Y, Ye F, Zhang S, Ni W, Wen L, Qin H. Carbon-Coated Magnetic Nanoparticle Dedicated to MRI/Photoacoustic Imaging of Tumor in Living Mice. Front Bioeng Biotechnol 2021;9:800744. [PMID: 34926438 DOI: 10.3389/fbioe.2021.800744] [Reference Citation Analysis]
44 Zeng Z, Ouyang J, Sun L, Zeng C, Zeng F, Wu S. Activatable Nanocomposite Probe for Preoperative Location and Intraoperative Navigation for Orthotopic Hepatic Tumor Resection via MSOT and Aggregation-Induced Near-IR-I/II Fluorescence Imaging. Anal Chem 2020;92:9257-64. [PMID: 32530263 DOI: 10.1021/acs.analchem.0c01596] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
45 Chen Q, Chen AZ, Jia G, Li J, Zheng C, Chen K. Molecular Imaging of Tumor Microenvironment to Assess the Effects of Locoregional Treatment for Hepatocellular Carcinoma. Hepatol Commun 2021. [PMID: 34738743 DOI: 10.1002/hep4.1850] [Reference Citation Analysis]
46 Barth CW, Schaefer JM, Rossi VM, Davis SC, Gibbs SL. Optimizing fresh specimen staining for rapid identification of tumor biomarkers during surgery. Theranostics 2017;7:4722-34. [PMID: 29187899 DOI: 10.7150/thno.21527] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
47 Zheng S, Zhang Z, Qu Y, Zhang X, Guo H, Shi X, Cai M, Cao C, Hu Z, Liu H, Tian J. Radiopharmaceuticals and Fluorescein Sodium Mediated Triple-Modality Molecular Imaging Allows Precise Image-Guided Tumor Surgery. Adv Sci (Weinh) 2019;6:1900159. [PMID: 31380183 DOI: 10.1002/advs.201900159] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
48 Nagai K, Sato T, Kojima C. Design of a dendrimer with a matrix metalloproteinase-responsive fluorescence probe and a tumor-homing peptide for metastatic tumor cell imaging in the lymph node. Bioorg Med Chem Lett 2021;33:127726. [PMID: 33316406 DOI: 10.1016/j.bmcl.2020.127726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Wang D, Ma D, Wong ML, Wáng YX. Recent advances in surgical planning & navigation for tumor biopsy and resection. Quant Imaging Med Surg 2015;5:640-8. [PMID: 26682133 DOI: 10.3978/j.issn.2223-4292.2015.10.03] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
50 Zheng S, Zhang Y, Chen S, Zhang Z, Chen F, Zhang Z, Hu Z, Tian J, Wang L. A preliminary study of dual-band confocal laser endomicroscopy combined with image mosaic in the diagnosis of liver cancer. Nanomedicine 2020;29:102250. [PMID: 32619706 DOI: 10.1016/j.nano.2020.102250] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Barabino G, Klein JP, Porcheron J, Grichine A, Coll JL, Cottier M. Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery: Proof of concept.Eur J Surg Oncol. 2016;42:1931-1937. [PMID: 27378159 DOI: 10.1016/j.ejso.2016.06.389] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
52 Farah CS, Bhatia N, Lalla Y, Vu A, John K, Gupta V, Baeten J, Johnson A, Kademani D. Advances in Early Detection and Diagnostic Adjuncts in Oral Cavity Cancer. In: Kuriakose MA, editor. Contemporary Oral Oncology. Cham: Springer International Publishing; 2017. pp. 355-421. [DOI: 10.1007/978-3-319-14911-0_9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
53 Anastasopoulou M, Koch M, Gorpas D, Karlas A, Klemm U, Garcia-allende PB, Ntziachristos V. Comprehensive phantom for interventional fluorescence molecular imaging. J Biomed Opt 2016;21:091309. [DOI: 10.1117/1.jbo.21.9.091309] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
54 Christensen A, Juhl K, Persson M, Charabi BW, Mortensen J, Kiss K, Lelkaitis G, Rubek N, von Buchwald C, Kjær A. uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget 2017;8:15407-19. [PMID: 28039488 DOI: 10.18632/oncotarget.14282] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
55 Peck EM, Battles PM, Rice DR, Roland FM, Norquest KA, Smith BD. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging. Bioconjug Chem 2016;27:1400-10. [PMID: 27088305 DOI: 10.1021/acs.bioconjchem.6b00173] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
56 Tummers WS, Warram JM, Tipirneni KE, Fengler J, Jacobs P, Shankar L, Henderson L, Ballard B, Pfefer TJ, Pogue BW, Weichert JP, Bouvet M, Sorger J, Contag CH, Frangioni JV, Tweedle MF, Basilion JP, Gambhir SS, Rosenthal EL. Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection. Cancer Res 2017;77:2197-206. [PMID: 28428283 DOI: 10.1158/0008-5472.CAN-16-3217] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
57 Zheng Q, Wang Q, Ba X, Liu S, Nan J, Zhang S. A Medical Image Registration Method Based on Progressive Images. Comput Math Methods Med 2021;2021:4504306. [PMID: 34367316 DOI: 10.1155/2021/4504306] [Reference Citation Analysis]
58 Zhang Q, O'Brien S, Grimm J. Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics 2022;6:184-94. [PMID: 34976593 DOI: 10.7150/ntno.65530] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Mao Y, Chi C, Yang F, Zhou J, He K, Li H, Chen X, Ye J, Wang J, Tian J. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. European Journal of Cardio-Thoracic Surgery 2017;52:1190-6. [DOI: 10.1093/ejcts/ezx207] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
60 Babič A, Herceg V, Ateb I, Allémann E, Lange N. Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection. Journal of Controlled Release 2016;235:155-64. [DOI: 10.1016/j.jconrel.2016.05.047] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
61 Treerattrakoon K, Chanthima W, Apiwat C, Dharakul T, Bamrungsap S. Oriented conjugation of antibodies against the epithelial cell adhesion molecule on fluorescently doped silica nanoparticles for flow-cytometric determination and in vivo imaging of EpCAM, a biomarker for colorectal cancer. Microchim Acta 2017;184:1941-50. [DOI: 10.1007/s00604-017-2211-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
62 Liu W, Gu R, Zhu Q, Xiao C, Huang L, Zhuang X, Zhang J, Liu L, Ma B, Yang H, Ma J, Hu Z, Tang C, Zhao S, Chen X. Rapid fluorescence imaging of spinal cord following epidural administration of a nerve-highlighting fluorophore. Theranostics 2017;7:1863-74. [PMID: 28638473 DOI: 10.7150/thno.18962] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
63 Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020;20:38. [PMID: 32517801 DOI: 10.1186/s40644-020-00312-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
64 Lebya K, Garcia‐smith R, Swaminathan R, Jones A, Russell J, Joste N, Bisoffi M, Trujillo K. Towards a personalized surgical margin for breast conserving surgery—Implications of field cancerization in local recurrence. J Surg Oncol 2017;115:109-15. [DOI: 10.1002/jso.24469] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
65 Keating JJ, Okusanya OT, De Jesus E, Judy R, Jiang J, Deshpande C, Nie S, Low P, Singhal S. Intraoperative Molecular Imaging of Lung Adenocarcinoma Can Identify Residual Tumor Cells at the Surgical Margins. Mol Imaging Biol 2016;18:209-18. [PMID: 26228697 DOI: 10.1007/s11307-015-0878-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
66 An J, Zhao N, Zhang C, Zhao Y, Tan D, Zhao Y, Bai B, Zhang H, Wu BJ, Shi C. Heptamethine carbocyanine DZ-1 dye for near-infrared fluorescence imaging of hepatocellular carcinoma. Oncotarget 2017;8:56880-92. [PMID: 28915639 DOI: 10.18632/oncotarget.18131] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
67 Miyashita S, Hatano E, Tada M, Okada T. Hepatectomy using a novel cart-based indocyanine green fluorescence imaging system. Surg Today 2020;50:1308-13. [PMID: 32350622 DOI: 10.1007/s00595-020-02005-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
68 Zou Y, Li M, Xing Y, Duan T, Zhou X, Yu F. Bioimaging of Glutathione with a Two-Photon Fluorescent Probe and Its Potential Application for Surgery Guide in Laryngeal Cancer. ACS Sens 2020;5:242-9. [PMID: 31815435 DOI: 10.1021/acssensors.9b02118] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
69 Tian R, Zeng Q, Zhu S, Lau J, Chandra S, Ertsey R, Hettie KS, Teraphongphom T, Hu Z, Niu G, Kiesewetter DO, Sun H, Zhang X, Antaris AL, Brooks BR, Chen X. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv 2019;5:eaaw0672. [PMID: 31548981 DOI: 10.1126/sciadv.aaw0672] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 17.7] [Reference Citation Analysis]
70 DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 2016;21:80901. [PMID: 27533438 DOI: 10.1117/1.JBO.21.8.080901] [Cited by in Crossref: 184] [Cited by in F6Publishing: 91] [Article Influence: 46.0] [Reference Citation Analysis]
71 Wang D, Zhou J, Shi R, Wu H, Chen R, Duan B, Xia G, Xu P, Wang H, Zhou S, Wang C, Wang H, Guo Z, Chen Q. Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics 2017;7:4605-17. [PMID: 29158848 DOI: 10.7150/thno.20363] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
72 Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health‐related applications. View 2020;1:20200055. [DOI: 10.1002/viw.20200055] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
73 Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S. Molecular imaging in drug development: Update and challenges for radiolabeled antibodies and nanotechnology. Methods 2017;130:23-35. [DOI: 10.1016/j.ymeth.2017.07.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 4.2] [Reference Citation Analysis]
74 Pan Y, Chen W, Yang J, Zheng J, Yang M, Yi C. Facile Synthesis of Gadolinium Chelate-Conjugated Polymer Nanoparticles for Fluorescence/Magnetic Resonance Dual-Modal Imaging. Anal Chem 2018;90:1992-2000. [DOI: 10.1021/acs.analchem.7b04078] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
75 Gujrati V, Mishra A, Ntziachristos V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem Commun 2017;53:4653-72. [DOI: 10.1039/c6cc09421j] [Cited by in Crossref: 69] [Cited by in F6Publishing: 21] [Article Influence: 13.8] [Reference Citation Analysis]
76 Dai Y, Cheng S, Wang Z, Zhang R, Yang Z, Wang J, Yung BC, Wang Z, Jacobson O, Xu C, Ni Q, Yu G, Zhou Z, Chen X. Hypochlorous Acid Promoted Platinum Drug Chemotherapy by Myeloperoxidase-Encapsulated Therapeutic Metal Phenolic Nanoparticles. ACS Nano 2018;12:455-63. [DOI: 10.1021/acsnano.7b06852] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 19.0] [Reference Citation Analysis]
77 He M, Jiang Z, Wang C, Hao Z, An J, Shen J. Diagnostic value of near‐infrared or fluorescent indocyanine green guided sentinel lymph node mapping in gastric cancer: A systematic review and meta‐analysis. J Surg Oncol 2018;118:1243-56. [DOI: 10.1002/jso.25285] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
78 Zhang X, Wang B, Zhao N, Tian Z, Dai Y, Nie Y, Tian J, Wang Z, Chen X. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry. Theranostics 2017;7:3794-802. [PMID: 29109777 DOI: 10.7150/thno.20912] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
79 Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X. Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. ACS Appl Mater Interfaces 2020;12:26914-25. [PMID: 32463220 DOI: 10.1021/acsami.0c05021] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 17.0] [Reference Citation Analysis]
80 Dai J, Xue H, Chen D, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for assisted cancer surgery. Coordination Chemistry Reviews 2022;464:214552. [DOI: 10.1016/j.ccr.2022.214552] [Reference Citation Analysis]
81 Liu S, Li Y, Zhang J, Zhang H, Wang Y, Chuah C, Tang Y, Lam JWY, Kwok RTK, Ou H, Ding D, Tang BZ. A two-in-one Janus NIR-II AIEgen with balanced absorption and emission for image-guided precision surgery. Mater Today Bio 2021;10:100087. [PMID: 33889836 DOI: 10.1016/j.mtbio.2020.100087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
82 He K, Zhou J, Yang F, Chi C, Li H, Mao Y, Hui B, Wang K, Tian J, Wang J. Near-infrared Intraoperative Imaging of Thoracic Sympathetic Nerves: From Preclinical Study to Clinical Trial. Theranostics 2018;8:304-13. [PMID: 29290809 DOI: 10.7150/thno.22369] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
83 Liu Q, Zhou M, Li P, Ku G, Huang G, Li C, Song S. 64 CuS-labeled nanoparticles: a new sentinel-lymph-node-mapping agent for PET-CT and photoacoustic tomography. Contrast Media Mol Imaging 2016;11:475-81. [PMID: 27523742 DOI: 10.1002/cmmi.1709] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
84 Ghosh SC, Hernandez Vargas S, Rodriguez M, Kossatz S, Voss J, Carmon KS, Reiner T, Schonbrunn A, Azhdarinia A. Synthesis of a Fluorescently Labeled 68Ga-DOTA-TOC Analog for Somatostatin Receptor Targeting. ACS Med Chem Lett 2017;8:720-5. [PMID: 28740605 DOI: 10.1021/acsmedchemlett.7b00125] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
85 Qiu L, Zhang F, Shi Y, Bai Z, Wang J, Li Y, Lee D, Ingraham C, Feng X, Yang X. Gliomas: Motexafin Gadolinium-enhanced Molecular MR Imaging and Optical Imaging for Potential Intraoperative Delineation of Tumor Margins. Radiology 2016;279:400-9. [PMID: 26599802 DOI: 10.1148/radiol.2015150895] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
86 Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics 2015;5:559-82. [PMID: 25825597 DOI: 10.7150/thno.11548] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 9.0] [Reference Citation Analysis]
87 Ji Z, Ai P, Shao C, Wang T, Yan C, Ye L, Gu W. Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma. ACS Biomater Sci Eng 2018;4:2089-94. [PMID: 33435031 DOI: 10.1021/acsbiomaterials.7b01008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
88 Denniston E, Crewdson H, Rucinsky N, Stegman A, Remenar D, Moio K, Clark B, Higginbotham A, Keffer R, Brammer S, Horzempa J. The Practical Consideration of Poliovirus as an Oncolytic Virotherapy. Am J Virol 2016;5:1-7. [PMID: 28203321 DOI: 10.3844/ajvsp.2016.1.7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
89 Schmidt F, Dittberner A, Koscielny S, Petersen I, Guntinas-Lichius O. Feasibility of real-time near-infrared indocyanine green fluorescence endoscopy for the evaluation of mucosal head and neck lesions. Head Neck 2017;39:234-40. [PMID: 27590351 DOI: 10.1002/hed.24570] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
90 Liu H, Wu P, Kuo S, Chen C, Chang E, Wu C, Chan Y. Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J Am Chem Soc 2015;137:10420-9. [DOI: 10.1021/jacs.5b06710] [Cited by in Crossref: 128] [Cited by in F6Publishing: 114] [Article Influence: 18.3] [Reference Citation Analysis]
91 Jing H, Weidensteiner C, Reichardt W, Gaedicke S, Zhu X, Grosu AL, Kobayashi H, Niedermann G. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Theranostics 2016;6:862-74. [PMID: 27162556 DOI: 10.7150/thno.12890] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
92 Zhang Y, Huang K, Lin J, Huang P. Janus nanoparticles in cancer diagnosis, therapy and theranostics. Biomater Sci 2019;7:1262-75. [DOI: 10.1039/c8bm01523f] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
93 Zhang Z, He K, Chi C, Hu Z, Tian J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur J Nucl Med Mol Imaging 2022. [PMID: 35230491 DOI: 10.1007/s00259-022-05730-y] [Reference Citation Analysis]
94 Jiao J, Zhang J, Yang F, Song W, Han D, Wen W, Qin W. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. Eur J Pharm Biopharm 2020;152:123-43. [PMID: 32437752 DOI: 10.1016/j.ejpb.2020.05.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
95 Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front Chem 2021;9:746646. [PMID: 34869202 DOI: 10.3389/fchem.2021.746646] [Reference Citation Analysis]
96 Liu L, Lv RJ, Leung JK, Zou Q, Wang Y, Li F, Liang W, Feng S, Wu MY. A near-infrared biothiol-specific fluorescent probe for cancer cell recognition. Analyst 2019;144:4750-6. [PMID: 31282915 DOI: 10.1039/c9an00795d] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
97 Gambini JP, Quinn TP. Hybrid tracers and devices for intraoperative imaging: the future for radioguided surgery? Clin Transl Imaging 2016;4:343-51. [DOI: 10.1007/s40336-016-0198-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
98 Tu Y, Tao J, Wang F, Liu P, Han Z, Li Z, Ma Y, Gu Y. A novel peptide targeting gastrin releasing peptide receptor for pancreatic neoplasm detection. Biomater Sci 2020;8:2682-93. [DOI: 10.1039/d0bm00162g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
99 Jiang S, Liu J, An Y, Zhang G, Ye J, Mao Y, He K, Chi C, Tian J. Novel l 2,1-norm optimization method for fluorescence molecular tomography reconstruction. Biomed Opt Express 2016;7:2342-59. [PMID: 27375949 DOI: 10.1364/BOE.7.002342] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
100 Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish-Novak J. Preclinical Validation of the Utility of BLZ-100 in Providing Fluorescence Contrast for Imaging Spontaneous Solid Tumors. Cancer Res 2015;75:4283-91. [PMID: 26471914 DOI: 10.1158/0008-5472.CAN-15-0471] [Cited by in Crossref: 50] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
101 Niu G, Chen X. Lymphatic imaging: focus on imaging probes. Theranostics 2015;5:686-97. [PMID: 25897334 DOI: 10.7150/thno.11862] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
102 Yu L, Zhang JF, Li M, Jiang D, Zhou Y, Verwilst P, Kim JS. Combining viscosity-restricted intramolecular motion and mitochondrial targeting leads to selective tumor visualization. Chem Commun 2020;56:6684-7. [DOI: 10.1039/d0cc02943b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 8.5] [Reference Citation Analysis]
103 Gao M, Tang BZ. Aggregation-induced emission probes for cancer theranostics. Drug Discovery Today 2017;22:1288-94. [DOI: 10.1016/j.drudis.2017.07.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
104 Quang TT, Kim HY, Bao FS, Papay FA, Edwards WB, Liu Y. Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging. PLoS One 2017;12:e0174928. [PMID: 28437441 DOI: 10.1371/journal.pone.0174928] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
105 Azari F, Kennedy G, Bernstein E, Hadjipanayis C, Vahrmeijer A, Smith B, Rosenthal E, Sumer B, Tian J, Henderson E, Lee A, Nguyen Q, Gibbs S, Pogue B, Orringer D, Charalampaki C, Martin L, Tanyi J, Lee M, Lee JY, Singhal S. Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings. J Biomed Opt 2021;26. [PMID: 34002555 DOI: 10.1117/1.JBO.26.5.050901] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
106 Roelfsema F, van den Berg G. Diagnosis, treatment and clinical perspectives of acromegaly. Expert Rev Endocrinol Metab 2015;10:619-44. [PMID: 30289037 DOI: 10.1586/17446651.2015.1096770] [Reference Citation Analysis]
107 Tian R, Ma H, Yang Q, Wan H, Zhu S, Chandra S, Sun H, Kiesewetter DO, Niu G, Liang Y, Chen X. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci 2019;10:326-32. [PMID: 30713641 DOI: 10.1039/c8sc03751e] [Cited by in Crossref: 63] [Cited by in F6Publishing: 14] [Article Influence: 15.8] [Reference Citation Analysis]
108 Anderson CJ, Lewis JS. Current status and future challenges for molecular imaging. Philos Trans A Math Phys Eng Sci 2017;375:20170023. [PMID: 29038378 DOI: 10.1098/rsta.2017.0023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
109 Gui C, Zhao E, Kwok RTK, Leung ACS, Lam JWY, Jiang M, Deng H, Cai Y, Zhang W, Su H, Tang BZ. AIE-active theranostic system: selective staining and killing of cancer cells. Chem Sci 2017;8:1822-30. [PMID: 30155198 DOI: 10.1039/c6sc04947h] [Cited by in Crossref: 131] [Cited by in F6Publishing: 16] [Article Influence: 21.8] [Reference Citation Analysis]
110 Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. J Biophotonics 2021;:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Reference Citation Analysis]
111 Anderson CF, Cui H. Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging. Ind Eng Chem Res 2017;56:5761-77. [PMID: 28572701 DOI: 10.1021/acs.iecr.7b00990] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
112 Zelken JA, Tufaro AP. Current Trends and Emerging Future of Indocyanine Green Usage in Surgery and Oncology: An Update. Ann Surg Oncol 2015;22 Suppl 3:S1271-83. [PMID: 26193966 DOI: 10.1245/s10434-015-4743-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
113 Li X, Schumann C, Albarqi HA, Lee CJ, Alani AWG, Bracha S, Milovancev M, Taratula O, Taratula O. A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy. Theranostics 2018;8:767-84. [PMID: 29344305 DOI: 10.7150/thno.21209] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
114 Qin Z, Wang J, Wang Y, Wang G, Wang X, Zhou Z, Liu G, Gao S, Zhu L. Identification of a Glypican-3-Binding Peptide for In Vivo Non-Invasive Human Hepatocellular Carcinoma Detection. Macromol Biosci 2017;17:1600335. [DOI: 10.1002/mabi.201600335] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
115 Qiu SQ, Zhang GJ, Jansen L, de Vries J, Schröder CP, de Vries EGE, van Dam GM. Evolution in sentinel lymph node biopsy in breast cancer. Crit Rev Oncol Hematol 2018;123:83-94. [PMID: 29482783 DOI: 10.1016/j.critrevonc.2017.09.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
116 Sevieri M, Sitia L, Bonizzi A, Truffi M, Mazzucchelli S, Corsi F. Tumor Accumulation and Off-Target Biodistribution of an Indocyanine-Green Fluorescent Nanotracer: An Ex Vivo Study on an Orthotopic Murine Model of Breast Cancer. Int J Mol Sci 2021;22:1601. [PMID: 33562574 DOI: 10.3390/ijms22041601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Sperling J, Kauffels A, Grade M, Alves F, Kühn P, Ghadimi BM. [Intraoperative multidimensional visualization]. Chirurg 2016;87:1015-24. [PMID: 27796416 DOI: 10.1007/s00104-016-0314-y] [Reference Citation Analysis]
118 Pogue BW, Paulsen KD, Samkoe KS, Elliott JT, Hasan T, Strong TV, Draney DR, Feldwisch J. Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention. Med Phys 2016;43:3143-56. [PMID: 27277060 DOI: 10.1118/1.4951732] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
119 Liu B, Liu T, Su M, Ma YQ, Zhang BF, Wang YF, Hu BY, Chen YL. Improving the Surgical Effect for Primary Liver Cancer with Intraoperative Fluorescence Navigation Compared with Intraoperative Ultrasound. Med Sci Monit 2019;25:3406-16. [PMID: 31067211 DOI: 10.12659/MSM.916423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
120 Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury. Int J Mol Med 2018;41:2527-34. [PMID: 29532861 DOI: 10.3892/ijmm.2018.3491] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
121 Favril S, Abma E, Blasi F, Stock E, Devriendt N, Vanderperren K, de Rooster H. Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology. Veterinary Record 2018;183:354-354. [DOI: 10.1136/vr.104851] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
122 Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J Mater Chem B 2018;6:3894-903. [PMID: 32254317 DOI: 10.1039/c8tb00572a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 3] [Article Influence: 8.3] [Reference Citation Analysis]
123 Chen J, Luo Z, Zhao Z, Xie L, Zheng W, Chen T. Cellular localization of iron(II) polypyridyl complexes determines their anticancer action mechanisms. Biomaterials 2015;71:168-77. [DOI: 10.1016/j.biomaterials.2015.08.031] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
124 Lee J, Gordon AC, Kim H, Park W, Cho S, Lee B, Larson AC, Rozhkova EA, Kim DH. Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials 2016;109:69-77. [PMID: 27673597 DOI: 10.1016/j.biomaterials.2016.09.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
125 Sato K, Gorka AP, Nagaya T, Michie MS, Nakamura Y, Nani RR, Coble VL, Vasalatiy OV, Swenson RE, Choyke PL, Schnermann MJ, Kobayashi H. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Mol Biosyst 2016;12:3046-56. [PMID: 27452807 DOI: 10.1039/c6mb00371k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
126 Luo W, Jiang R, Liu M, Wan Q, Tian J, Wen Y, Cao QY, Hui J, Zhang X, Wei Y. Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. J Colloid Interface Sci 2018;509:327-33. [PMID: 28918375 DOI: 10.1016/j.jcis.2017.09.039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
127 Zeng C, Shang W, Wang K, Chi C, Jia X, Fang C, Yang D, Ye J, Fang C, Tian J. Intraoperative Identification of Liver Cancer Microfoci Using a Targeted Near-Infrared Fluorescent Probe for Imaging-Guided Surgery. Sci Rep 2016;6:21959. [PMID: 26923919 DOI: 10.1038/srep21959] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
128 Wang X, Hu J, Wang P, Zhang S, Liu Y, Xiong W, Liu Q. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 2015;5:772-86. [PMID: 25897341 DOI: 10.7150/thno.10853] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 8.3] [Reference Citation Analysis]
129 Zhang C, Jiang D, Huang B, Wang C, Zhao L, Xie X, Zhang Z, Wang K, Tian J, Luo Y. Methylene Blue-Based Near-Infrared Fluorescence Imaging for Breast Cancer Visualization in Resected Human Tissues. Technol Cancer Res Treat 2019;18:1533033819894331. [PMID: 31835962 DOI: 10.1177/1533033819894331] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
130 Salvi R, Cerqueira-Coutinho C, Ricci-Junior E, Dos Santos SN, Pinto SR, Bernardes ES, Barros de Araujo PL, Santos-Oliveira R. Diagnosing lung cancer using etoposide microparticles labeled with 99mTc. Artif Cells Nanomed Biotechnol 2018;46:341-5. [PMID: 28355888 DOI: 10.1080/21691401.2017.1307848] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
131 Liu X, Jiang H, Ye J, Zhao C, Gao S, Wu C, Li C, Li J, Wang X. Nitrogen-Doped Carbon Quantum Dot Stabilized Magnetic Iron Oxide Nanoprobe for Fluorescence, Magnetic Resonance, and Computed Tomography Triple-Modal In Vivo Bioimaging. Adv Funct Mater 2016;26:8694-706. [DOI: 10.1002/adfm.201603084] [Cited by in Crossref: 79] [Cited by in F6Publishing: 49] [Article Influence: 13.2] [Reference Citation Analysis]
132 Sarkaria IS, Luketich JD. Seeing green…augmentation of lymph node assessment with near-infrared imaging in esophageal cancer resections. The Journal of Thoracic and Cardiovascular Surgery 2016;152:555-6. [DOI: 10.1016/j.jtcvs.2016.05.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
133 Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Reference Citation Analysis]
134 Long X, Zhang J, Zhang D, Gao C, Chi C, Yang E, Xue H, Lang L, Niu G, Zhu Z, Li F, Chen X. Microsurgery guided by sequential preoperative lymphography using 68Ga-NEB PET and MRI in patients with lower-limb lymphedema. Eur J Nucl Med Mol Imaging 2017;44:1501-10. [PMID: 28382512 DOI: 10.1007/s00259-017-3676-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
135 Iqbal H, Pan Q. Image guided surgery in the management of head and neck cancer. Oral Oncology 2016;57:32-9. [DOI: 10.1016/j.oraloncology.2016.04.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
136 Hamon CL, Dorsey CL, Özel T, Barnes EM, Hudnall TW, Betancourt T. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3518-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
137 Kvakova K, Ondra M, Schimer J, Petrik M, Novy Z, Raabova H, Hajduch M, Cigler P. Visualization of Sentinel Lymph Nodes with Mannosylated Fluorescent Nanodiamonds. Adv Funct Materials. [DOI: 10.1002/adfm.202109960] [Reference Citation Analysis]
138 Geraldes CFGC. Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities. Molecules 2020;25:E5547. [PMID: 33256052 DOI: 10.3390/molecules25235547] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
139 Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. Ann Transl Med 2021;9:825. [PMID: 34268438 DOI: 10.21037/atm-20-5877] [Reference Citation Analysis]
140 Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Nano Lett 2019;19:318-30. [PMID: 30556699 DOI: 10.1021/acs.nanolett.8b03936] [Cited by in Crossref: 245] [Cited by in F6Publishing: 193] [Article Influence: 61.3] [Reference Citation Analysis]
141 Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018;8:4141-51. [PMID: 30128042 DOI: 10.7150/thno.27995] [Cited by in Crossref: 95] [Cited by in F6Publishing: 90] [Article Influence: 23.8] [Reference Citation Analysis]
142 Feng T, Ai X, Ong H, Zhao Y. Dual-Responsive Carbon Dots for Tumor Extracellular Microenvironment Triggered Targeting and Enhanced Anticancer Drug Delivery. ACS Appl Mater Interfaces 2016;8:18732-40. [DOI: 10.1021/acsami.6b06695] [Cited by in Crossref: 118] [Cited by in F6Publishing: 94] [Article Influence: 19.7] [Reference Citation Analysis]
143 Chen Q, Chen J, He M, Bai Y, Yan H, Zeng N, Liu F, Wen S, Song L, Sheng Z, Liu C, Fang C. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomater Sci 2019;7:3165-77. [DOI: 10.1039/c9bm00528e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 6.7] [Reference Citation Analysis]
144 Song SH, Kang HG, Han YB, Lee HY, Jeong DH, Kim SM, Hong SJ. Characterization and validation of multimodal annihilation-gamma/near-infrared/visible laparoscopic system. J Biomed Opt 2019;24:1-11. [PMID: 31564072 DOI: 10.1117/1.JBO.24.9.096008] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
145 He K, Chi C, Kou D, Huang W, Wu J, Wang Y, He L, Ye J, Mao Y, Zhang GJ, Wang J, Tian J. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals. Transl Res 2016;178:74-80. [PMID: 27497181 DOI: 10.1016/j.trsl.2016.07.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
146 Li L, Du Y, Chen X, Tian J. Fluorescence Molecular Imaging and Tomography of Matrix Metalloproteinase-Activatable Near-Infrared Fluorescence Probe and Image-Guided Orthotopic Glioma Resection. Mol Imaging Biol 2018;20:930-9. [DOI: 10.1007/s11307-017-1158-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
147 Joseph FJ, van Oepen A, Friebe M. Breast sentinel lymph node biopsy with imaging towards minimally invasive surgery. Biomed Tech (Berl) 2017;62:547-55. [PMID: 28467305 DOI: 10.1515/bmt-2016-0164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
148 Restall BS, Kedarisetti P, Haven NJM, Martell MT, Zemp RJ. Multimodal 3D photoacoustic remote sensing and confocal fluorescence microscopy imaging. J Biomed Opt 2021;26. [PMID: 34523269 DOI: 10.1117/1.JBO.26.9.096501] [Reference Citation Analysis]
149 Xu H, Bandari RP, Lee L, Li R, Yu P, Smith CJ, Ma L. Design, Synthesis, and in Vitro and in Vivo Evaluation of High Affinity and Specificity Near-Infrared Fluorescent Bombesin Antagonists for Tumor Imaging. J Med Chem 2018;61:7657-70. [DOI: 10.1021/acs.jmedchem.8b00614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
150 Wang Y, Lang L, Huang P, Wang Z, Jacobson O, Kiesewetter DO, Ali IU, Teng G, Niu G, Chen X. In vivo albumin labeling and lymphatic imaging. Proc Natl Acad Sci U S A 2015;112:208-13. [PMID: 25535368 DOI: 10.1073/pnas.1414821112] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 7.1] [Reference Citation Analysis]
151 Chopra M, Wu J, Yeow YL, Winteringham L, Clemons TD, Saunders M, Kotamraju VR, Ganss R, Feindel KW, Hamzah J. Enhanced Detection of Desmoplasia by Targeted Delivery of Iron Oxide Nanoparticles to the Tumour-Specific Extracellular Matrix. Pharmaceutics 2021;13:1663. [PMID: 34683956 DOI: 10.3390/pharmaceutics13101663] [Reference Citation Analysis]
152 Zhang J, Liu Z, Lian P, Qian J, Li X, Wang L, Fu W, Chen L, Wei X, Li C. Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chem Sci 2016;7:5995-6005. [PMID: 30034741 DOI: 10.1039/c6sc00221h] [Cited by in Crossref: 59] [Cited by in F6Publishing: 13] [Article Influence: 9.8] [Reference Citation Analysis]
153 Stammes MA, Bugby SL, Porta T, Pierzchalski K, Devling T, Otto C, Dijkstra J, Vahrmeijer AL, de Geus-Oei LF, Mieog JSD. Modalities for image- and molecular-guided cancer surgery. Br J Surg 2018;105:e69-83. [PMID: 29341161 DOI: 10.1002/bjs.10789] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
154 Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, Ali I, Niu G, Zhang L, Tian J, Ji N, Zhu Z, Chen X. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics 2018;8:2508-20. [PMID: 29721096 DOI: 10.7150/thno.25599] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 9.5] [Reference Citation Analysis]
155 Gijs M, Aerts A, Impens N, Baatout S, Luxen A. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol 2016;43:253-71. [PMID: 26746572 DOI: 10.1016/j.nucmedbio.2015.09.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.9] [Reference Citation Analysis]
156 Zhao Y, Zhang H, Wu P, Tan D, Zhao Y, Zhang C, Wang J, Bai B, An J, Shi C. Mediated Imaging and Improved Targeting of Farnesylthiosalicylic Acid Delivery for Pancreatic Cancer via Conjugation with Near-Infrared Fluorescence Heptamethine Carbocyanine Dye. ACS Appl Bio Mater 2020;3:1129-38. [DOI: 10.1021/acsabm.9b01068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
157 Waterhouse DJ, Fitzpatrick CRM, Pogue BW, O’connor JPB, Bohndiek SE. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat Biomed Eng 2019;3:339-53. [DOI: 10.1038/s41551-019-0392-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
158 Mitchell GS, Lloyd PNT, Cherry SR. Cerenkov luminescence and PET imaging of 90Y: capabilities and limitations in small animal applications. Phys Med Biol. 2020;65:065006. [PMID: 32045899 DOI: 10.1088/1361-6560/ab7502] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
159 Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016;3:55. [PMID: 27800481 DOI: 10.3389/fsurg.2016.00055] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 10.5] [Reference Citation Analysis]
160 An Y, Liu J, Zhang G, Ye J, Mao Y, Jiang S, Shang W, Du Y, Chi C, Tian J. Meshless reconstruction method for fluorescence molecular tomography based on compactly supported radial basis function. J Biomed Opt 2015;20:105003. [PMID: 26451513 DOI: 10.1117/1.JBO.20.10.105003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
161 Zhang C, Zhao Y, Zhang H, Chen X, Zhao N, Tan D, Zhang H, Shi C. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma. Int J Mol Sci 2017;18:E1332. [PMID: 28635650 DOI: 10.3390/ijms18061332] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
162 Parrish-Novak J, Holland EC, Olson JM. Image-Guided Tumor Resection. Cancer J 2015;21:206-12. [PMID: 26049700 DOI: 10.1097/PPO.0000000000000113] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
163 Hettie KS, Klockow JL, Glass TE, Chin FT. Near-Infrared Fluorescent Rosol Dye Tailored toward Lymphatic Mapping Applications. Anal Chem 2019;91:3110-7. [PMID: 30669835 DOI: 10.1021/acs.analchem.8b05709] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
164 Taverna E, De Bortoli M, Maffioli E, Corno C, Ciusani E, Trivulzio S, Pinelli A, Tedeschi G, Perego P, Bongarzone I. Alterations of RNA Metabolism by Proteomic Analysis of Breast Cancer Cells Exposed to Marycin: A New Optically Active Porphyrin. CMP 2019;12:147-59. [DOI: 10.2174/1874467212666190204102112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
165 Xiao J, Zhang G, Xu R, Chen H, Wang H, Tian G, Wang B, Yang C, Bai G, Zhang Z, Yang H, Zhong K, Zou D, Wu Z. A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials 2019;216:119254. [DOI: 10.1016/j.biomaterials.2019.119254] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
166 Kim JH, Kim WS, Koh YW, Kim S, Byeon HK, Choi EC. Oncologic and functional outcomes of salvage supracricoid partial laryngectomy. Acta Oto-Laryngologica 2019;138:1117-22. [DOI: 10.1080/00016489.2018.1506154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
167 He K, Hong X, Chi C, Cai C, Wang K, Li P, Liu X, Li J, Shan H, Tian J. A new method of near-infrared fluorescence image-guided hepatectomy for patients with hepatolithiasis: a randomized controlled trial. Surg Endosc 2020;34:4975-82. [DOI: 10.1007/s00464-019-07290-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
168 Gust L, Toullec A, Benoit C, Farcy R, Garcia S, Secq V, Gaubert JY, Trousse D, Orsini B, Doddoli C, Moniz-Koum H, Thomas PA, D'journo XB. Pulmonary Endogenous Fluorescence Allows the Distinction of Primary Lung Cancer from the Perilesional Lung Parenchyma. PLoS One 2015;10:e0134559. [PMID: 26244637 DOI: 10.1371/journal.pone.0134559] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
169 Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol 2015;12:115-24. [PMID: 25384943 DOI: 10.1038/nrclinonc.2014.191] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 10.5] [Reference Citation Analysis]
170 Papayan G, Akopov A. Potential of indocyanine green near-infrared fluorescence imaging in experimental and clinical practice. Photodiagnosis and Photodynamic Therapy 2018;24:292-9. [DOI: 10.1016/j.pdpdt.2018.10.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
171 Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J, Wang J, Wang Z, Du Y, Tian J. Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep 2015;5:14197. [PMID: 26395067 DOI: 10.1038/srep14197] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
172 Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging 2017;5:323-41. [PMID: 28804703 DOI: 10.1007/s40336-017-0235-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
173 Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv 2015;12:1837-49. [PMID: 26289673 DOI: 10.1517/17425247.2015.1071791] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
174 Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacological Research 2016;107:57-65. [DOI: 10.1016/j.phrs.2016.03.002] [Cited by in Crossref: 119] [Cited by in F6Publishing: 117] [Article Influence: 19.8] [Reference Citation Analysis]
175 Alston L, Rousseau D, Hebert M, Mahieu-Williame L, Montcel B. Nonlinear relation between concentration and fluorescence emission of protoporphyrin IX in calibrated phantoms. J Biomed Opt 2018;23:1-7. [PMID: 30251489 DOI: 10.1117/1.JBO.23.9.097002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
176 Salinas HR, Miyasato DL, Eremina OE, Perez R, Gonzalez KL, Czaja AT, Burkitt S, Aron A, Fernando A, Ojeda LS, Larson KN, Mohamed AW, Campbell JL, Goins BA, Zavaleta C. A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection. Biomater Sci 2021;9:482-95. [PMID: 32812951 DOI: 10.1039/d0bm01099e] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
177 Hameed S, Dai Z. Near-infrared fluorescence probes for surgical navigation. Materials Today Chemistry 2018;10:90-103. [DOI: 10.1016/j.mtchem.2018.07.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
178 Li Y, Huang W, Li C, Huang X. Indocyanine green conjugated lipid microbubbles as an ultrasound-responsive drug delivery system for dual-imaging guided tumor-targeted therapy. RSC Adv 2018;8:33198-207. [DOI: 10.1039/c8ra03193b] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
179 Zhang P, Li Y, Tang W, Zhao J, Jing L, Mchugh KJ. Theranostic nanoparticles with disease-specific administration strategies. Nano Today 2022;42:101335. [DOI: 10.1016/j.nantod.2021.101335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
180 Wang K, Chi C, Hu Z, Liu M, Hui H, Shang W, Peng D, Zhang S, Ye J, Liu H, Tian J. Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity. Engineering 2015;1:309-23. [DOI: 10.15302/j-eng-2015082] [Cited by in Crossref: 34] [Article Influence: 4.9] [Reference Citation Analysis]
181 Ye J, Du Y, An Y, Mao Y, Jiang S, Shang W, He K, Yang X, Wang K, Chi C, Tian J. Sparse Reconstruction of Fluorescence Molecular Tomography Using Variable Splitting and Alternating Direction Scheme. Mol Imaging Biol 2018;20:37-46. [DOI: 10.1007/s11307-017-1088-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
182 Zeng HC, Hu JL, Bai JW, Zhang GJ. Detection of Sentinel Lymph Nodes with Near-Infrared Imaging in Malignancies. Mol Imaging Biol 2019;21:219-27. [PMID: 29931432 DOI: 10.1007/s11307-018-1237-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
183 Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, Kiesewetter DO, Niu G, Sun H, Antaris AL, Chen X. Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging. Adv Mater 2018;30:1802546. [DOI: 10.1002/adma.201802546] [Cited by in Crossref: 124] [Cited by in F6Publishing: 101] [Article Influence: 31.0] [Reference Citation Analysis]
184 Han C, Zhang A, Kong Y, Yu N, Xie T, Dou B, Li K, Wang Y, Li J, Xu K. Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Analytica Chimica Acta 2019;1067:115-28. [DOI: 10.1016/j.aca.2019.03.054] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
185 Cabon Q, Sayag D, Texier I, Navarro F, Boisgard R, Virieux-watrelot D, Ponce F, Carozzo C. Evaluation of intraoperative fluorescence imaging–guided surgery in cancer-bearing dogs: a prospective proof-of-concept phase II study in 9 cases. Translational Research 2016;170:73-88. [DOI: 10.1016/j.trsl.2015.12.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
186 Jin Y, Ma X, Zhang S, Meng H, Xu M, Yang X, Xu W, Tian J. A tantalum oxide-based core/shell nanoparticle for triple-modality image-guided chemo-thermal synergetic therapy of esophageal carcinoma. Cancer Letters 2017;397:61-71. [DOI: 10.1016/j.canlet.2017.03.030] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
187 Fan Y, Sun Y, Chang W, Zhang X, Tang J, Zhang L, Liao H. Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden. Theranostics 2018;8:4072-85. [PMID: 30128037 DOI: 10.7150/thno.25357] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
188 Bonnet S, Elfatairi R, Franconi F, Roger E, Legeay S. Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine (Lond) 2021;16:2539-6. [PMID: 34814704 DOI: 10.2217/nnm-2021-0155] [Reference Citation Analysis]
189 Kim JH, Ku M, Yang J, Byeon HK. Recent Developments of ICG-Guided Sentinel Lymph Node Mapping in Oral Cancer. Diagnostics (Basel) 2021;11:891. [PMID: 34067713 DOI: 10.3390/diagnostics11050891] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
190 van Keulen S, Nishio N, Fakurnejad S, van den Berg NS, Lu G, Birkeland A, Martin BA, Forouzanfar T, Colevas AD, Rosenthal EL. Intraoperative Tumor Assessment Using Real-Time Molecular Imaging in Head and Neck Cancer Patients. J Am Coll Surg 2019;229:560-567.e1. [PMID: 31568855 DOI: 10.1016/j.jamcollsurg.2019.09.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
191 Landau MJ, Gould DJ, Patel KM. Advances in fluorescent-image guided surgery. Ann Transl Med 2016;4:392. [PMID: 27867944 DOI: 10.21037/atm.2016.10.70] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
192 Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics 2019;8:99-116. [PMID: 31187017 DOI: 10.1515/nanoph-2018-0134] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
193 Park W, Cho S, Han J, Shin H, Na K, Lee B, Kim DH. Advanced smart-photosensitizers for more effective cancer treatment. Biomater Sci 2017;6:79-90. [PMID: 29142997 DOI: 10.1039/c7bm00872d] [Cited by in Crossref: 48] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
194 Etrych T, Janoušková O, Chytil P. Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics 2019;11:E471. [PMID: 31547308 DOI: 10.3390/pharmaceutics11090471] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
195 Lwin TM, Hoffman RM, Bouvet M. Unique Benefits of Tumor-Specific Nanobodies for Fluorescence Guided Surgery. Biomolecules 2021;11:311. [PMID: 33670740 DOI: 10.3390/biom11020311] [Reference Citation Analysis]
196 Gao H, Bao P, Dai S, Liu R, Ji S, Zeng S, Shen J, Liu Q, Ding D. Far-Red/Near-Infrared Emissive (1,3-Dimethyl)barbituric Acid-Based AIEgens for High-Contrast Detection of Metastatic Tumors in the Lung. Chem Asian J 2019;14:871-6. [PMID: 30548916 DOI: 10.1002/asia.201801660] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
197 Farhadi A, Roxin Á, Wilson BC, Zheng G. Nano-enabled SERS reporting photosensitizers. Theranostics 2015;5:469-76. [PMID: 25767614 DOI: 10.7150/thno.10694] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
198 Choi N, Jeong H. Precision surgery for cancer: a new surgical concept in individual tumor biology-based image-guided surgery. Precis Future Med 2019;3:116-23. [DOI: 10.23838/pfm.2019.00072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
199 Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, Eliceiri KW, Kuo JS, Weichert JP. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 2017;14:347-64. [PMID: 28094261 DOI: 10.1038/nrclinonc.2016.212] [Cited by in Crossref: 192] [Cited by in F6Publishing: 177] [Article Influence: 38.4] [Reference Citation Analysis]
200 Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018;61:1503-52. [DOI: 10.1007/s11426-018-9397-5] [Cited by in Crossref: 215] [Cited by in F6Publishing: 155] [Article Influence: 53.8] [Reference Citation Analysis]
201 Qiu Y, Zhang Y, Li M, Chen G, Fan C, Cui K, Wan JB, Han A, Ye J, Xiao Z. Intraoperative Detection and Eradication of Residual Microtumors with Gap-Enhanced Raman Tags. ACS Nano 2018;12:7974-85. [PMID: 30080395 DOI: 10.1021/acsnano.8b02681] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 11.8] [Reference Citation Analysis]
202 Fang C, Wang K, Zeng C, Chi C, Shang W, Ye J, Mao Y, Fan Y, Yang J, Xiang N, Zeng N, Zhu W, Fang C, Tian J. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green. Sci Rep 2016;6:21013. [PMID: 26864116 DOI: 10.1038/srep21013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
203 Zeng X, Chen Z, Tang L, Yang H, Liu N, Zhou H, Li Y, Wu J, Deng Z, Yu Y, Deng H, Hong X, Xiao Y. A novel near-infrared fluorescent light-up probe for tumor imaging and drug-induced liver injury detection. Chem Commun (Camb) 2019;55:2541-4. [PMID: 30742156 DOI: 10.1039/c8cc10286d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 6.3] [Reference Citation Analysis]
204 Zhou J, Hu W, Tang L. Non-invasive Characterization of Immune Responses to Biomedical Implants. Ann Biomed Eng 2016;44:693-704. [DOI: 10.1007/s10439-015-1470-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
205 Han Z, Shang W, Liang X, Yan H, Hu M, Peng L, Jiang H, Fang C, Wang K, Tian J. An Innovation for Treating Orthotopic Pancreatic Cancer by Preoperative Screening and Imaging-Guided Surgery. Mol Imaging Biol 2019;21:67-77. [PMID: 29858735 DOI: 10.1007/s11307-018-1209-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
206 Liu Y, Jiang S, Liu J, An Y, Zhang G, Gao Y, Wang K, Tian J. Reconstruction method for fluorescence molecular tomography based on L1-norm primal accelerated proximal gradient. J Biomed Opt 2018;23:1-11. [PMID: 30109802 DOI: 10.1117/1.JBO.23.8.085002] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
207 Miao T, Oldinski RA, Liu G, Chen X. Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. In: Rai P, Morris SA, editors. Nanotheranostics for Cancer Applications. Cham: Springer International Publishing; 2019. pp. 395-428. [DOI: 10.1007/978-3-030-01775-0_16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
208 Kang HG, Song SH, Han YB, Lee HY, Kim KM, Hong SJ. Proof-of-concept of a multimodal laparoscope for simultaneous NIR/gamma/visible imaging using wavelength division multiplexing. Opt Express 2018;26:8325-39. [PMID: 29715801 DOI: 10.1364/OE.26.008325] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
209 Shi M, Zhang J, Li J, Fan Y, Wang J, Sun W, Yang H, Peng C, Shen M, Shi X. Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal cancer theranostics. J Mater Chem B 2019;7:368-72. [DOI: 10.1039/c8tb03021a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
210 Li Y, Du Y, Liang X, Sun T, Xue H, Tian J, Jin Z. EGFR-targeted liposomal nanohybrid cerasomes: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer. Nanoscale 2018;10:16738-49. [DOI: 10.1039/c8nr05803b] [Cited by in Crossref: 35] [Cited by in F6Publishing: 13] [Article Influence: 8.8] [Reference Citation Analysis]