BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu D, Chen L, Qu Y, Peng J, Chu B, Shi K, Hao Y, Zhong L, Wang M, Qian Z. Oxygen-generating Hybrid Polymeric Nanoparticles with Encapsulated Doxorubicin and Chlorin e6 for Trimodal Imaging-Guided Combined Chemo-Photodynamic Therapy. Theranostics. 2018;8:1558-1574. [PMID: 29556341 DOI: 10.7150/thno.22989] [Cited by in Crossref: 94] [Cited by in F6Publishing: 98] [Article Influence: 23.5] [Reference Citation Analysis]
Number Citing Articles
1 García-Hevia L, Bañobre-López M, Gallo J. Recent Progress on Manganese-Based Nanostructures as Responsive MRI Contrast Agents. Chemistry 2019;25:431-41. [PMID: 29999200 DOI: 10.1002/chem.201802851] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
2 Queiroz Zepka L, Jacob-lopes E, Roca M. Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science 2019;26:94-100. [DOI: 10.1016/j.cofs.2019.04.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 5] [Article Influence: 9.7] [Reference Citation Analysis]
3 Li T, Shi S, Lu X, Shi L, Wei S, Guo H, Zhang X, Zhang H, Sun G. A versatile Bi2S3/MnO2 based nano-theranostic agent for triple-modal imaging guided photothermal/photodynamic synergistic therapy. Chinese Journal of Analytical Chemistry 2021;49:19-27. [DOI: 10.1016/j.cjac.2021.04.002] [Reference Citation Analysis]
4 Wang H, Wu J, Williams GR, Fan Q, Niu S, Wu J, Xie X, Zhu LM. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnology 2019;17:60. [PMID: 31084622 DOI: 10.1186/s12951-019-0494-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 11.7] [Reference Citation Analysis]
5 Li JX, Zhang LM, Liu CC, Wu QN, Li SP, Lei XP, Huang YG, Feng GN, Yu XY, Sun XQ, Guo ZM, Fu JJ. Doxorubicin-loaded hydrogen peroxide self-providing copper nanodots for combination of chemotherapy and acid-induced chemodynamic therapy against breast cancer. J Colloid Interface Sci 2021;593:323-34. [PMID: 33744541 DOI: 10.1016/j.jcis.2021.02.085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, Xu X, Wang F, Zhang L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci 2021;17:1361-81. [PMID: 33867852 DOI: 10.7150/ijbs.58773] [Reference Citation Analysis]
7 Wu K, Zhao H, Sun Z, Wang B, Tang X, Dai Y, Li M, Shen Q, Zhang H, Fan Q, Huang W. Endogenous oxygen generating multifunctional theranostic nanoplatform for enhanced photodynamic-photothermal therapy and multimodal imaging. Theranostics 2019;9:7697-713. [PMID: 31695795 DOI: 10.7150/thno.38565] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
8 Hu D, Zhong L, Wang M, Li H, Qu Y, Liu Q, Han R, Yuan L, Shi K, Peng J, Qian Z. Perfluorocarbon-Loaded and Redox-Activatable Photosensitizing Agent with Oxygen Supply for Enhancement of Fluorescence/Photoacoustic Imaging Guided Tumor Photodynamic Therapy. Adv Funct Mater 2019;29:1806199. [DOI: 10.1002/adfm.201806199] [Cited by in Crossref: 70] [Cited by in F6Publishing: 49] [Article Influence: 23.3] [Reference Citation Analysis]
9 Xu L, He XY, Liu BY, Xu C, Ai SL, Zhuo RX, Cheng SX. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf B Biointerfaces 2018;171:24-30. [PMID: 30005287 DOI: 10.1016/j.colsurfb.2018.07.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
10 Yang C, Fu Y, Huang C, Hu D, Zhou K, Hao Y, Chu B, Yang Y, Qian Z. Chlorin e6 and CRISPR-Cas9 dual-loading system with deep penetration for a synergistic tumoral photodynamic-immunotherapy. Biomaterials 2020;255:120194. [PMID: 32569867 DOI: 10.1016/j.biomaterials.2020.120194] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
11 Kang JH, Ko YT. Dual-selective photodynamic therapy with a mitochondria-targeted photosensitizer and fiber optic cannula for malignant brain tumors. Biomater Sci 2019;7:2812-25. [PMID: 31066391 DOI: 10.1039/c9bm00403c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Xu Y, Yao Y, Wang L, Chen H, Tan N. Hyaluronic Acid Coated Liposomes Co-Delivery of Natural Cyclic Peptide RA-XII and Mitochondrial Targeted Photosensitizer for Highly Selective Precise Combined Treatment of Colon Cancer. Int J Nanomedicine 2021;16:4929-42. [PMID: 34326635 DOI: 10.2147/IJN.S311577] [Reference Citation Analysis]
13 Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 2018;177:139-48. [DOI: 10.1016/j.biomaterials.2018.05.048] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 15.8] [Reference Citation Analysis]
14 Liu M, Liu B, Liu Q, Du K, Wang Z, He N. Nanomaterial-induced ferroptosis for cancer specific therapy. Coordination Chemistry Reviews 2019;382:160-80. [DOI: 10.1016/j.ccr.2018.12.015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 33] [Article Influence: 18.3] [Reference Citation Analysis]
15 Yang H, He Y, Wang Y, Yang R, Wang N, Zhang LM, Gao M, Jiang X. Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy. Int J Nanomedicine 2020;15:3023-38. [PMID: 32431499 DOI: 10.2147/IJN.S244541] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Xu X, Huang B, Zeng Z, Chen J, Huang Z, Guan Z, Chen M, Huang Y, Zhao C. Broaden sources and reduce expenditure: Tumor-specific transformable oxidative stress nanoamplifier enabling economized photodynamic therapy for reinforced oxidation therapy. Theranostics 2020;10:10513-30. [PMID: 32929363 DOI: 10.7150/thno.49731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zeng Q, Qiao L, Cheng L, Li C, Cao Z, Chen Z, Wang Y, Liu J. Perfluorohexane-Loaded Polymeric Nanovesicles with Oxygen Supply for Enhanced Sonodynamic Therapy. ACS Biomater Sci Eng 2020;6:2956-69. [DOI: 10.1021/acsbiomaterials.0c00407] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
18 Huang L, Chen X, Bian Q, Zhang F, Wu H, Wang H, Gao J. Photosensitizer-stabilized self-assembling nanoparticles potentiate chemo/photodynamic efficacy of patient-derived melanoma. J Control Release 2020;328:325-38. [PMID: 32889052 DOI: 10.1016/j.jconrel.2020.08.062] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
19 Hao Y, Chen Y, He X, Yang F, Han R, Yang C, Li W, Qian Z. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater 2020;5:542-52. [PMID: 32346657 DOI: 10.1016/j.bioactmat.2020.04.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 17.5] [Reference Citation Analysis]
20 Hu D, Pan M, Yu Y, Sun A, Shi K, Qu Y, Qian Z. Application of nanotechnology for enhancing photodynamic therapy via ameliorating, neglecting, or exploiting tumor hypoxia. View 2020;1. [DOI: 10.1002/viw2.6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
21 Sun Y, Zhao D, Wang G, Wang Y, Cao L, Sun J, Jiang Q, He Z. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B 2020;10:1382-96. [PMID: 32963938 DOI: 10.1016/j.apsb.2020.01.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 20.0] [Reference Citation Analysis]
22 Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry, Yu Q, Song Z, Liu B, Li M. Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics 2019;9:1264-79. [PMID: 30867829 DOI: 10.7150/thno.29101] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
23 Zhou W, Yang G, Ni X, Diao S, Xie C, Fan Q. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers (Basel) 2020;12:E1902. [PMID: 32846923 DOI: 10.3390/polym12091902] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Li W, Peng A, Wu H, Quan Y, Li Y, Lu L, Cui M. Anti-Cancer Nanomedicines: A Revolution of Tumor Immunotherapy. Front Immunol 2020;11:601497. [PMID: 33408716 DOI: 10.3389/fimmu.2020.601497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ma T, Yang Y, Quan X, Lu L, Xia B, Gao J, Qi F, Li S, Zhao L, Mei L, Zheng Y, Shen Y, Luo Z, Jin Y, Huang J. Oxygen carrier in core-shell fibers synthesized by coaxial electrospinning enhances Schwann cell survival and nerve regeneration. Theranostics 2020;10:8957-73. [PMID: 32802174 DOI: 10.7150/thno.45035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J Funct Biomater 2019;10:E4. [PMID: 30626094 DOI: 10.3390/jfb10010004] [Cited by in Crossref: 121] [Cited by in F6Publishing: 84] [Article Influence: 40.3] [Reference Citation Analysis]
27 Sun Q, He F, Bi H, Wang Z, Sun C, Li C, Xu J, Yang D, Wang X, Gai S, Yang P. An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. Chemical Engineering Journal 2019;362:679-91. [DOI: 10.1016/j.cej.2019.01.095] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 16.3] [Reference Citation Analysis]
28 Khan MS, Hwang J, Lee K, Choi Y, Seo Y, Jeon H, Hong JW, Choi J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel) 2019;11:E1464. [PMID: 31569523 DOI: 10.3390/cancers11101464] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
29 Zhu F, Wang BR, Zhu ZF, Wang SQ, Chai CX, Shang D, Li M. Photodynamic therapy: A next alternative treatment strategy for hepatocellular carcinoma? World J Gastrointest Surg 2021; 13(12): 1523-1535 [DOI: 10.4240/wjgs.v13.i12.1523] [Reference Citation Analysis]
30 Wang X, Ding X, Yu B, Zhang X, Shen Y, Cong H. Tumor microenvironment-responsive polymer with chlorin e6 to interface hollow mesoporous silica nanoparticles-loaded oxygen supply factor for boosted photodynamic therapy. Nanotechnology 2020;31:305709. [PMID: 32299065 DOI: 10.1088/1361-6528/ab89d1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Cheng F, Sun P, Xiong W, Zhang Y, Zhang Q, Yao W, Cao Y, Zhang L. Multifunctional titanium phosphate nanoparticles for site-specific drug delivery and real-time therapeutic efficacy evaluation. Analyst 2019;144:3103-10. [DOI: 10.1039/c8an02450b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
32 Wang L, White AR, Chen W, Wu Z, Nicewicz DA, Li Z. Direct Radiofluorination of Arene C-H Bonds via Photoredox Catalysis Using a Peroxide as the Terminal Oxidant. Org Lett 2020;22:7971-5. [PMID: 33000949 DOI: 10.1021/acs.orglett.0c02815] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
33 Zhu D, Zhu X, Ren S, Lu Y, Zhu H. Manganese dioxide (MnO 2 ) based nanomaterials for cancer therapies and theranostics. Journal of Drug Targeting. [DOI: 10.1080/1061186x.2020.1815209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019;224:119467. [PMID: 31557589 DOI: 10.1016/j.biomaterials.2019.119467] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
35 Zhao L, Fu C, Tan L, Li T, Zhong H, Meng X. Advanced nanotechnology for hypoxia-associated antitumor therapy. Nanoscale 2020;12:2855-74. [PMID: 31965135 DOI: 10.1039/c9nr09071a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
36 Shen Z, Xia J, Ma Q, Zhu W, Gao Z, Han S, Liang Y, Cao J, Sun Y. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy. Theranostics 2020;10:9132-52. [PMID: 32802183 DOI: 10.7150/thno.46076] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
37 Alsharif NB, Bere K, Sáringer S, Samu GF, Takács D, Hornok V, Szilagyi I. Design of hybrid biocatalysts by controlled heteroaggregation of manganese oxide and sulfate latex particles to combat reactive oxygen species. J Mater Chem B 2021;9:4929-40. [PMID: 34105573 DOI: 10.1039/d1tb00505g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Amirshaghaghi A, Yan L, Miller J, Daniel Y, Stein JM, Busch TM, Cheng Z, Tsourkas A. Chlorin e6-Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Nanoclusters as a Theranostic Agent for Dual-Mode Imaging and Photodynamic Therapy. Sci Rep 2019;9:2613. [PMID: 30796251 DOI: 10.1038/s41598-019-39036-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 11.3] [Reference Citation Analysis]
39 Han R, Tang K, Hou Y, Yu J, Wang C, Wang Y. Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy. Biomater Sci 2020;8:607-18. [PMID: 31793930 DOI: 10.1039/c9bm01607d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
40 Hao Y, Chen Y, He X, Yu Y, Han R, Li Y, Yang C, Hu D, Qian Z. Polymeric Nanoparticles with ROS-Responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. Adv Sci (Weinh) 2020;7:2001853. [PMID: 33101874 DOI: 10.1002/advs.202001853] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
41 Wu Y, Chen F, Huang N, Li J, Wu C, Tan B, Liu Y, Li L, Yang C, Shao D, Liao J. Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer. Nanoscale 2021;13:17168-82. [PMID: 34636386 DOI: 10.1039/d1nr04625j] [Reference Citation Analysis]
42 Yang Z, Wang J, Liu S, Li X, Miao L, Yang B, Zhang C, He J, Ai S, Guan W. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials 2020;229:119580. [PMID: 31707296 DOI: 10.1016/j.biomaterials.2019.119580] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 16.0] [Reference Citation Analysis]
43 Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019;12:E163. [PMID: 31671658 DOI: 10.3390/ph12040163] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
44 Yin Z, Ji Q, Wu D, Li Z, Fan M, Zhang H, Zhao X, Wu A, Cheng L, Zeng L. H 2 O 2 -Responsive Gold Nanoclusters @ Mesoporous Silica @ Manganese Dioxide Nanozyme for “Off/On” Modulation and Enhancement of Magnetic Resonance Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:14928-37. [DOI: 10.1021/acsami.1c00430] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
45 Cabral ÁS, Leonel ECR, Candido NM, Piva HL, de Melo MT, Taboga SR, Rahal P, Tedesco AC, Calmon MF. Combined photodynamic therapy with chloroaluminum phthalocyanine and doxorubicin nanoemulsions in breast cancer model. J Photochem Photobiol B 2021;218:112181. [PMID: 33845338 DOI: 10.1016/j.jphotobiol.2021.112181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hou M, Zhong Y, Zhang L, Xu Z, Kang Y, Xue P. Polydopamine (PDA)-activated cobalt sulfide nanospheres responsive to tumor microenvironment (TME) for chemotherapeutic-enhanced photothermal therapy. Chinese Chemical Letters 2021;32:1055-60. [DOI: 10.1016/j.cclet.2020.08.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Zheng Y, Li Z, Yang Y, Shi H, Chen H, Gao Y. A nanosensitizer self-assembled from oleanolic acid and chlorin e6 for synergistic chemo/sono-photodynamic cancer therapy. Phytomedicine 2021;93:153788. [PMID: 34634745 DOI: 10.1016/j.phymed.2021.153788] [Reference Citation Analysis]
48 Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2020;144:105213. [PMID: 31926941 DOI: 10.1016/j.ejps.2020.105213] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
49 Yang Y, Lv Y, Shen C, Shi T, He H, Qi J, Dong X, Zhao W, Lu Y, Wu W. In vivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging. Acta Pharm Sin B 2021;11:1056-68. [PMID: 33996417 DOI: 10.1016/j.apsb.2020.08.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Ruan Y, Jia X, Wang C, Zhen W, Jiang X. Methylene Blue Loaded Cu–Tryptone Complex Nanoparticles: A New Glutathione-Reduced Enhanced Photodynamic Therapy Nanoplatform. ACS Biomater Sci Eng 2019;5:1016-22. [DOI: 10.1021/acsbiomaterials.8b01398] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
51 Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
52 Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020;12:E298. [PMID: 32218326 DOI: 10.3390/pharmaceutics12040298] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 15.0] [Reference Citation Analysis]
53 Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. CTMC 2019;19:74-97. [DOI: 10.2174/1568026619666190125144621] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
54 Xing E, Du Y, Yin J, Chen M, Zhu M, Wen X, Xu J, Feng Y, Meng S. Multi-functional Nanodrug Based on a Three-dimensional Framework for Targeted Photo-chemo Synergetic Cancer Therapy. Adv Healthc Mater 2021;10:e2001874. [PMID: 33448142 DOI: 10.1002/adhm.202001874] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
55 Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int J Nanomedicine 2019;14:8321-44. [PMID: 31695370 DOI: 10.2147/IJN.S218085] [Cited by in Crossref: 37] [Cited by in F6Publishing: 8] [Article Influence: 12.3] [Reference Citation Analysis]
56 Li J, Hu ZE, Wei YJ, Zhou ZW, Liu YH, Wang N, Yu XQ. Novel amphiphilic fluorine-containing nanocarriers for oxygen self-sufficiency "AND" GSH depletion sequentially to enhance photodynamic therapy. Mater Sci Eng C Mater Biol Appl 2021;128:112341. [PMID: 34474891 DOI: 10.1016/j.msec.2021.112341] [Reference Citation Analysis]
57 Song C, Xu W, Wei Z, Ou C, Wu J, Tong J, Cai Y, Dong X, Han W. Anti-LDLR modified TPZ@Ce6-PEG complexes for tumor hypoxia-targeting chemo-/radio-/photodynamic/photothermal therapy. J Mater Chem B 2020;8:648-54. [PMID: 31898718 DOI: 10.1039/c9tb02248a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
58 Liu P, Xie X, Shi X, Peng Y, Ding J, Zhou W. Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:48261-70. [PMID: 31763809 DOI: 10.1021/acsami.9b18112] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
59 Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen ZY, Chen X. Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Adv Sci (Weinh) 2019;6:1801986. [PMID: 30886808 DOI: 10.1002/advs.201801986] [Cited by in Crossref: 111] [Cited by in F6Publishing: 105] [Article Influence: 37.0] [Reference Citation Analysis]
60 Zhao M, Wan S, Peng X, Zhang B, Pan Q, Li S, He B, Pu Y. Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo-photodynamic therapy. J Mater Chem B 2020;8:1235-44. [PMID: 31957757 DOI: 10.1039/c9tb02400j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
61 Pardhiya S, Priyadarshini E, Rajamani P. In vitro antioxidant activity of synthesized BSA conjugated manganese dioxide nanoparticles. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03407-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. Adv Mater 2021;33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu WG, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020;10:2453-62. [PMID: 32194812 DOI: 10.7150/thno.42981] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 17.5] [Reference Citation Analysis]
64 Cheng F, Wang S, Zheng H, Yang S, Zhou L, Liu K, Zhang Q, Zhang H. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf B Biointerfaces 2021;205:111878. [PMID: 34058693 DOI: 10.1016/j.colsurfb.2021.111878] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
65 Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, Çavuş Kokuroǧlu A, Gürek AG. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules 2021;22:1555-67. [PMID: 33793222 DOI: 10.1021/acs.biomac.0c01811] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Hong L, Pliss AM, Zhan Y, Zheng W, Xia J, Liu L, Qu J, Prasad PN. Perfluoropolyether Nanoemulsion Encapsulating Chlorin e6 for Sonodynamic and Photodynamic Therapy of Hypoxic Tumor. Nanomaterials (Basel) 2020;10:E2058. [PMID: 33086490 DOI: 10.3390/nano10102058] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2021;69:376-90. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
68 Yin Z, Chen D, Zou J, Shao J, Tang H, Xu H, Si W, Dong X. Tumor Microenvironment Responsive Oxygen-Self-Generating Nanoplatform for Dual-Imaging Guided Photodynamic and Photothermal Therapy. ChemistrySelect 2018;3:4366-73. [DOI: 10.1002/slct.201800498] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
69 Ray S, Li Z, Hsu CH, Hwang LP, Lin YC, Chou PT, Lin YY. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 2018;8:6322-49. [PMID: 30613300 DOI: 10.7150/thno.27828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
70 He X, Shen X, Li D, Liu Y, Jia K, Liu X. Dual-Mode Fluorescence and Magnetic Resonance Imaging Nanoprobe Based on Aromatic Amphiphilic Copolymer Encapsulated CdSe@CdS and Fe 3 O 4. ACS Appl Bio Mater 2018;1:520-8. [DOI: 10.1021/acsabm.8b00240] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
71 Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel) 2020;10:E1403. [PMID: 32707641 DOI: 10.3390/nano10071403] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 21.5] [Reference Citation Analysis]
72 Hu Y, Wang X, Zhao P, Wang H, Gu W, Ye L. Nanozyme-catalyzed oxygen release from calcium peroxide nanoparticles for accelerated hypoxia relief and image-guided super-efficient photodynamic therapy. Biomater Sci 2020;8:2931-8. [PMID: 32314771 DOI: 10.1039/d0bm00187b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
73 Zheng K, Liu H, Liu X, Wang Y, Li L, Li S, Xue J, Huang M. Tumor Targeting Chemo- and Photodynamic Therapy Packaged in Albumin for Enhanced Anti-Tumor Efficacy. Int J Nanomedicine 2020;15:151-67. [PMID: 32021171 DOI: 10.2147/IJN.S227144] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
74 Czarnecka-Czapczyńska M, Aebisher D, Oleś P, Sosna B, Krupka-Olek M, Dynarowicz K, Latos W, Cieślar G, Kawczyk-Krupka A. The role of photodynamic therapy in breast cancer - A review of in vitro research. Biomed Pharmacother 2021;144:112342. [PMID: 34678730 DOI: 10.1016/j.biopha.2021.112342] [Reference Citation Analysis]
75 Li Z, Fan F, Ma J, Yin W, Zhu D, Zhang L, Wang Z. Oxygen- and bubble-generating polymersomes for tumor-targeted and enhanced photothermal-photodynamic combination therapy. Biomater Sci 2021;9:5841-53. [PMID: 34269778 DOI: 10.1039/d1bm00659b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
76 Mozhi A, Sunil V, Zhan W, Ghode PB, Thakor NV, Wang C. Enhanced penetration of pro-apoptotic and anti-angiogenic micellar nanoprobe in 3D multicellular spheroids for chemophototherapy. Journal of Controlled Release 2020;323:502-18. [DOI: 10.1016/j.jconrel.2020.05.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
77 Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021;13:1951. [PMID: 34834367 DOI: 10.3390/pharmaceutics13111951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Sartaj A, Qamar Z, Qizilbash FF, Annu, Md S, Alhakamy NA, Baboota S, Ali J. Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers (Basel) 2021;13:4400. [PMID: 34960948 DOI: 10.3390/polym13244400] [Reference Citation Analysis]
79 Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
80 Jiang J, Qian Y, Xu Z, Lv Z, Tao P, Xie M, Liu S, Huang W, Zhao Q. Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. Chem Sci 2019;10:5085-94. [PMID: 31183060 DOI: 10.1039/c8sc05501g] [Cited by in Crossref: 36] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
81 He T, Xu H, Zhang Y, Yi S, Cui R, Xing S, Wei C, Lin J, Huang P. Glucose Oxidase-Instructed Traceable Self-Oxygenation/Hyperthermia Dually Enhanced Cancer Starvation Therapy. Theranostics 2020;10:1544-54. [PMID: 32042321 DOI: 10.7150/thno.40439] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 23.5] [Reference Citation Analysis]
82 Liu X, Rong P. Recent Advances of Manganese-Based Hybrid Nanomaterials for Cancer Precision Medicine. Front Oncol 2021;11:707618. [PMID: 34722253 DOI: 10.3389/fonc.2021.707618] [Reference Citation Analysis]
83 Li B, Wang X, Hong S, Wang Q, Li L, Eltayeb O, Dong C, Shuang S. MnO2 nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors. Food Funct 2021;12:6334-47. [PMID: 34100053 DOI: 10.1039/d1fo00032b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
84 Yan J, Xu X, Zhou J, Liu C, Zhang L, Wang D, Yang F, Zhang H. Fabrication of a pH/Redox-Triggered Mesoporous Silica-Based Nanoparticle with Microfluidics for Anticancer Drugs Doxorubicin and Paclitaxel Codelivery. ACS Appl Bio Mater 2020;3:1216-25. [DOI: 10.1021/acsabm.9b01111] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
85 Liu P, Xie X, Liu M, Hu S, Ding J, Zhou W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B 2021;11:823-34. [PMID: 33777684 DOI: 10.1016/j.apsb.2020.07.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
86 Shen YJ, Cao J, Sun F, Cai XL, Li MM, Zheng NN, Qu CY, Zhang Y, Shen F, Zhou M, Chen YW, Xu LM. Effect of photodynamic therapy with (17R,18R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt on pancreatic cancer cells in vitro and in vivoWorld J Gastroenterol 2018; 24(46): 5246-5258 [PMID: 30581273 DOI: 10.3748/wjg.v24.i46.5246] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
87 Zhang Z, Wang R, Huang X, Luo R, Xue J, Gao J, Liu W, Liu F, Feng F, Qu W. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH. ACS Appl Mater Interfaces 2020;12:5680-94. [PMID: 31944660 DOI: 10.1021/acsami.9b23325] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
88 Zhang XQ, Cai SS, He YM, Zhang M, Cao J, Mei H, Li S, He B. Enzyme-triggered deshielding of nanoparticles and positive-charge mediated lysosomal escape for chemo/photo-combination therapy. J Mater Chem B 2019;7:4758-62. [DOI: 10.1039/c9tb00685k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
89 Wu J, Williams GR, Niu S, Yang Y, Li Y, Zhang X, Zhu LM. Biomineralized Bimetallic Oxide Nanotheranostics for Multimodal Imaging-Guided Combination Therapy. Theranostics 2020;10:841-55. [PMID: 31903154 DOI: 10.7150/thno.40715] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
90 Zhou W, Chen Y, Zhang Y, Xin X, Li R, Xie C, Fan Q. Iodine-Rich Semiconducting Polymer Nanoparticles for CT/Fluorescence Dual-Modal Imaging-Guided Enhanced Photodynamic Therapy. Small 2020;16:e1905641. [PMID: 31898866 DOI: 10.1002/smll.201905641] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
91 Ye PJ, Huang C, Yang S, Gao P, Li ZP, Tang SY, Xiang Y, Liu YF, Chen YP, He DX, Yu CY. Facile fabrication of a novel hybrid nanoparticles by self-assembling based on pectin-doxorubicin conjugates for hepatocellular carcinoma therapy. Artif Cells Nanomed Biotechnol 2018;46:S661-70. [PMID: 30307317 DOI: 10.1080/21691401.2018.1505745] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
92 Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021. [PMID: 33545700 DOI: 10.1088/1748-605X/abe396] [Reference Citation Analysis]
93 Shang M, Wu Y, Wang Y, Cai Y, Jin J, Yang Z. Dual antisense oligonucleotide targeting miR-21/miR-155 synergize photodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. Biomed Pharmacother 2021;146:112564. [PMID: 34954643 DOI: 10.1016/j.biopha.2021.112564] [Reference Citation Analysis]
94 Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X. Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. Adv Sci (Weinh) 2021;8:2002927. [PMID: 34026433 DOI: 10.1002/advs.202002927] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
95 Feng Y, Ding D, Sun W, Qiu Y, Luo L, Shi T, Meng S, Chen X, Chen H. Magnetic Manganese Oxide Sweetgum-Ball Nanospheres with Large Mesopores Regulate Tumor Microenvironments for Enhanced Tumor Nanotheranostics. ACS Appl Mater Interfaces 2019;11:37461-70. [PMID: 31577423 DOI: 10.1021/acsami.9b11843] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
96 Ge L, You X, Huang J, Chen Y, Chen L, Zhu Y, Zhang Y, Liu X, Wu J, Hai Q. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy. Front Pharmacol 2018;9:582. [PMID: 29946256 DOI: 10.3389/fphar.2018.00582] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
97 Cheng D, Ji Y, Wang B, Jin T, Xu Y, Qian X, Zhu W. Enzyme/GSH dual-responsive biodegradable nanohybrid for spatiotemporally specific photodynamic and hypoxia-augmented therapy against tumors. Int J Pharm 2021;603:120730. [PMID: 34029662 DOI: 10.1016/j.ijpharm.2021.120730] [Reference Citation Analysis]
98 Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, Li T, Zhang C, de la Fuentea JM, Zhang Q, Cui D. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 2019;9:3443-58. [PMID: 31281489 DOI: 10.7150/thno.33266] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
99 Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 2021;9:18. [PMID: 33727543 DOI: 10.1038/s41413-021-00139-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
100 Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, Ji L, Suo A, Yao Y. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer. Acta Biomaterialia 2018;82:171-83. [DOI: 10.1016/j.actbio.2018.10.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
101 Guo F, Fu Q, Jin C, Ji X, Yan Q, Yang Q, Wu D, Gao Y, Hong W, Li A, Yang G. Dual functional matrix metalloproteinase-responsive curcumin-loaded nanoparticles for tumor-targeted treatment. Drug Deliv 2019;26:1027-38. [PMID: 31691601 DOI: 10.1080/10717544.2019.1676843] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Poinard B, Neo SZY, Yeo ELL, Heng HPS, Neoh KG, Kah JCY. Polydopamine Nanoparticles Enhance Drug Release for Combined Photodynamic and Photothermal Therapy. ACS Appl Mater Interfaces 2018;10:21125-36. [PMID: 29871485 DOI: 10.1021/acsami.8b04799] [Cited by in Crossref: 109] [Cited by in F6Publishing: 95] [Article Influence: 27.3] [Reference Citation Analysis]
103 Hu L, Wang Y, Zhang Y, Yang N, Han H, Shen Y, Cui D, Guo S. Angiopep-2 modified PEGylated 2-methoxyestradiol micelles to treat the PC12 cells with oxygen-glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces 2018;171:638-46. [PMID: 30107337 DOI: 10.1016/j.colsurfb.2018.08.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
104 Liu X, Shi D, Guo L, Zhou X, Shang M, Sun X, Meng D, Zhao Y, Li J. Echogenic, Ultrasound-Sensitive Chitosan Nanodroplets for Spatiotemporally Controlled DKK-2 Gene Delivery to Prostate Cancer Cells. Int J Nanomedicine 2021;16:421-32. [PMID: 33488078 DOI: 10.2147/IJN.S286474] [Reference Citation Analysis]
105 Marin E, Tapeinos C, Lauciello S, Ciofani G, Sarasua J, Larrañaga A. Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors. Materials Science and Engineering: C 2020;117:111349. [DOI: 10.1016/j.msec.2020.111349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]