BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang J, Qu Q, Guo Y, Xiang Y, Feng D. Tankyrases/β-catenin Signaling Pathway as an Anti-proliferation and Anti-metastatic Target in Hepatocarcinoma Cell Lines. J Cancer 2020;11:432-40. [PMID: 31897238 DOI: 10.7150/jca.30976] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Leung RWH, Lee TKW. Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers 2022;14:5468. [DOI: 10.3390/cancers14215468] [Reference Citation Analysis]
2 Park H, Park H, Baek J, Moon H, Ro SW. Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. Biology 2022;11:585. [DOI: 10.3390/biology11040585] [Reference Citation Analysis]
3 Selvaggi F, Catalano T, Cotellese R, Aceto GM. Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents. Cancers 2022;14:1912. [DOI: 10.3390/cancers14081912] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 S. Haidar Z. Salivary Gland Radio-Protection, Regeneration and Repair: Innovative Strategies. Biomechanics and Functional Tissue Engineering 2021. [DOI: 10.5772/intechopen.94898] [Reference Citation Analysis]
6 Liu Y, Liu R, Zhao J, Zeng Z, Shi Z, Lu Q, Guo J, Li L, Yao Y, Liu X, Xu Q. LncRNA TMEM220-AS1 suppresses hepatocellular carcinoma cell proliferation and invasion by regulating the TMEM220/β-catenin axis. J Cancer 2021;12:6805-13. [PMID: 34659569 DOI: 10.7150/jca.63351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Li LY, Yang JF, Rong F, Luo ZP, Hu S, Fang H, Wu Y, Yao R, Kong WH, Feng XW, Chen BJ, Li J, Xu T. ZEB1 serves an oncogenic role in the tumourigenesis of HCC by promoting cell proliferation, migration, and inhibiting apoptosis via Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2021;42:1676-89. [PMID: 33514855 DOI: 10.1038/s41401-020-00575-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
8 Ma Y, Zhang P, Zhang Q, Wang X, Miao Q, Lyu X, Cui B, Ma H. Dihydroartemisinin suppresses proliferation, migration, the Wnt/β-catenin pathway and EMT via TNKS in gastric cancer. Oncol Lett 2021;22:688. [PMID: 34457043 DOI: 10.3892/ol.2021.12949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021;6:307. [PMID: 34456337 DOI: 10.1038/s41392-021-00701-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 25.0] [Reference Citation Analysis]
10 Okunlola FO, Akawa OB, Subair TI, Omolabi KF, Soliman MES. Unravelling the Mechanistic Role of Quinazolinone Pharmacophore in the Inhibitory Activity of Bis-quinazolinone Derivative on Tankyrase-1 in the Treatment of Colorectal Cancer (CRC) and Non-small Cell Lung Cancer (NSCLC): A Computational Approach. Cell Biochem Biophys 2021. [PMID: 34453681 DOI: 10.1007/s12013-021-01027-3] [Reference Citation Analysis]
11 Raineri F, Bourgoin-Voillard S, Cossutta M, Habert D, Ponzo M, Houppe C, Vallée B, Boniotto M, Chalabi-Dchar M, Bouvet P, Couvelard A, Cros J, Debesset A, Cohen JL, Courty J, Cascone I. Nucleolin Targeting by N6L Inhibits Wnt/β-Catenin Pathway Activation in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:2986. [PMID: 34203710 DOI: 10.3390/cancers13122986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zamudio-Martinez E, Herrera-Campos AB, Muñoz A, Rodríguez-Vargas JM, Oliver FJ. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. J Exp Clin Cancer Res 2021;40:144. [PMID: 33910596 DOI: 10.1186/s13046-021-01950-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
13 Simanov G, Dang I, Fokin AI, Oguievetskaia K, Campanacci V, Cherfils J, Gautreau AM. Arpin Regulates Migration Persistence by Interacting with Both Tankyrases and the Arp2/3 Complex. Int J Mol Sci 2021;22:4115. [PMID: 33923443 DOI: 10.3390/ijms22084115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Simanov G, Dang I, Fokin AI, Oguievetskaia K, Campanacci V, Cherfils J, Gautreau AM. Arpin regulates migration persistence by interacting with both tankyrases and the Arp2/3 complex.. [DOI: 10.1101/2021.03.16.435563] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Shen J, Cai W, Ma Y, Xu R, Huo Z, Song L, Qiu X, Zhang Y, Li A, Cao W, Zhou S, Tang X. hGC33-Modified and Sorafenib-Loaded Nanoparticles have a Synergistic Anti-Hepatoma Effect by Inhibiting Wnt Signaling Pathway.Nanoscale Res Lett. 2020;15:220. [PMID: 33242103 DOI: 10.1186/s11671-020-03451-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]