BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oh ET, Park HJ. Implications of NQO1 in cancer therapy. BMB Rep 2015;48:609-17. [PMID: 26424559 DOI: 10.5483/bmbrep.2015.48.11.190] [Cited by in Crossref: 74] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Yu H, Gao HY, Guo H, Wang GZ, Yang YQ, Hu Q, Liang LJ, Zhao Q, Xie DW, Rao Y, Zhou GB. Upregulation of wild-type p53 by small molecule-induced elevation of NQO1 in non-small cell lung cancer cells. Acta Pharmacol Sin 2021. [PMID: 34035487 DOI: 10.1038/s41401-021-00691-8] [Reference Citation Analysis]
2 Thapa D, Huang SB, Muñoz AR, Yang X, Bedolla RG, Hung CN, Chen CL, Huang TH, Liss MA, Reddick RL, Miyamoto H, Kumar AP, Ghosh R. Attenuation of NAD[P]H:quinone oxidoreductase 1 aggravates prostate cancer and tumor cell plasticity through enhanced TGFβ signaling. Commun Biol 2020;3:12. [PMID: 31909204 DOI: 10.1038/s42003-019-0720-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
3 Li K, Ouyang L, He M, Luo M, Cai W, Tu Y, Pi R, Liu A. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway. Oncotarget 2017;8:28865-79. [PMID: 28427200 DOI: 10.18632/oncotarget.15868] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
4 Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, Kang SS, Ji B, Liu X, Mao H, Fu H, Kornblum HI, Jin L, Li H, Ye K. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol 2020;13:141. [PMID: 33087132 DOI: 10.1186/s13045-020-00979-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Yang YJ, Dai M, Reo YJ, Song CW, Sarkar S, Ahn KH. NAD(P)H Quinone Oxidoreductase-1 in Organ and Tumor Tissues: Distinct Activity Levels Observed with a Benzo-rosol-Based Dual-Excitation and Dual-Emission Probe. Anal Chem 2021;93:7523-31. [PMID: 33983712 DOI: 10.1021/acs.analchem.1c01178] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Huang H, Wu Y, Fu W, Wang X, Zhou L, Xu X, Huang F, Wu Y. Downregulation of Keap1 contributes to poor prognosis and Axitinib resistance of renal cell carcinoma via upregulation of Nrf2 expression. Int J Mol Med 2019;43:2044-54. [PMID: 30896860 DOI: 10.3892/ijmm.2019.4134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
7 Salustiano EJ, Dumas ML, Silva-Santos GG, Netto CD, Costa PR, Rumjanek VM. In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Invest New Drugs 2016;34:541-51. [PMID: 27189479 DOI: 10.1007/s10637-016-0359-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Martino T, Kudrolli TA, Kumar B, Salviano I, Mencalha A, Coelho MGP, Justo G, Costa PRR, Sabino KCC, Lupold SE. The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate 2018;78:140-51. [PMID: 29105806 DOI: 10.1002/pros.23455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
9 Licznerska B, Szaefer H, Krajka-Kuźniak V. R-sulforaphane modulates the expression profile of AhR, ERα, Nrf2, NQO1, and GSTP in human breast cell lines. Mol Cell Biochem 2021;476:525-33. [PMID: 33064289 DOI: 10.1007/s11010-020-03913-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Wächter K, Navarrete Santos A, Großkopf A, Baldensperger T, Glomb MA, Szabó G, Simm A. AGE-Rich Bread Crust Extract Boosts Oxidative Stress Interception via Stimulation of the NRF2 Pathway. Nutrients 2021;13:3874. [PMID: 34836129 DOI: 10.3390/nu13113874] [Reference Citation Analysis]
11 Knobloch TJ, Peng J, Hade EM, Cohn DE, Ruffin MT 4th, Schiano MA, Calhoun BC, McBee WC Jr, Lesnock JL, Gallion HH, Pollock J, Lu B, Oghumu S, Zhang Z, Sears MT, Ogbemudia BE, Perrault JT, Weghorst LC, Strawser E, DeGraffinreid CR, Paskett ED, Weghorst CM. Inherited alterations of TGF beta signaling components in Appalachian cervical cancers. Cancer Causes Control 2019;30:1087-100. [PMID: 31435875 DOI: 10.1007/s10552-019-01221-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 He Y, Feng D, Hwang S, Mackowiak B, Wang X, Xiang X, Rodrigues RM, Fu Y, Ma J, Ren T, Ait-Ahmed Y, Xu M, Liangpunsakul S, Gao B. Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating IκBζ target genes in hepatocytes. J Hepatol 2021;75:163-76. [PMID: 33610678 DOI: 10.1016/j.jhep.2021.02.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Miyajima T, Melangath G, Zhu S, Deshpande N, Vasanth S, Mondal B, Kumar V, Chen Y, Price MO, Price FW Jr, Rogan EG, Zahid M, Jurkunas UV. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med 2020;147:69-79. [PMID: 31857234 DOI: 10.1016/j.freeradbiomed.2019.12.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
14 Wang X, Sun Z, Zimmermann MT, Bugrim A, Kocher JP. Predict drug sensitivity of cancer cells with pathway activity inference. BMC Med Genomics 2019;12:15. [PMID: 30704449 DOI: 10.1186/s12920-018-0449-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
15 Shreevatsa B, Dharmashekara C, Swamy VH, Gowda MV, Achar RR, Kameshwar VH, Thimmulappa RK, Syed A, Elgorban AM, Al-Rejaie SS, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy. Molecules 2021;26:6863. [PMID: 34833955 DOI: 10.3390/molecules26226863] [Reference Citation Analysis]
16 Totten SP, Im YK, Cepeda Cañedo E, Najyb O, Nguyen A, Hébert S, Ahn R, Lewis K, Lebeau B, La Selva R, Sabourin V, Martínez C, Savage P, Kuasne H, Avizonis D, Santos Martínez N, Chabot C, Aguilar-Mahecha A, Goulet ML, Dankner M, Witcher M, Petrecca K, Basik M, Pollak M, Topisirovic I, Lin R, Siegel PM, Kleinman CL, Park M, St-Pierre J, Ursini-Siegel J. STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nat Commun 2021;12:3299. [PMID: 34083537 DOI: 10.1038/s41467-021-23396-2] [Reference Citation Analysis]
17 Diao J, Bao J, Peng J, Mo J, Ye Q, He J. Correlation between NAD(P)H: quinone oxidoreductase 1 C609T polymorphism and increased risk of esophageal cancer: evidence from a meta-analysis. Ther Adv Med Oncol 2017;9:13-21. [PMID: 28203294 DOI: 10.1177/1758834016668682] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Wang J, Seebacher N, Shi H, Kan Q, Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 2017;8:84559-71. [PMID: 29137448 DOI: 10.18632/oncotarget.19187] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 15.0] [Reference Citation Analysis]
19 Lee DY, Song MY, Kim EH. Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Antioxidants (Basel) 2021;10:743. [PMID: 34067204 DOI: 10.3390/antiox10050743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Burke R, Chu C, Zhou GD, Putluri V, Putluri N, Stading RE, Couroucli X, Lingappan K, Moorthy B. Role of Human NADPH Quinone Oxidoreductase (NQO1) in Oxygen-Mediated Cellular Injury and Oxidative DNA Damage in Human Pulmonary Cells. Oxid Med Cell Longev 2021;2021:5544600. [PMID: 34691356 DOI: 10.1155/2021/5544600] [Reference Citation Analysis]
21 Johnson FD, Ferrarone J, Liu A, Brandstädter C, Munuganti R, Farnsworth DA, Lu D, Luu J, Sihota T, Jansen S, Nagelberg A, Shi R, Forcina GC, Zhang X, Cheng GSW, Spencer Miko SE, de Rappard-Yuswack G, Sorensen PH, Dixon SJ, Guha U, Becker K, Djaballah H, Somwar R, Varmus H, Morin GB, Lockwood WW. Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells. Cell Rep 2022;38:110343. [PMID: 35139387 DOI: 10.1016/j.celrep.2022.110343] [Reference Citation Analysis]
22 Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu L, Zhu P, Gu F, Fu S, Shan Y, Pan Z, Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci 2021;112:641-54. [PMID: 33222332 DOI: 10.1111/cas.14744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Neijenhuis LKA, de Myunck LDAN, Bijlstra OD, Kuppen PJK, Hilling DE, Borm FJ, Cohen D, Mieog JSD, Steup WH, Braun J, Burggraaf J, Vahrmeijer AL, Hutteman M. Near-Infrared Fluorescence Tumor-Targeted Imaging in Lung Cancer: A Systematic Review. Life 2022;12:446. [DOI: 10.3390/life12030446] [Reference Citation Analysis]
24 Walia H, Sharma P, Singh N, Sharma S. Predictive role of polymorphic variants of phase II drug metabolising enzyme in modulating toxicity in North Indian lung cancer patients undergoing chemotherapy. Xenobiotica 2022;:1-22. [PMID: 35445643 DOI: 10.1080/00498254.2022.2069527] [Reference Citation Analysis]
25 Milković L, Tomljanović M, Čipak Gašparović A, Novak Kujundžić R, Šimunić D, Konjevoda P, Mojzeš A, Đaković N, Žarković N, Gall Trošelj K. Nutritional Stress in Head and Neck Cancer Originating Cell Lines: The Sensitivity of the NRF2-NQO1 Axis. Cells 2019;8:E1001. [PMID: 31470592 DOI: 10.3390/cells8091001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
26 Reinhardt CR, Hu QH, Bresnahan CG, Hati S, Bhattacharyya S. Cyclic Changes in Active Site Polarization and Dynamics Drive the 'Ping-pong' Kinetics in NRH:Quinone Oxidoreductase 2: An Insight from QM/MM Simulations. ACS Catal 2018;8:12015-29. [PMID: 31583178 DOI: 10.1021/acscatal.8b04193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chen YC, Gotea V, Margolin G, Elnitski L. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types. PLoS Comput Biol 2017;13:e1005840. [PMID: 29125844 DOI: 10.1371/journal.pcbi.1005840] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
28 Fang Q, Andrews J, Sharma N, Wilk A, Clark J, Slyskova J, Koczor CA, Lans H, Prakash A, Sobol RW. Stability and sub-cellular localization of DNA polymerase β is regulated by interactions with NQO1 and XRCC1 in response to oxidative stress. Nucleic Acids Res 2019;47:6269-86. [PMID: 31287140 DOI: 10.1093/nar/gkz293] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
29 Sudheesh AP, Mohan N, Francis N, Laishram RS, Anderson RA. Star-PAP controlled alternative polyadenylation coupled poly(A) tail length regulates protein expression in hypertrophic heart. Nucleic Acids Res 2019;47:10771-87. [PMID: 31598705 DOI: 10.1093/nar/gkz875] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ramesh PS, Raja S, Udayakumar SH, Chandrashekar S, Nataraj SM, Devegowda D. Role of NRF2 cascade in determining the differential response of cervical cancer cells to anticancer drugs: an in vitro study. Mol Biol Rep 2021. [PMID: 34674139 DOI: 10.1007/s11033-021-06848-2] [Reference Citation Analysis]
31 Lin LC, Lee HT, Chien PJ, Huang YH, Chang MY, Lee YC, Chang WW. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int J Med Sci 2020;17:2214-24. [PMID: 32922184 DOI: 10.7150/ijms.45706] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
32 Jiso A, Yurasakpong L, Janta S, Chaithirayanon K, Plubrukarn A. Exerting DNA Damaging Effects of the Ilimaquinones through the Active Hydroquinone Species. Sci Pharm 2021;89:26. [DOI: 10.3390/scipharm89020026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Santana Machado T, Cerini C, Burtey S. Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019;11:E209. [PMID: 30959953 DOI: 10.3390/toxins11040209] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Martínez-Cifuentes M, Salazar R, Ramírez-Rodríguez O, Weiss-López B, Araya-Maturana R. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones. Molecules 2017;22:E577. [PMID: 28375183 DOI: 10.3390/molecules22040577] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
35 Punganuru SR, Madala HR, Arutla V, Zhang R, Srivenugopal KS. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Sci Rep 2019;9:8577. [PMID: 31189950 DOI: 10.1038/s41598-019-44111-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
36 Nagaraju GP, Farran B, Farren M, Chalikonda G, Wu C, Lesinski GB, El-Rayes BF. Napabucasin (BBI 608), a potent chemoradiosensitizer in rectal cancer. Cancer 2020;126:3360-71. [PMID: 32383803 DOI: 10.1002/cncr.32954] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
37 Patiño-Morales CC, Soto-Reyes E, Arechaga-Ocampo E, Ortiz-Sánchez E, Antonio-Véjar V, Pedraza-Chaverri J, García-Carrancá A. Curcumin stabilizes p53 by interaction with NAD(P)H:quinone oxidoreductase 1 in tumor-derived cell lines. Redox Biol 2020;28:101320. [PMID: 31526948 DOI: 10.1016/j.redox.2019.101320] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
38 Bakalova R, Semkova S, Ivanova D, Zhelev Z, Miller T, Takeshima T, Shibata S, Lazarova D, Aoki I, Higashi T. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxid Med Cell Longev 2020;2020:6212935. [PMID: 33204397 DOI: 10.1155/2020/6212935] [Reference Citation Analysis]
39 Yang X, Duan J, Wu L. Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med Chem 2022. [PMID: 35102756 DOI: 10.4155/fmc-2021-0289] [Reference Citation Analysis]
40 Pey AL, Megarity CF, Timson DJ. NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Biosci Rep 2019;39:BSR20180459. [PMID: 30518535 DOI: 10.1042/BSR20180459] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
41 Zhou HZ, Zeng HQ, Yuan D, Ren JH, Cheng ST, Yu HB, Ren F, Wang Q, Qin YP, Huang AL, Chen J. NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal 2019;17:168. [PMID: 31842909 DOI: 10.1186/s12964-019-0491-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
42 Yu S, Yan Z, Feng F, Ni J, Wang W, Nabie K, Zhang Y, Qu L, Wu Y. NF-E2-related factor 2 serves a key function in resistance to malignant transformation of BEAS-2B cells induced by coal tar pitch. Oncol Lett 2018;15:5143-8. [PMID: 29552149 DOI: 10.3892/ol.2018.7924] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Chen Y, Liang J, Liang X, Chen J, Wang Y, Cao J, Sun C, Ye J, Chen Q. Limonin induces apoptosis of HL-60 cells by inhibiting NQO1 activity. Food Sci Nutr 2021;9:1860-9. [PMID: 33841805 DOI: 10.1002/fsn3.2109] [Reference Citation Analysis]
44 Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci Rep 2016;6:36754. [PMID: 27824156 DOI: 10.1038/srep36754] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
45 Liu H, Yao J, Guo H, Cai X, Jiang Y, Lin M, Jiang X, Leung W, Xu C. Tumor Microenvironment-Responsive Nanomaterials as Targeted Delivery Carriers for Photodynamic Anticancer Therapy. Front Chem 2020;8:758. [PMID: 33134254 DOI: 10.3389/fchem.2020.00758] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
46 Chen W, Deng M, Wang H, Wang Y, Zhou W, Yu T. ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Mol Med Rep 2021;23:433. [PMID: 33846798 DOI: 10.3892/mmr.2021.12072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Shergalis A, Xue D, Gharbia FZ, Driks H, Shrestha B, Tanweer A, Cromer K, Ljungman M, Neamati N. Characterization of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. J Med Chem 2020;63:10263-86. [PMID: 32830969 DOI: 10.1021/acs.jmedchem.0c00728] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Hook I, Sheridan H. Effects of (±)-dunnione and quinone-containing extracts from in vitro-cultured plantlets of Streptocarpus dunnii Hook. f. and a hybrid ‘Ruby’ on seed germination. South African Journal of Botany 2020;131:1-11. [DOI: 10.1016/j.sajb.2020.01.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]