BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bhalamurugan GL, Valerie O, Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research 2018;23:229-41. [DOI: 10.4491/eer.2017.220] [Cited by in Crossref: 68] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Muthukrishnan L. Bio‐engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. J Basic Microbiol. [DOI: 10.1002/jobm.202100417] [Reference Citation Analysis]
2 Nova P, Martins AP, Teixeira C, Abreu H, Silva JG, Silva AM, Freitas AC, Gomes AM. Foods with microalgae and seaweeds fostering consumers health: a review on scientific and market innovations. J Appl Phycol 2020;32:1789-802. [DOI: 10.1007/s10811-020-02129-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
3 Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. Sci Total Environ 2022;806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Reference Citation Analysis]
4 de Carvalho JC, Magalhães AI, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresource Technology 2020;300:122719. [DOI: 10.1016/j.biortech.2019.122719] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
5 Guo W, Zhu S, Li S, Feng Y, Wu H, Zeng M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int J Biol Macromol 2021;182:1371-83. [PMID: 34004199 DOI: 10.1016/j.ijbiomac.2021.05.067] [Reference Citation Analysis]
6 Çelekli A, Alslibi ZA, Bozkurt H. Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Research 2019;44:101710. [DOI: 10.1016/j.algal.2019.101710] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
7 Roy UK, Nielsen BV, Milledge JJ. Antioxidant Production in Dunaliella. Applied Sciences 2021;11:3959. [DOI: 10.3390/app11093959] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 2020;41:107545. [PMID: 32272160 DOI: 10.1016/j.biotechadv.2020.107545] [Cited by in Crossref: 56] [Cited by in F6Publishing: 32] [Article Influence: 28.0] [Reference Citation Analysis]
9 Kim U, Cho DH, Heo J, Yun JH, Choi DY, Cho K, Kim HS. Two-stage cultivation strategy for the improvement of pigment productivity from high-density heterotrophic algal cultures. Bioresour Technol 2020;302:122840. [PMID: 32014729 DOI: 10.1016/j.biortech.2020.122840] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Pérez JP, Muñoz AA, Figueroa CP, Agurto-muñoz C. Current analytical techniques for the characterization of lipophilic bioactive compounds from microalgae extracts. Biomass and Bioenergy 2021;149:106078. [DOI: 10.1016/j.biombioe.2021.106078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fernández FGA, Reis A, Wijffels RH, Barbosa M, Verdelho V, Llamas B. The role of microalgae in the bioeconomy. N Biotechnol 2021;61:99-107. [PMID: 33249179 DOI: 10.1016/j.nbt.2020.11.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
12 El-dakar MA, Ramzy RR, Ji H, Plath M. Bioaccumulation of residual omega-3 fatty acids from industrial Schizochytrium microalgal waste using black soldier fly (Hermetia illucens) larvae. Journal of Cleaner Production 2020;268:122288. [DOI: 10.1016/j.jclepro.2020.122288] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Hamed I, Jakobsen AN, Lerfall J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr Rev Food Sci Food Saf 2021. [PMID: 34907649 DOI: 10.1111/1541-4337.12870] [Reference Citation Analysis]
14 Kim J, Kim M, Lee S, Jin E. Development of a Chlorella vulgaris mutant by chemical mutagenesis as a producer for natural violaxanthin. Algal Research 2020;46:101790. [DOI: 10.1016/j.algal.2020.101790] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
15 Rosero-Chasoy G, Rodríguez-Jasso RM, Aguilar CN, Buitrón G, Chairez I, Ruiz HA. Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation - an overview. Bioresour Technol 2021;321:124458. [PMID: 33338739 DOI: 10.1016/j.biortech.2020.124458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wang S, Wang X, Tian Y, Cui Y. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. Science of The Total Environment 2020;710:136448. [DOI: 10.1016/j.scitotenv.2019.136448] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
17 Ginni G, Adish Kumar S, Mohamed Usman T, Pakonyi P, Rajesh Banu J. Integrated biorefineries of food waste. Food Waste to Valuable Resources. Elsevier; 2020. pp. 275-98. [DOI: 10.1016/b978-0-12-818353-3.00013-4] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Fajardo C, Donato M, Carrasco R, Martínez‐rodríguez G, Mancera JM, Fernández‐acero FJ. Advances and challenges in genetic engineering of microalgae. Rev Aquacult 2019;12:365-81. [DOI: 10.1111/raq.12322] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
19 Patel AK, Singhania RR, Sim SJ, Dong CD. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresour Technol 2021;320:124421. [PMID: 33246239 DOI: 10.1016/j.biortech.2020.124421] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
20 Saini DK, Chakdar H, Pabbi S, Shukla P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 2020;60:391-405. [PMID: 30706720 DOI: 10.1080/10408398.2018.1533518] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
21 Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 2021;280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
22 Cruz-balladares V, Marticorena P, Riquelme C. Effect on growth and productivity of lutein from the chlorophyta microalga, strain MCH of Muriellopsis sp., when grown in sea water and outdoor conditions at the Atacama Desert. Electronic Journal of Biotechnology 2021;54:77-85. [DOI: 10.1016/j.ejbt.2021.09.001] [Reference Citation Analysis]
23 Russell C, Rodriguez C, Yaseen M. High-value biochemical products & applications of freshwater eukaryotic microalgae. Sci Total Environ 2021;:151111. [PMID: 34695461 DOI: 10.1016/j.scitotenv.2021.151111] [Reference Citation Analysis]
24 Machado TWM, Rodrigues JM, Moro TR, Duarte MER, Noseda MD. Marine Microalgae Biomolecules and Their Adhesion Capacity to Salmonella enterica sv. Typhimurium. Applied Sciences 2020;10:2239. [DOI: 10.3390/app10072239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Ievina B, Romagnoli F. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review. Environmental and Climate Technologies 2020;24:203-20. [DOI: 10.2478/rtuect-2020-0067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Dębowski M, Zieliński M, Kazimierowicz J, Kujawska N, Talbierz S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020;12:9980. [DOI: 10.3390/su12239980] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
27 Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, Tuohy MG, Makatsoris C, Zhao X, Thakur VK, Gupta VK. Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. Phytochem Rev. [DOI: 10.1007/s11101-022-09805-4] [Reference Citation Analysis]
28 Borah D, Eldiehy KSH, Hatiboruah D, Mandal M, Deka D. An Integrated Approach for Simultaneous Monitoring and Data Acquisition on the Culture of Green Microalga Chlorella homosphaera Using Different LED Illumination. Bioenerg Res . [DOI: 10.1007/s12155-022-10452-y] [Reference Citation Analysis]
29 Song I, Kim S, Kim J, Oh H, Jang J, Jeong SJ, Baek K, Shin W, Sim SJ, Jin E. Macular pigment-enriched oil production from genome-edited microalgae. Microb Cell Fact 2022;21. [DOI: 10.1186/s12934-021-01736-7] [Reference Citation Analysis]
30 Orejuela-escobar L, Gualle A, Ochoa-herrera V, Philippidis GP. Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. Sustainability 2021;13:3063. [DOI: 10.3390/su13063063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
31 Ferreira A, Ribeiro B, Ferreira AF, Tavares MLA, Vladic J, Vidović S, Cvetkovic D, Melkonyan L, Avetisova G, Goginyan V, Gouveia L. Scenedesmus obliquus microalga‐based biorefinery – from brewery effluent to bioactive compounds, biofuels and biofertilizers – aiming at a circular bioeconomy. Biofuels, Bioprod Bioref 2019;13:1169-86. [DOI: 10.1002/bbb.2032] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 8.7] [Reference Citation Analysis]
32 Imbimbo P, D'Elia L, Liberti D, Olivieri G, Monti DM. Towards green extraction methods from microalgae learning from the classics. Appl Microbiol Biotechnol 2020;104:9067-77. [PMID: 32960292 DOI: 10.1007/s00253-020-10839-x] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Ozdalgic B, Ustun M, Dabbagh SR, Haznedaroglu BZ, Kiraz A, Tasoglu S. Microfluidics for microalgal biotechnology. Biotechnol Bioeng 2021;118:1545-63. [PMID: 33410126 DOI: 10.1002/bit.27669] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. J Phycol 2020;56:559-73. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
35 D’alessandro EB, Soares AT, da Costa DC, Silva Neto HDA, Fernandes VDO, Antoniosi Filho NR. A thermal water microalga: Eutetramorus planctonicus as a promising source of fatty acids and lutein. Journal of Environmental Chemical Engineering 2018;6:6707-13. [DOI: 10.1016/j.jece.2018.10.038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]