BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Casey T, Tsirigos A, Migneco G, Witkiewicz A, Balliet R, Mercier I, Wang C, Flomenberg N, Howell A, Lin Z, Caro J, Pestell RG, Sotgia F, Lisanti MP. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox. Cell Cycle 2010;9:4297-306. [PMID: 21051947 DOI: 10.4161/cc.9.21.13817] [Cited by in Crossref: 124] [Cited by in F6Publishing: 117] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Song C, Mitter SK, Qi X, Beli E, Rao HV, Ding J, Ip CS, Gu H, Akin D, Dunn WA Jr, Bowes Rickman C, Lewin AS, Grant MB, Boulton ME. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy. PLoS One 2017;12:e0171940. [PMID: 28222108 DOI: 10.1371/journal.pone.0171940] [Cited by in Crossref: 34] [Cited by in F6Publishing: 44] [Article Influence: 6.8] [Reference Citation Analysis]
2 du Plessis M, Davis T, Loos B, Pretorius E, de Villiers WJS, Engelbrecht AM. Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: New insight into the role of serum amyloid A. Cytokine Growth Factor Rev 2021;59:71-83. [PMID: 33727011 DOI: 10.1016/j.cytogfr.2021.01.007] [Reference Citation Analysis]
3 Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 2015;4:184-92. [PMID: 25590798 DOI: 10.1016/j.redox.2014.12.003] [Cited by in Crossref: 217] [Cited by in F6Publishing: 217] [Article Influence: 27.1] [Reference Citation Analysis]
4 Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 2017;17:10. [PMID: 28056859 DOI: 10.1186/s12885-016-2999-1] [Cited by in Crossref: 108] [Cited by in F6Publishing: 96] [Article Influence: 21.6] [Reference Citation Analysis]
5 Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019;22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 12.5] [Reference Citation Analysis]
6 Dutta S, Warshall C, Bandyopadhyay C, Dutta D, Chandran B. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PLoS One 2014;9:e97580. [PMID: 24831807 DOI: 10.1371/journal.pone.0097580] [Cited by in Crossref: 78] [Cited by in F6Publishing: 82] [Article Influence: 9.8] [Reference Citation Analysis]
7 Witkiewicz AK, Kline J, Queenan M, Brody JR, Tsirigos A, Bilal E, Pavlides S, Ertel A, Sotgia F, Lisanti MP. Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 2011;10:1794-809. [PMID: 21521946 DOI: 10.4161/cc.10.11.15675] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 6.2] [Reference Citation Analysis]
8 He Y, Zhao X, Gao J, Fan L, Yang G, Cho WC, Chen H. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer. Int J Mol Sci 2012;13:13764-80. [PMID: 23203033 DOI: 10.3390/ijms131113764] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
9 Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol 2022;15:101286. [PMID: 34839106 DOI: 10.1016/j.tranon.2021.101286] [Reference Citation Analysis]
10 O Farrell F, Rusten TE, Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 2013;280:6322-37. [PMID: 23953235 DOI: 10.1111/febs.12486] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 6.2] [Reference Citation Analysis]
11 Abdel-Aziz AK, Abdel-Naim AB, Shouman S, Minucci S, Elgendy M. From Resistance to Sensitivity: Insights and Implications of Biphasic Modulation of Autophagy by Sunitinib. Front Pharmacol 2017;8:718. [PMID: 29066973 DOI: 10.3389/fphar.2017.00718] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
12 Mordhorst BR, Kerns KC, Schauflinger M, Zigo M, Murphy SL, Ross RM, Wells KD, Green JA, Sutovsky P, Prather RS. Pharmacologic treatment with CPI-613 and PS48 decreases mitochondrial membrane potential and increases quantity of autolysosomes in porcine fibroblasts. Sci Rep 2019;9:9417. [PMID: 31263141 DOI: 10.1038/s41598-019-45850-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Rodolfo C, Di Bartolomeo S, Cecconi F. Autophagy in stem and progenitor cells. Cell Mol Life Sci 2016;73:475-96. [DOI: 10.1007/s00018-015-2071-3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.7] [Reference Citation Analysis]
14 Masso-Welch P, Girald Berlingeri S, King-Lyons ND, Mandell L, Hu J, Greene CJ, Federowicz M, Cao P, Connell TD, Heakal Y. LT-IIc, A Bacterial Type II Heat-Labile Enterotoxin, Induces Specific Lethality in Triple Negative Breast Cancer Cells by Modulation of Autophagy and Induction of Apoptosis and Necroptosis. Int J Mol Sci 2018;20:E85. [PMID: 30587795 DOI: 10.3390/ijms20010085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Vincent M. Cancer: a de-repression of a default survival program common to all cells?: a life-history perspective on the nature of cancer. Bioessays 2012;34:72-82. [PMID: 22105565 DOI: 10.1002/bies.201100049] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 5.6] [Reference Citation Analysis]
16 Li XQ, Liu JT, Fan LL, Liu Y, Cheng L, Wang F, Yu HQ, Gao J, Wei W, Wang H, Sun GP. Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget 2016;7:24585-95. [PMID: 27029054 DOI: 10.18632/oncotarget.8358] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
17 Ma D, Shen B, Seewoo V, Tong H, Yang W, Cheng X, Jin Z, Peng C, Qiu W. GADD45β induction by S-adenosylmethionine inhibits hepatocellular carcinoma cell proliferation during acute ischemia-hypoxia. Oncotarget 2016;7:37215-25. [PMID: 27177086 DOI: 10.18632/oncotarget.9295] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Chandra Jena B, Sarkar S, Rout L, Mandal M. The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett 2021;520:222-32. [PMID: 34363903 DOI: 10.1016/j.canlet.2021.08.002] [Reference Citation Analysis]
19 Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, He G, Tao X, Deng X. Autophagy and doxorubicin resistance in cancer. Anticancer Drugs 2018;29:1-9. [PMID: 29099416 DOI: 10.1097/CAD.0000000000000572] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
20 Zhang Y, Yang JM. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther 2013;14:81-9. [PMID: 23192270 DOI: 10.4161/cbt.22958] [Cited by in Crossref: 73] [Cited by in F6Publishing: 73] [Article Influence: 7.3] [Reference Citation Analysis]
21 Schetter AJ, Harris CC. MicroRNAs as molecular classifiers for cancer. Cell Cycle 2011;10:2827-8. [PMID: 21869596 DOI: 10.4161/cc.10.17.16574] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
22 Notte A, Leclere L, Michiels C. Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem Pharmacol. 2011;82:427-434. [PMID: 21704023 DOI: 10.1016/j.bcp.2011.06.015] [Cited by in Crossref: 122] [Cited by in F6Publishing: 126] [Article Influence: 11.1] [Reference Citation Analysis]
23 Mercier I, Camacho J, Titchen K, Gonzales DM, Quann K, Bryant KG, Molchansky A, Milliman JN, Whitaker-Menezes D, Sotgia F, Jasmin JF, Schwarting R, Pestell RG, Blagosklonny MV, Lisanti MP. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol 2012;181:278-93. [PMID: 22698676 DOI: 10.1016/j.ajpath.2012.03.017] [Cited by in Crossref: 73] [Cited by in F6Publishing: 82] [Article Influence: 7.3] [Reference Citation Analysis]
24 Kaza N, Kohli L, Roth KA. Autophagy in brain tumors: a new target for therapeutic intervention. Brain Pathol 2012;22:89-98. [PMID: 22150924 DOI: 10.1111/j.1750-3639.2011.00544.x] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 6.9] [Reference Citation Analysis]
25 Bragazzi NL, Sellami M. Cancer bioenergetics as emerging holistic cancer theory: the role of metabolic fluxes and transport proteins involved in metabolic pathways in the pathogenesis of malignancies. State-of-the-art and future prospects. Adv Protein Chem Struct Biol 2021;123:27-47. [PMID: 33485487 DOI: 10.1016/bs.apcsb.2020.09.001] [Reference Citation Analysis]
26 Cao M, Zhong Q. Cilia in autophagy and cancer. Cilia 2015;5:4. [PMID: 26848389 DOI: 10.1186/s13630-016-0027-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
27 Giansanti V, Tillhon M, Mazzini G, Prosperi E, Lombardi P, Scovassi AI. Killing of tumor cells: A drama in two acts. Biochemical Pharmacology 2011;82:1304-10. [DOI: 10.1016/j.bcp.2011.05.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
28 McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D'Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN. Advances in targeting signal transduction pathways. Oncotarget 2012;3:1505-21. [PMID: 23455493 DOI: 10.18632/oncotarget.802] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
29 McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012;3:954-87. [PMID: 23006971 DOI: 10.18632/oncotarget.652] [Cited by in Crossref: 190] [Cited by in F6Publishing: 176] [Article Influence: 21.1] [Reference Citation Analysis]
30 Zhou S, Liu R, Yuan K, Yi T, Zhao X, Huang C, Wei Y. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. Mass Spectrom Rev 2013;32:267-311. [PMID: 23165949 DOI: 10.1002/mas.21362] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
31 Noch EK, Khalili K. The role of AEG-1/MTDH/LYRIC in the pathogenesis of central nervous system disease. Adv Cancer Res 2013;120:159-92. [PMID: 23889991 DOI: 10.1016/B978-0-12-401676-7.00006-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
32 VanderVeen BN, Fix DK, Carson JA. Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation. Oxid Med Cell Longev 2017;2017:3292087. [PMID: 28785374 DOI: 10.1155/2017/3292087] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 15.4] [Reference Citation Analysis]
33 Liu WR, Jin L, Tian MX, Jiang XF, Yang LX, Ding ZB, Shen YH, Peng YF, Gao DM, Zhou J, Qiu SJ, Dai Z, Fan J, Shi YH. Caveolin-1 promotes tumor growth and metastasis via autophagy inhibition in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2016;40:169-78. [PMID: 26206578 DOI: 10.1016/j.clinre.2015.06.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
34 Aredia F, Guamán Ortiz LM, Giansanti V, Scovassi AI. Autophagy and cancer. Cells 2012;1:520-34. [PMID: 24710488 DOI: 10.3390/cells1030520] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
35 Gkikas I, Palikaras K, Tavernarakis N. The Role of Mitophagy in Innate Immunity. Front Immunol 2018;9:1283. [PMID: 29951054 DOI: 10.3389/fimmu.2018.01283] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 19.0] [Reference Citation Analysis]
36 Chi MS, Lee CY, Huang SC, Yang KL, Ko HL, Chen YK, Chung CH, Liao KW, Chi KH. Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients. Oncotarget 2015;6:29808-17. [PMID: 26375670 DOI: 10.18632/oncotarget.5060] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
37 Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Radical Biology and Medicine 2012;53:1399-410. [DOI: 10.1016/j.freeradbiomed.2012.07.011] [Cited by in Crossref: 108] [Cited by in F6Publishing: 103] [Article Influence: 10.8] [Reference Citation Analysis]
38 Gonçalves RC, Freire PP, Coletti D, Seelaender M. Tumor Microenvironment Autophagic Processes and Cachexia: The Missing Link? Front Oncol 2020;10:617109. [PMID: 33604297 DOI: 10.3389/fonc.2020.617109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Senetta R, Stella G, Pozzi E, Sturli N, Massi D, Cassoni P. Caveolin-1 as a promoter of tumour spreading: when, how, where and why. J Cell Mol Med 2013;17:325-36. [PMID: 23521716 DOI: 10.1111/jcmm.12030] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 6.2] [Reference Citation Analysis]
40 Martinez-Outschoorn UE, Curry JM, Ko YH, Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A, Pestell RG, Howell A, Sotgia F, Lisanti MP. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4. Cell Cycle 2013;12:2580-97. [PMID: 23860378 DOI: 10.4161/cc.25510] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
41 Zhai H, Fesler A, Ju J. MicroRNA: a third dimension in autophagy. Cell Cycle. 2013;12:246-250. [PMID: 23255136 DOI: 10.4161/cc.23273] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 6.2] [Reference Citation Analysis]
42 O'Donovan TR, Rajendran S, O'Reilly S, O'Sullivan GC, McKenna SL. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS One 2015;10:e0134676. [PMID: 26248051 DOI: 10.1371/journal.pone.0134676] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
43 Lisanti MP, Martinez-Outschoorn UE, Sotgia F. Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery. Cell Cycle. 2013;12:2723-2732. [PMID: 23860382 DOI: 10.4161/cc.25695] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 9.0] [Reference Citation Analysis]
44 Jinushi M, Morita T, Xu Z, Kinoshita I, Dosaka-Akita H, Yagita H, Kawakami Y. Autophagy-dependent regulation of tumor metastasis by myeloid cells. PLoS One 2017;12:e0179357. [PMID: 28686632 DOI: 10.1371/journal.pone.0179357] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
45 Fesler A, Liu H, Wu N, Liu F, Ling P, Ju J. Autophagy regulated by miRNAs in colorectal cancer progression and resistance. Cancer Transl Med 2017;3:96-100. [PMID: 28748218 DOI: 10.4103/ctm.ctm_64_16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
46 Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J, Cai SH. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 2016;7:4122-41. [PMID: 26716641 DOI: 10.18632/oncotarget.6702] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
47 Mastrodonato M, Portincasa P, Mentino D, Rossi R, Resta L, Ferri D, Liquori GE. Caveolin-1 and mitochondrial alterations in regenerating rat liver. Microsc Res Tech 2012;75:1026-32. [PMID: 22431231 DOI: 10.1002/jemt.22027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
48 Li WL, Xiong LX, Shi XY, Xiao L, Qi GY, Meng C. IKKβ/NFκBp65 activated by interleukin-13 targets the autophagy-related genes LC3B and beclin 1 in fibroblasts co-cultured with breast cancer cells. Exp Ther Med 2016;11:1259-64. [PMID: 27073433 DOI: 10.3892/etm.2016.3054] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
49 Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012;11:1445-1454. [PMID: 22395432 DOI: 10.4161/cc.19841] [Cited by in Crossref: 117] [Cited by in F6Publishing: 116] [Article Influence: 11.7] [Reference Citation Analysis]
50 Brouwers B, Fumagalli D, Brohee S, Hatse S, Govaere O, Floris G, Van den Eynde K, Bareche Y, Schöffski P, Smeets A, Neven P, Lambrechts D, Sotiriou C, Wildiers H. The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Res 2017;19:78. [PMID: 28673354 DOI: 10.1186/s13058-017-0871-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
51 Okabe S, Kodama Y, Cao H, Johannessen H, Zhao CM, Wang TC, Takahashi R, Chen D. Topical application of acetic acid in cytoreduction of gastric cancer. A technical report using mouse model. J Gastroenterol Hepatol 2012;27 Suppl 3:40-8. [PMID: 22486870 DOI: 10.1111/j.1440-1746.2012.07070.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
52 Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011;8:210-21. [PMID: 21364524 DOI: 10.1038/nrclinonc.2011.21] [Cited by in Crossref: 474] [Cited by in F6Publishing: 447] [Article Influence: 43.1] [Reference Citation Analysis]
53 Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, Pestell RG, Sotgia F, Lisanti MP. Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 2011;10:1271-86. [PMID: 21512313 DOI: 10.4161/cc.10.8.15330] [Cited by in Crossref: 193] [Cited by in F6Publishing: 192] [Article Influence: 17.5] [Reference Citation Analysis]
54 Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP. Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther 2011;11:383-94. [PMID: 21150282 DOI: 10.4161/cbt.11.4.14101] [Cited by in Crossref: 82] [Cited by in F6Publishing: 77] [Article Influence: 7.5] [Reference Citation Analysis]
55 Yang PW, Hsieh MS, Chang YH, Huang PM, Lee JM. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget 2017;8:91494-504. [PMID: 29207660 DOI: 10.18632/oncotarget.20793] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
56 Lorente J, Velandia C, Leal JA, Garcia-Mayea Y, Lyakhovich A, Kondoh H, LLeonart ME. The interplay between autophagy and tumorigenesis: exploiting autophagy as a means of anticancer therapy. Biol Rev Camb Philos Soc 2018;93:152-65. [PMID: 28464404 DOI: 10.1111/brv.12337] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
57 Gómez VE, Giovannetti E, Peters GJ. Unraveling the complexity of autophagy: Potential therapeutic applications in Pancreatic Ductal Adenocarcinoma. Seminars in Cancer Biology 2015;35:11-9. [DOI: 10.1016/j.semcancer.2015.09.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
58 McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 2012;3:1068-1111. [PMID: 23085539 DOI: 10.18632/oncotarget.659] [Cited by in Crossref: 213] [Cited by in F6Publishing: 218] [Article Influence: 23.7] [Reference Citation Analysis]
59 Liu JL, Chang KC, Lo CC, Chu PY, Liu CH. Expression of autophagy-related protein Beclin-1 in malignant canine mammary tumors. BMC Vet Res 2013;9:75. [PMID: 23578251 DOI: 10.1186/1746-6148-9-75] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
60 Dave DT, Patel BM. Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target. Curr Drug Metab 2019;20:1141-53. [PMID: 31418657 DOI: 10.2174/1389200220666190816162658] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Dorai T, Pinto JT, Denton TT, Krasnikov BF, Cooper AJL. The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Anal Biochem 2020;:114083. [PMID: 33352190 DOI: 10.1016/j.ab.2020.114083] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG, Goldberg AF, Pestell RG, Howell A, Sneddon S. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle. 2012;11:2285-2302. [PMID: 22684298 DOI: 10.4161/cc.20718] [Cited by in Crossref: 150] [Cited by in F6Publishing: 150] [Article Influence: 15.0] [Reference Citation Analysis]
63 Chi KH, Ko HL, Yang KL, Lee CY, Chi MS, Kao SJ. Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: a pilot safety and effectiveness analysis in a small patient cohort. Oncotarget 2015;6:16735-45. [PMID: 25944689 DOI: 10.18632/oncotarget.3793] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
64 Kasprzak A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int J Mol Sci 2021;22:1565. [PMID: 33557173 DOI: 10.3390/ijms22041565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
65 Agarwal S, Maekawa T. Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. Nanomedicine 2020;29:102270. [PMID: 32702467 DOI: 10.1016/j.nano.2020.102270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Cheng SY, Chen NF, Kuo HM, Yang SN, Sung CS, Sung PJ, Wen ZH, Chen WF. Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2018;23:314-28. [PMID: 29721785 DOI: 10.1007/s10495-018-1456-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
67 Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K. Autophagy in endocrine tumors. Endocr Relat Cancer 2015;22:R205-18. [PMID: 25947570 DOI: 10.1530/ERC-15-0042] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
68 Dingemans AC, de Vos-geelen J, Langen R, Schols AM. Phase II drugs that are currently in development for the treatment of cachexia. Expert Opinion on Investigational Drugs 2014;23:1655-69. [DOI: 10.1517/13543784.2014.942729] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
69 Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 2011;10:2504-20. [PMID: 21778829 DOI: 10.4161/cc.10.15.16585] [Cited by in Crossref: 167] [Cited by in F6Publishing: 190] [Article Influence: 15.2] [Reference Citation Analysis]
70 Hsu SPC, Kuo JS, Chiang HC, Wang HE, Wang YS, Huang CC, Huang YC, Chi MS, Mehta MP, Chi KH. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells. Oncotarget 2018;9:6883-96. [PMID: 29467937 DOI: 10.18632/oncotarget.23855] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
71 Witwer KW. XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 2012;9:1147-54. [PMID: 22951590 DOI: 10.4161/rna.21619] [Cited by in Crossref: 77] [Cited by in F6Publishing: 67] [Article Influence: 7.7] [Reference Citation Analysis]
72 Noch E, Khalili K. Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol Cancer Ther 2012;11:14-23. [PMID: 22234809 DOI: 10.1158/1535-7163.MCT-11-0517] [Cited by in Crossref: 46] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
73 Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Cancer metabolism: new validated targets for drug discovery. Oncotarget 2013;4:1309-16. [PMID: 23896568 DOI: 10.18632/oncotarget.1182] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
74 Zhao X, He Y, Chen H. Autophagic tumor stroma: mechanisms and roles in tumor growth and progression. Int J Cancer 2013;132:1-8. [PMID: 22684793 DOI: 10.1002/ijc.27664] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
75 Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831:1533-1541. [PMID: 23500888 DOI: 10.1016/j.bbalip.2013.02.010] [Cited by in Crossref: 352] [Cited by in F6Publishing: 362] [Article Influence: 39.1] [Reference Citation Analysis]
76 Chi KH, Wang YS, Huang YC, Chiang HC, Chi MS, Chi CH, Wang HE, Kao SJ. Simultaneous activation and inhibition of autophagy sensitizes cancer cells to chemotherapy. Oncotarget 2016;7:58075-88. [PMID: 27486756 DOI: 10.18632/oncotarget.10873] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
77 Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, Casimiro MC, Aquila S, Ando' S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 2012;3:798-810. [PMID: 22878233 DOI: 10.18632/oncotarget.574] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 8.9] [Reference Citation Analysis]
78 Luis C, Duarte F, Faria I, Jarak I, Oliveira PF, Alves MG, Soares R, Fernandes R. Warburg Effect Inversion: Adiposity shifts central primary metabolism in MCF-7 breast cancer cells. Life Sci 2019;223:38-46. [PMID: 30862570 DOI: 10.1016/j.lfs.2019.03.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
79 Salem AF, Howell A, Sartini M, Sotgia F, Lisanti MP. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production. Cell Cycle 2012;11:4167-73. [PMID: 23047605 DOI: 10.4161/cc.22316] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
80 Di Giacomo G, Rizza S, Montagna C, Filomeni G. Established Principles and Emerging Concepts on the Interplay between Mitochondrial Physiology and S-(De)nitrosylation: Implications in Cancer and Neurodegeneration. Int J Cell Biol 2012;2012:361872. [PMID: 22927857 DOI: 10.1155/2012/361872] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
81 Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle 2011;10:1784-93. [PMID: 21566463 DOI: 10.4161/cc.10.11.15674] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 7.8] [Reference Citation Analysis]
82 Pettersen K, Andersen S, Degen S, Tadini V, Grosjean J, Hatakeyama S, Tesfahun AN, Moestue S, Kim J, Nonstad U, Romundstad PR, Skorpen F, Sørhaug S, Amundsen T, Grønberg BH, Strasser F, Stephens N, Hoem D, Molven A, Kaasa S, Fearon K, Jacobi C, Bjørkøy G. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci Rep 2017;7:2046. [PMID: 28515477 DOI: 10.1038/s41598-017-02088-2] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 10.2] [Reference Citation Analysis]
83 Huang Y, Ratovitski EA. Phosphorylated TP63 induces transcription of RPN13, leading to NOS2 protein degradation. J Biol Chem 2010;285:41422-31. [PMID: 20959455 DOI: 10.1074/jbc.M110.158642] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
84 Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, Pestell RG, Sotgia F, Philp NJ, Lisanti MP. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 2011;10:1772-83. [PMID: 21558814 DOI: 10.4161/cc.10.11.15659] [Cited by in Crossref: 257] [Cited by in F6Publishing: 254] [Article Influence: 23.4] [Reference Citation Analysis]
85 Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498-1503. [PMID: 22037646 DOI: 10.1038/nm.2492] [Cited by in Crossref: 1108] [Cited by in F6Publishing: 1076] [Article Influence: 100.7] [Reference Citation Analysis]
86 Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022. [PMID: 35481621 DOI: 10.1002/cac2.12291] [Reference Citation Analysis]
87 Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle 2011;10:2521-8. [PMID: 21768775 DOI: 10.4161/cc.10.15.16584] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 6.7] [Reference Citation Analysis]
88 Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P, Minetti C, Lisanti MP, Sotgia F. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 2011;10:4047-64. [PMID: 22134189 DOI: 10.4161/cc.10.23.18151] [Cited by in Crossref: 184] [Cited by in F6Publishing: 175] [Article Influence: 16.7] [Reference Citation Analysis]
89 Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E. Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res 2015;21:680-6. [PMID: 25691772 DOI: 10.1158/1078-0432.CCR-14-2198] [Cited by in Crossref: 65] [Cited by in F6Publishing: 45] [Article Influence: 9.3] [Reference Citation Analysis]
90 Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012;11:1108-17. [PMID: 22313602 DOI: 10.4161/cc.11.6.19530] [Cited by in Crossref: 156] [Cited by in F6Publishing: 181] [Article Influence: 15.6] [Reference Citation Analysis]
91 Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME, Lengyel E. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2012;2:1100-1108. [PMID: 23171795 DOI: 10.1158/2159-8290.cd-12-0206] [Cited by in Crossref: 224] [Cited by in F6Publishing: 164] [Article Influence: 22.4] [Reference Citation Analysis]
92 Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, Tanowitz HB, Sotgia F, Lisanti MP. Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle. 2011;10:4208-4216. [PMID: 22033146 DOI: 10.4161/cc.10.24.18487] [Cited by in Crossref: 113] [Cited by in F6Publishing: 111] [Article Influence: 10.3] [Reference Citation Analysis]
93 Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011;10:2440-9. [PMID: 21734470 DOI: 10.4161/cc.10.15.16870] [Cited by in Crossref: 134] [Cited by in F6Publishing: 115] [Article Influence: 12.2] [Reference Citation Analysis]
94 Du H, Che G. [Advancement of relationship between metabolic alteration 
in cancer-associated fibroblasts and tumor progression in lung cancer]. Zhongguo Fei Ai Za Zhi 2014;17:679-84. [PMID: 25248710 DOI: 10.3779/j.issn.1009-3419.2014.09.07] [Reference Citation Analysis]
95 Chen D, Che G. Value of caveolin-1 in cancer progression and prognosis: Emphasis on cancer-associated fibroblasts, human cancer cells and mechanism of caveolin-1 expression (Review). Oncol Lett 2014;8:1409-21. [PMID: 25202343 DOI: 10.3892/ol.2014.2385] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
96 Huang J, Diaz-Meco MT, Moscat J. The macroenviromental control of cancer metabolism by p62. Cell Cycle 2018;17:2110-21. [PMID: 30198373 DOI: 10.1080/15384101.2018.1520566] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
97 Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 2013;182:1367-78. [PMID: 23395093 DOI: 10.1016/j.ajpath.2012.12.023] [Cited by in Crossref: 155] [Cited by in F6Publishing: 144] [Article Influence: 17.2] [Reference Citation Analysis]
98 Liu J, Liang H, Khilji S, Li H, Song D, Chen C, Wang X, Zhang Y, Zhao N, Li X, Gao A. Moxidectin induces Cytostatic Autophagic Cell Death of Glioma Cells through inhibiting the AKT/mTOR Signalling Pathway. J Cancer 2020;11:5802-11. [PMID: 32913473 DOI: 10.7150/jca.46697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol. 2014;25:15-22. [PMID: 24412104 DOI: 10.1016/j.semcancer.2013.12.008] [Cited by in Crossref: 163] [Cited by in F6Publishing: 163] [Article Influence: 20.4] [Reference Citation Analysis]
100 Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J. Autophagy in stem cells. Autophagy. 2013;9:830-849. [PMID: 23486312 DOI: 10.4161/auto.24132] [Cited by in Crossref: 181] [Cited by in F6Publishing: 180] [Article Influence: 20.1] [Reference Citation Analysis]
101 Goldberg AA, Beach A, Davies GF, Harkness TA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2011;2:761-82. [PMID: 21992775 DOI: 10.18632/oncotarget.338] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 5.8] [Reference Citation Analysis]
102 Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. MiRNAs in Differentiation and Development. Elsevier; 2017. pp. 1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
103 Pasi CE, Pelicci PG. Inhibition of epithelial-to-mesenchimal transition: a novel tumor suppressor function of p53? Cell Cycle 2011;10:2616-7. [PMID: 21836395 DOI: 10.4161/cc.10.16.16543] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
104 Vigen RA, Kidd M, Modlin IM, Chen D, Zhao CM. Ultrastructure of ECL cells in Mastomys after long-term treatment with H2 receptor antagonist loxtidine. Med Mol Morphol 2012;45:80-5. [PMID: 22718292 DOI: 10.1007/s00795-011-0544-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
105 Del Principe D, Lista P, Malorni W, Giammarioli AM. Fibroblast autophagy in fibrotic disorders. J Pathol 2013;229:208-20. [PMID: 23018629 DOI: 10.1002/path.4115] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 4.7] [Reference Citation Analysis]
106 Fonseca P, Vardaki I, Occhionero A, Panaretakis T. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles. Int Rev Cell Mol Biol 2016;326:175-99. [PMID: 27572129 DOI: 10.1016/bs.ircmb.2016.04.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
107 Ertel A, Tsirigos A, Whitaker-Menezes D, Birbe RC, Pavlides S, Martinez-Outschoorn UE, Pestell RG, Howell A, Sotgia F, Lisanti MP. Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 2012;11:253-63. [PMID: 22234241 DOI: 10.4161/cc.11.2.19006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 5.0] [Reference Citation Analysis]
108 Sanchez-Alvarez R, Martinez-Outschoorn UE, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Rubin E, Lisanti MP, Sotgia F. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle 2013;12:172-82. [PMID: 23257779 DOI: 10.4161/cc.23058] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 5.8] [Reference Citation Analysis]
109 Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med 2011;9:62. [PMID: 21605374 DOI: 10.1186/1741-7015-9-62] [Cited by in Crossref: 100] [Cited by in F6Publishing: 89] [Article Influence: 9.1] [Reference Citation Analysis]
110 Mercier I, Lisanti MP. Caveolin-1 and breast cancer: a new clinical perspective. Adv Exp Med Biol 2012;729:83-94. [PMID: 22411315 DOI: 10.1007/978-1-4614-1222-9_6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
111 Castello-Cros R, Bonuccelli G, Molchansky A, Capozza F, Witkiewicz AK, Birbe RC, Howell A, Pestell RG, Whitaker-Menezes D, Sotgia F, Lisanti MP. Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle 2011;10:2021-34. [PMID: 21646868 DOI: 10.4161/cc.10.12.16002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
112 Gong Y, Yang Y, Tian S, Chen H. Different Role of Caveolin-1 Gene in the Progression of Gynecological Tumors. Asian Pac J Cancer Prev 2019;20:3259-68. [PMID: 31759347 DOI: 10.31557/APJCP.2019.20.11.3259] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
113 Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, Andò S, Howell A, Martinez-Outschoorn UE, Sotgia F. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11:3599-3610. [PMID: 22935696 DOI: 10.4161/cc.21884] [Cited by in Crossref: 133] [Cited by in F6Publishing: 125] [Article Influence: 13.3] [Reference Citation Analysis]
114 Daskalakis K, Alexandraki KI, Kloukina I, Kassi E, Felekouras E, Xingi E, Pagakis SN, Tsolakis AV, Andreakos E, Kaltsas G, Kambas K. Increased autophagy/mitophagy levels in primary tumours of patients with pancreatic neuroendocrine neoplasms. Endocrine 2020;68:438-47. [PMID: 32114655 DOI: 10.1007/s12020-020-02228-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
115 Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018;153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 10.8] [Reference Citation Analysis]
116 Lisanti MP, Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine. Cell Cycle 2011;10:2059-63. [PMID: 21654190 DOI: 10.4161/cc.10.13.16233] [Cited by in Crossref: 45] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
117 Albanese C, Machado FS, Tanowitz HB. Glutamine and the tumor microenvironment: understanding the mechanisms that fuel cancer progression. Cancer Biol Ther 2011;12:1098-100. [PMID: 22236873 DOI: 10.4161/cbt.12.12.18856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
118 Salem AF, Whitaker-Menezes D, Lin Z, Martinez-Outschoorn UE, Tanowitz HB, Al-Zoubi MS, Howell A, Pestell RG, Sotgia F, Lisanti MP. Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 2012;11:2545-56. [PMID: 22722266 DOI: 10.4161/cc.20920] [Cited by in Crossref: 81] [Cited by in F6Publishing: 75] [Article Influence: 8.1] [Reference Citation Analysis]
119 Avena P, Anselmo W, Whitaker-Menezes D, Wang C, Pestell RG, Lamb RS, Hulit J, Casaburi I, Andò S, Martinez-Outschoorn UE. Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-1370. [PMID: 23574724 DOI: 10.4161/cc.24289] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]