BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A. Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther. 2010;10:537-542. [PMID: 20861671 DOI: 10.4161/cbt.10.6.13370] [Cited by in Crossref: 132] [Cited by in F6Publishing: 125] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Eelen G, de Zeeuw P, Simons M, Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ Res 2015;116:1231-44. [PMID: 25814684 DOI: 10.1161/CIRCRESAHA.116.302855] [Cited by in Crossref: 286] [Cited by in F6Publishing: 171] [Article Influence: 40.9] [Reference Citation Analysis]
2 Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F. Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 2012;11:3956-63. [PMID: 23082721 DOI: 10.4161/cc.22136] [Cited by in Crossref: 77] [Cited by in F6Publishing: 76] [Article Influence: 7.7] [Reference Citation Analysis]
3 Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Liu L, Liu C, Luo G, Ni Q, Xu J, Yu X. Energy sources identify metabolic phenotypes in pancreatic cancer. Acta Biochim Biophys Sin 2016;48:969-79. [DOI: 10.1093/abbs/gmw097] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
4 Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Chiavarina B, Pestell RG, Howell A. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle. 2011;10:4065-4073. [PMID: 22129993 DOI: 10.4161/cc.10.23.18254] [Cited by in Crossref: 76] [Cited by in F6Publishing: 83] [Article Influence: 6.9] [Reference Citation Analysis]
5 Al-Rakan MA, Colak D, Hendrayani SF, Al-Bakheet A, Al-Mohanna FH, Kaya N, Al-Malik O, Aboussekhra A. Breast stromal fibroblasts from histologically normal surgical margins are pro-carcinogenic. J Pathol 2013;231:457-65. [PMID: 24009142 DOI: 10.1002/path.4256] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
6 Chan JSK, Sng MK, Teo ZQ, Chong HC, Twang JS, Tan NS. Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. Oncogene 2018;37:160-73. [PMID: 28892046 DOI: 10.1038/onc.2017.319] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
7 Mordhorst BR, Kerns KC, Schauflinger M, Zigo M, Murphy SL, Ross RM, Wells KD, Green JA, Sutovsky P, Prather RS. Pharmacologic treatment with CPI-613 and PS48 decreases mitochondrial membrane potential and increases quantity of autolysosomes in porcine fibroblasts. Sci Rep 2019;9:9417. [PMID: 31263141 DOI: 10.1038/s41598-019-45850-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 van Hal TW, van Bon L, Radstake TR. A system out of breath: how hypoxia possibly contributes to the pathogenesis of systemic sclerosis. Int J Rheumatol 2011;2011:824972. [PMID: 22162692 DOI: 10.1155/2011/824972] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
9 Nomura T, Yamasaki M, Hirai K, Inoue T, Sato R, Matsuura K, Moriyama M, Sato F, Mimata H. Targeting the Vav3 oncogene enhances docetaxel-induced apoptosis through the inhibition of androgen receptor phosphorylation in LNCaP prostate cancer cells under chronic hypoxia. Mol Cancer. 2013;12:27. [PMID: 23566222 DOI: 10.1186/1476-4598-12-27] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
10 Xie Y, Tu W, Zhang J, He M, Ye S, Dong C, Shao C. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation. Mutat Res 2015;772:23-9. [PMID: 25772107 DOI: 10.1016/j.mrfmmm.2014.12.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
11 Policastro LL, Ibañez IL, Notcovich C, Duran HA, Podhajcer OL. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 2013;19:854-95. [PMID: 22794113 DOI: 10.1089/ars.2011.4367] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 6.3] [Reference Citation Analysis]
12 Assi J, Srivastava G, Matta A, Chang MC, Walfish PG, Ralhan R. Transglutaminase 2 overexpression in tumor stroma identifies invasive ductal carcinomas of breast at high risk of recurrence. PLoS One. 2013;8:e74437. [PMID: 24058567 DOI: 10.1371/journal.pone.0074437] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
13 Pokorný J, Foletti A, Kobilková J, Jandová A, Vrba J, Vrba J Jr, Nedbalová M, Čoček A, Danani A, Tuszyński JA. Biophysical insights into cancer transformation and treatment. ScientificWorldJournal 2013;2013:195028. [PMID: 23844381 DOI: 10.1155/2013/195028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
14 Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018;19:E3773. [PMID: 30486451 DOI: 10.3390/ijms19123773] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
15 Watson AS, Mortensen M, Simon AK. Autophagy in the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia. Cell Cycle 2011;10:1719-25. [PMID: 21512311 DOI: 10.4161/cc.10.11.15673] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 4.9] [Reference Citation Analysis]
16 Bigot E, Bataille R, Patrice T. Increased singlet oxygen-induced secondary ROS production in the serum of cancer patients. J Photochem Photobiol B 2012;107:14-9. [PMID: 22169683 DOI: 10.1016/j.jphotobiol.2011.11.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
17 Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 2015;4:184-92. [PMID: 25590798 DOI: 10.1016/j.redox.2014.12.003] [Cited by in Crossref: 217] [Cited by in F6Publishing: 217] [Article Influence: 27.1] [Reference Citation Analysis]
18 Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 2011;13:213. [PMID: 21867571 DOI: 10.1186/bcr2892] [Cited by in Crossref: 119] [Cited by in F6Publishing: 123] [Article Influence: 10.8] [Reference Citation Analysis]
19 Zhou S, Liu R, Yuan K, Yi T, Zhao X, Huang C, Wei Y. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. Mass Spectrom Rev 2013;32:267-311. [PMID: 23165949 DOI: 10.1002/mas.21362] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
20 Crawford S. Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemotherapy. Front Pharmacol 2013;4:68. [PMID: 23805101 DOI: 10.3389/fphar.2013.00068] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
21 García-Heredia JM, Carnero A. Role of Mitochondria in Cancer Stem Cell Resistance. Cells 2020;9:E1693. [PMID: 32679735 DOI: 10.3390/cells9071693] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
22 Liu J, Zhan X, Li M, Li G, Zhang P, Xiao Z, Shao M, Peng F, Hu R, Chen Z. Mitochondrial proteomics of nasopharyngeal carcinoma metastasis. BMC Med Genomics 2012;5:62. [PMID: 23217164 DOI: 10.1186/1755-8794-5-62] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
23 Fordyce CA, Patten KT, Fessenden TB, DeFilippis R, Hwang ES, Zhao J, Tlsty TD. Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes. Breast Cancer Res. 2012;14:R155. [PMID: 23216814 DOI: 10.1186/bcr3368] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
24 Routray S. Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview. Tumour Biol 2014;35:9487-95. [PMID: 25123270 DOI: 10.1007/s13277-014-2482-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
25 Wang X, Liu H, Ni Y, Shen P, Han X. Lactate shuttle: from substance exchange to regulatory mechanism. Hum Cell 2021. [PMID: 34606041 DOI: 10.1007/s13577-021-00622-z] [Reference Citation Analysis]
26 Osipov AV, Terpinskaya TI, Kuznetsova TE, Ryzhkovskaya EL, Lukashevich VS, Rudnichenko JA, Ulashchyk VS, Starkov VG, Utkin YN. Cobra Venom Factor and Ketoprofen Abolish the Antitumor Effect of Nerve Growth Factor from Cobra Venom. Toxins (Basel) 2017;9:E274. [PMID: 28878143 DOI: 10.3390/toxins9090274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
27 Masso-Welch P, Girald Berlingeri S, King-Lyons ND, Mandell L, Hu J, Greene CJ, Federowicz M, Cao P, Connell TD, Heakal Y. LT-IIc, A Bacterial Type II Heat-Labile Enterotoxin, Induces Specific Lethality in Triple Negative Breast Cancer Cells by Modulation of Autophagy and Induction of Apoptosis and Necroptosis. Int J Mol Sci 2018;20:E85. [PMID: 30587795 DOI: 10.3390/ijms20010085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
28 Gurrapu S, Jonnalagadda SK, Alam MA, Ronayne CT, Nelson GL, Solano LN, Lueth EA, Drewes LR, Mereddy VR. Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: In vitro and in vivo studies as potential anticancer agents. Bioorg Med Chem Lett 2016;26:3282-6. [PMID: 27241692 DOI: 10.1016/j.bmcl.2016.05.054] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
29 Huang H, Du W, Brekken RA. Extracellular Matrix Induction of Intracellular Reactive Oxygen Species. Antioxid Redox Signal 2017;27:774-84. [PMID: 28791881 DOI: 10.1089/ars.2017.7305] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
30 Goruppi S, Procopio MG, Jo S, Clocchiatti A, Neel V, Dotto GP. The ULK3 Kinase Is Critical for Convergent Control of Cancer-Associated Fibroblast Activation by CSL and GLI. Cell Rep 2017;20:2468-79. [PMID: 28877478 DOI: 10.1016/j.celrep.2017.08.048] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
31 Chu YL, Ho CT, Chung JG, Rajasekaran R, Sheen LY. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells. J Agric Food Chem. 2012;60:8363-8371. [PMID: 22860996 DOI: 10.1021/jf301298y] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 6.4] [Reference Citation Analysis]
32 Mu Y, Chen Y, Zhang G, Zhan X, Li Y, Liu T, Li G, Li M, Xiao Z, Gong X. Identification of stromal differentially expressed proteins in the colon carcinoma by quantitative proteomics. Electrophoresis. 2013;34:1679-1692. [PMID: 23737015 DOI: 10.1002/elps.201200596] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
33 Kurth I, Peitzsch C, Baumann M, Dubrovska A. The Role of Cancer Stem Cells in Tumor Radioresistance. In: Rajasekhar VK, editor. Cancer Stem Cells. Hoboken: John Wiley & Sons; 2014. pp. 473-91. [DOI: 10.1002/9781118356203.ch35] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y, Regev-Rudzki N, Herrero J, Enver T. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathog 2017;13:e1006524. [PMID: 28837697 DOI: 10.1371/journal.ppat.1006524] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 10.0] [Reference Citation Analysis]
35 Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Radical Biology and Medicine 2012;53:1399-410. [DOI: 10.1016/j.freeradbiomed.2012.07.011] [Cited by in Crossref: 108] [Cited by in F6Publishing: 103] [Article Influence: 10.8] [Reference Citation Analysis]
36 Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, Sun L, Gong Z, Xu Z. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 2019;38:171. [PMID: 31014370 DOI: 10.1186/s13046-019-1172-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
37 Leanza L, Managò A, Zoratti M, Gulbins E, Szabo I. Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016;1863:1385-97. [DOI: 10.1016/j.bbamcr.2015.11.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 9.0] [Reference Citation Analysis]
38 Belyaeva E, Kharwar RK, Ulasov IV, Karlina I, Timashev P, Mohammadinejad R, Acharya A. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance. Mol Cell Biochem 2021. [PMID: 34854022 DOI: 10.1007/s11010-021-04308-w] [Reference Citation Analysis]
39 Pokorný J, Pokorný J, Kobilková J, Jandová A, Vrba J, Vrba J. CANCER — PATHOLOGICAL BREAKDOWN OF COHERENT ENERGY STATES. Biophys Rev Lett 2014;09:115-33. [DOI: 10.1142/s1793048013300077] [Cited by in Crossref: 6] [Article Influence: 0.8] [Reference Citation Analysis]
40 Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020;13:E156. [PMID: 32707662 DOI: 10.3390/ph13070156] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
41 Gao L, Zhao X, Lang L, Shay C, Andrew Yeudall W, Teng Y. Autophagy blockade sensitizes human head and neck squamous cell carcinoma towards CYT997 through enhancing excessively high reactive oxygen species-induced apoptosis. J Mol Med (Berl) 2018;96:929-38. [PMID: 30022281 DOI: 10.1007/s00109-018-1670-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
42 Zeng R, Chen Y, Zhao S, Cui GH. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol Sin 2012;33:91-100. [PMID: 22158107 DOI: 10.1038/aps.2011.143] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
43 Maroni P, Bendinelli P, Matteucci E, Locatelli A, Nakamura T, Scita G, Desiderio MA. Osteolytic bone metastasis is hampered by impinging on the interplay among autophagy, anoikis and ossification. Cell Death Dis 2014;5:e1005. [PMID: 24434513 DOI: 10.1038/cddis.2013.465] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
44 Penderecka K, Ibbs M, Kaluzna A, Lewandowska A, Marszalek A, Mackiewicz A, Dams-Kozlowska H. Implementation of a dynamic culture condition to the heterotypic 3D breast cancer model. J Biomed Mater Res B Appl Biomater 2020;108:1186-97. [PMID: 31419034 DOI: 10.1002/jbm.b.34468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
45 Facciorusso A, Antonino M, Del Prete V, Neve V, Scavo MP, Barone M. Are hematopoietic stem cells involved in hepatocarcinogenesis? Hepatobiliary Surg Nutr 2014;3:199-206. [PMID: 25202697 DOI: 10.3978/j.issn.2304-3881.2014.06.02] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
46 Jezierska-Drutel A, Attaran S, Hopkins BL, Skoko JJ, Rosenzweig SA, Neumann CA. The peroxidase PRDX1 inhibits the activated phenotype in mammary fibroblasts through regulating c-Jun N-terminal kinases. BMC Cancer 2019;19:812. [PMID: 31419957 DOI: 10.1186/s12885-019-6031-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Vinasco K, Mitchell HM, Kaakoush NO, Castaño-Rodríguez N. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer.Biochim Biophys Acta Rev Cancer. 2019;1872:188309. [PMID: 31394110 DOI: 10.1016/j.bbcan.2019.07.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
48 Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019;134:116-37. [PMID: 30981885 DOI: 10.1016/j.ejps.2019.04.011] [Cited by in Crossref: 67] [Cited by in F6Publishing: 73] [Article Influence: 22.3] [Reference Citation Analysis]
49 Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6(3): 148-161 [PMID: 26322173 DOI: 10.4331/wjbc.v6.i3.148] [Cited by in CrossRef: 82] [Cited by in F6Publishing: 73] [Article Influence: 11.7] [Reference Citation Analysis]
50 Lu H, Li G, Liu L, Feng L, Wang X, Jin H. Regulation and function of mitophagy in development and cancer. Autophagy. 2013;9:1720-1736. [PMID: 24091872 DOI: 10.4161/auto.26550] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 6.4] [Reference Citation Analysis]
51 Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP. Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther 2011;11:383-94. [PMID: 21150282 DOI: 10.4161/cbt.11.4.14101] [Cited by in Crossref: 82] [Cited by in F6Publishing: 77] [Article Influence: 7.5] [Reference Citation Analysis]
52 Witkiewicz AK, Kline J, Queenan M, Brody JR, Tsirigos A, Bilal E, Pavlides S, Ertel A, Sotgia F, Lisanti MP. Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 2011;10:1794-809. [PMID: 21521946 DOI: 10.4161/cc.10.11.15675] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 6.2] [Reference Citation Analysis]
53 Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle 2011;10:1784-93. [PMID: 21566463 DOI: 10.4161/cc.10.11.15674] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 7.8] [Reference Citation Analysis]
54 Lu SZ, Harrison-Findik DD. Autophagy and cancer. World J Biol Chem 2013; 4(3): 64-70 [PMID: 23977422 DOI: 10.4331/wjbc.v4.i3.64] [Cited by in CrossRef: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
55 Martinez-Outschoorn UE, Curry JM, Ko YH, Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A, Pestell RG, Howell A, Sotgia F, Lisanti MP. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4. Cell Cycle 2013;12:2580-97. [PMID: 23860378 DOI: 10.4161/cc.25510] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
56 Howell A. Can metabolomics in addition to genomics add to prognostic and predictive information in breast cancer? BMC Med 2010;8:73. [PMID: 21080936 DOI: 10.1186/1741-7015-8-73] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
57 Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Ni Q, Xu J, Yu X. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. Biochim Biophys Acta. 2016;1866:177-188. [PMID: 27600832 DOI: 10.1016/j.bbcan.2016.09.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
58 Castello-Cros R, Bonuccelli G, Molchansky A, Capozza F, Witkiewicz AK, Birbe RC, Howell A, Pestell RG, Whitaker-Menezes D, Sotgia F, Lisanti MP. Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle 2011;10:2021-34. [PMID: 21646868 DOI: 10.4161/cc.10.12.16002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
59 Brauer HA, Makowski L, Hoadley KA, Casbas-Hernandez P, Lang LJ, Romàn-Pèrez E, D'Arcy M, Freemerman AJ, Perou CM, Troester MA. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 2013;19:571-85. [PMID: 23236214 DOI: 10.1158/1078-0432.CCR-12-2123] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 5.9] [Reference Citation Analysis]
60 Ulasov I, Fares J, Timashev P, Lesniak MS. Editing Cytoprotective Autophagy in Glioma: An Unfulfilled Potential for Therapy. Trends in Molecular Medicine 2020;26:252-62. [DOI: 10.1016/j.molmed.2019.11.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
61 Moserle L, Casanovas O. Anti-angiogenesis and metastasis: a tumour and stromal cell alliance. J Intern Med 2013;273:128-37. [DOI: 10.1111/joim.12018] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
62 Mercier I, Camacho J, Titchen K, Gonzales DM, Quann K, Bryant KG, Molchansky A, Milliman JN, Whitaker-Menezes D, Sotgia F, Jasmin JF, Schwarting R, Pestell RG, Blagosklonny MV, Lisanti MP. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol 2012;181:278-93. [PMID: 22698676 DOI: 10.1016/j.ajpath.2012.03.017] [Cited by in Crossref: 73] [Cited by in F6Publishing: 82] [Article Influence: 7.3] [Reference Citation Analysis]
63 Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, Byers S, Giaccia AJ, Glasgow E, Albanese C, Avantaggiati ML. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 2012;3:1220-35. [PMID: 23100451 DOI: 10.18632/oncotarget.714] [Cited by in Crossref: 100] [Cited by in F6Publishing: 96] [Article Influence: 11.1] [Reference Citation Analysis]
64 Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl) 2016;94:137-54. [PMID: 26882899 DOI: 10.1007/s00109-015-1377-9] [Cited by in Crossref: 106] [Cited by in F6Publishing: 104] [Article Influence: 17.7] [Reference Citation Analysis]
65 Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351-359. [PMID: 25774832 DOI: 10.1038/ncb3124] [Cited by in Crossref: 657] [Cited by in F6Publishing: 624] [Article Influence: 93.9] [Reference Citation Analysis]
66 Liu L, Zuo Z, Lu S, Wang L, Liu A, Liu X. Silencing of PINK1 represses cell growth, migration and induces apoptosis of lung cancer cells. Biomed Pharmacother 2018;106:333-41. [PMID: 29966978 DOI: 10.1016/j.biopha.2018.06.128] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
67 Harris RA, Tindale L, Cumming RC. Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology 2014;15:559-77. [PMID: 25305052 DOI: 10.1007/s10522-014-9534-z] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
68 Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123:3685-3692. [PMID: 23999443 DOI: 10.1172/jci69741] [Cited by in Crossref: 535] [Cited by in F6Publishing: 331] [Article Influence: 59.4] [Reference Citation Analysis]
69 Nikitovic D, Corsini E, Kouretas D, Tsatsakis A, Tzanakakis G. ROS-major mediators of extracellular matrix remodeling during tumor progression. Food and Chemical Toxicology 2013;61:178-86. [DOI: 10.1016/j.fct.2013.06.013] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
70 Imbesi S, Musolino C, Allegra A, Saija A, Morabito F, Calapai G, Gangemi S. Oxidative stress in oncohematologic diseases: an update. Expert Rev Hematol 2013;6:317-25. [PMID: 23782085 DOI: 10.1586/ehm.13.21] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
71 Goldberg AA, Beach A, Davies GF, Harkness TA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2011;2:761-82. [PMID: 21992775 DOI: 10.18632/oncotarget.338] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 5.8] [Reference Citation Analysis]
72 Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512-527. [PMID: 23313965 DOI: 10.1053/j.gastro.2013.01.002] [Cited by in Crossref: 395] [Cited by in F6Publishing: 387] [Article Influence: 43.9] [Reference Citation Analysis]
73 Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Bagnes MF, Vaccaro MI. Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed Res Int. 2014;2014:926729. [PMID: 25197670 DOI: 10.1155/2014/926729] [Cited by in Crossref: 30] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
74 Chen XY, Thike AA, Md Nasir ND, Koh VCY, Bay BH, Tan PH. Higher density of stromal M2 macrophages in breast ductal carcinoma in situ predicts recurrence. Virchows Arch 2020;476:825-33. [PMID: 31897820 DOI: 10.1007/s00428-019-02735-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Benito J, Ramirez MS, Millward NZ, Velez J, Harutyunyan KG, Lu H, Shi YX, Matre P, Jacamo R, Ma H, Konoplev S, McQueen T, Volgin A, Protopopova M, Mu H, Lee J, Bhattacharya PK, Marszalek JR, Davis RE, Bankson JA, Cortes JE, Hart CP, Andreeff M, Konopleva M. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models. Clin Cancer Res 2016;22:1687-98. [PMID: 26603259 DOI: 10.1158/1078-0432.CCR-14-3378] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 6.1] [Reference Citation Analysis]
76 Xing F, Hu Q, Qin Y, Xu J, Zhang B, Yu X, Wang W. The Relationship of Redox With Hallmarks of Cancer: The Importance of Homeostasis and Context. Front Oncol 2022;12:862743. [DOI: 10.3389/fonc.2022.862743] [Reference Citation Analysis]
77 Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Cancer metabolism: new validated targets for drug discovery. Oncotarget 2013;4:1309-16. [PMID: 23896568 DOI: 10.18632/oncotarget.1182] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
78 Wu J, Bai Y, Wang Y, Ma J. Melatonin and regulation of autophagy: Mechanisms and therapeutic implications. Pharmacol Res 2021;163:105279. [PMID: 33161138 DOI: 10.1016/j.phrs.2020.105279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
79 Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, Casimiro MC, Aquila S, Ando' S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 2012;3:798-810. [PMID: 22878233 DOI: 10.18632/oncotarget.574] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 8.9] [Reference Citation Analysis]
80 Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants (Basel) 2021;10:642. [PMID: 33922139 DOI: 10.3390/antiox10050642] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
81 Gurrapu S, Jonnalagadda SK, Alam MA, Nelson GL, Sneve MG, Drewes LR, Mereddy VR. Monocarboxylate transporter 1 inhibitors as potential anticancer agents. ACS Med Chem Lett 2015;6:558-61. [PMID: 26005533 DOI: 10.1021/acsmedchemlett.5b00049] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
82 Crawford S. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic approach to disease progression and recurrence. Ther Adv Med Oncol. 2014;6:52-68. [PMID: 24587831 DOI: 10.1177/1758834014521111] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
83 Zhou S, Zhao L, Kuang M, Zhang B, Liang Z, Yi T, Wei Y, Zhao X. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett. 2012;323:115-127. [PMID: 22542808 DOI: 10.1016/j.canlet.2012.02.017] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 9.6] [Reference Citation Analysis]
84 de Groot J, Reardon DA, Batchelor TT. Antiangiogenic Therapy for Glioblastoma: The Challenge of Translating Response Rate into Efficacy. American Society of Clinical Oncology Educational Book 2013. [DOI: 10.14694/edbook_am.2013.33.e71] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
85 Sormendi S, Wielockx B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Front Immunol 2018;9:40. [PMID: 29434587 DOI: 10.3389/fimmu.2018.00040] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 13.3] [Reference Citation Analysis]
86 Lisanti MP, Martinez-Outschoorn UE, Sotgia F. Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery. Cell Cycle. 2013;12:2723-2732. [PMID: 23860382 DOI: 10.4161/cc.25695] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 9.0] [Reference Citation Analysis]
87 Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants (Basel) 2021;10:1801. [PMID: 34829672 DOI: 10.3390/antiox10111801] [Reference Citation Analysis]
88 Icard P, Kafara P, Steyaert JM, Schwartz L, Lincet H. The metabolic cooperation between cells in solid cancer tumors. Biochim Biophys Acta 2014;1846:216-25. [PMID: 24983675 DOI: 10.1016/j.bbcan.2014.06.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 31] [Article Influence: 2.0] [Reference Citation Analysis]
89 Soengas MS. Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance. Pigment Cell Melanoma Res 2012;25:721-31. [DOI: 10.1111/pcmr.12021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
90 Du H, Che G. [Advancement of relationship between metabolic alteration 
in cancer-associated fibroblasts and tumor progression in lung cancer]. Zhongguo Fei Ai Za Zhi 2014;17:679-84. [PMID: 25248710 DOI: 10.3779/j.issn.1009-3419.2014.09.07] [Reference Citation Analysis]
91 Ding L, Raphael BJ, Chen F, Wendl MC. Advances for studying clonal evolution in cancer. Cancer Lett 2013;340:212-9. [PMID: 23353056 DOI: 10.1016/j.canlet.2012.12.028] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 5.9] [Reference Citation Analysis]
92 Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther 2011;12:1085-97. [PMID: 22236876 DOI: 10.4161/cbt.12.12.18671] [Cited by in Crossref: 99] [Cited by in F6Publishing: 100] [Article Influence: 9.0] [Reference Citation Analysis]
93 Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature 2014;511:167-76. [DOI: 10.1038/nature13312] [Cited by in Crossref: 266] [Cited by in F6Publishing: 246] [Article Influence: 33.3] [Reference Citation Analysis]
94 Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K. Autophagy in endocrine tumors. Endocr Relat Cancer 2015;22:R205-18. [PMID: 25947570 DOI: 10.1530/ERC-15-0042] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
95 Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011;10:2440-9. [PMID: 21734470 DOI: 10.4161/cc.10.15.16870] [Cited by in Crossref: 134] [Cited by in F6Publishing: 115] [Article Influence: 12.2] [Reference Citation Analysis]
96 Isfoss BL, Busch C, Hermelin H, Vermedal AT, Kile M, Braathen GJ, Majak B, Berner A. Stem cell marker-positive stellate cells and mast cells are reduced in benign-appearing bladder tissue in patients with urothelial carcinoma. Virchows Arch 2014;464:473-88. [PMID: 24570393 DOI: 10.1007/s00428-014-1561-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
97 Lisanti MP, Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine. Cell Cycle 2011;10:2059-63. [PMID: 21654190 DOI: 10.4161/cc.10.13.16233] [Cited by in Crossref: 45] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
98 Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin Cell Dev Biol. 2015;39:43-55. [PMID: 25724561 DOI: 10.1016/j.semcdb.2015.02.013] [Cited by in Crossref: 82] [Cited by in F6Publishing: 79] [Article Influence: 11.7] [Reference Citation Analysis]
99 Li W, Zhang X, Zhuang H, Chen HG, Chen Y, Tian W, Wu W, Li Y, Wang S, Zhang L, Chen Y, Li L, Zhao B, Sui S, Hu Z, Feng D. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem 2014;289:10691-701. [PMID: 24573672 DOI: 10.1074/jbc.M113.537050] [Cited by in Crossref: 80] [Cited by in F6Publishing: 47] [Article Influence: 10.0] [Reference Citation Analysis]
100 Shrestha B, Sripadi P, Walsh CM, Razunguzwa TT, Powell MJ, Kehn-Hall K, Kashanchi F, Vertes A. Rapid, non-targeted discovery of biochemical transformation and biomarker candidates in oncovirus-infected cell lines using LAESI mass spectrometry. Chem Commun (Camb) 2012;48:3700-2. [PMID: 22167302 DOI: 10.1039/c2cc17225a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
101 Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, Pestell RG, Sotgia F, Lisanti MP. Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 2011;10:1271-86. [PMID: 21512313 DOI: 10.4161/cc.10.8.15330] [Cited by in Crossref: 193] [Cited by in F6Publishing: 192] [Article Influence: 17.5] [Reference Citation Analysis]
102 Jena BC, Rout L, Dey A, Mandal M. Active autophagy in cancer-associated fibroblasts: Recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J Cell Physiol 2021. [PMID: 34008184 DOI: 10.1002/jcp.30419] [Reference Citation Analysis]
103 Goruppi S, Jo SH, Laszlo C, Clocchiatti A, Neel V, Dotto GP. Autophagy Controls CSL/RBPJκ Stability through a p62/SQSTM1-Dependent Mechanism. Cell Rep 2018;24:3108-3114.e4. [PMID: 30231994 DOI: 10.1016/j.celrep.2018.08.043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
104 Nawaz S, Yuan Y. Computational pathology: Exploring the spatial dimension of tumor ecology. Cancer Lett. 2015;pii:S0304-3835(15)00694-1. [PMID: 26592351 DOI: 10.1016/j.canlet.2015.11.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
105 Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 2011;10:2504-20. [PMID: 21778829 DOI: 10.4161/cc.10.15.16585] [Cited by in Crossref: 167] [Cited by in F6Publishing: 190] [Article Influence: 15.2] [Reference Citation Analysis]
106 Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020;18:59. [PMID: 32264958 DOI: 10.1186/s12964-020-0530-4] [Cited by in Crossref: 95] [Cited by in F6Publishing: 111] [Article Influence: 47.5] [Reference Citation Analysis]
107 Ropolo A, Bagnes CI, Molejon MI, Lo Re A, Boggio V, Gonzalez CD, Vaccaro MI. Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology 2012;12:1-7. [PMID: 22487466 DOI: 10.1016/j.pan.2011.11.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
108 Chan JS, Tan MJ, Sng MK, Teo Z, Phua T, Choo CC, Li L, Zhu P, Tan NS. Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress. Cell Death Dis 2017;8:e2562. [PMID: 28102840 DOI: 10.1038/cddis.2016.492] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
109 Noble P, Vyas M, Al-Attar A, Durrant S, Scholefield J, Durrant L. High levels of cleaved caspase-3 in colorectal tumour stroma predict good survival. Br J Cancer 2013;108:2097-105. [PMID: 23591201 DOI: 10.1038/bjc.2013.166] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
110 Al-Zoubi M, Salem AF, Martinez-Outschoorn UE, Whitaker-Menezes D, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Arafat H, Bevilacqua G, Sotgia F, Lisanti MP. Creating a tumor-resistant microenvironment: cell-mediated delivery of TNFα completely prevents breast cancer tumor formation in vivo. Cell Cycle 2013;12:480-90. [PMID: 23292149 DOI: 10.4161/cc.23370] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
111 Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021;46:208. [PMID: 34328200 DOI: 10.3892/or.2021.8159] [Reference Citation Analysis]
112 Stabenau KA, Samuels TL, Lam TK, Mathison AJ, Wells C, Altman KW, Battle MA, Johnston N. Pepsinogen/Proton Pump Co-Expression in Barrett's Esophageal Cells Induces Cancer-Associated Changes. Laryngoscope 2022. [PMID: 35315085 DOI: 10.1002/lary.30109] [Reference Citation Analysis]
113 Leithner K, Wohlkoenig C, Stacher E, Lindenmann J, Hofmann NA, Gallé B, Guelly C, Quehenberger F, Stiegler P, Smolle-Jüttner FM, Philipsen S, Popper HH, Hrzenjak A, Olschewski A, Olschewski H. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells. BMC Cancer 2014;14:40. [PMID: 24460801 DOI: 10.1186/1471-2407-14-40] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
114 Khammanivong A, Saha J, Spartz AK, Sorenson BS, Bush AG, Korpela DM, Gopalakrishnan R, Jonnalagadda S, Mereddy VR, O'Brien TD, Drewes LR, Dickerson EB. A novel MCT1 and MCT4 dual inhibitor reduces mitochondrial metabolism and inhibits tumour growth of feline oral squamous cell carcinoma. Vet Comp Oncol 2020;18:324-41. [PMID: 31661586 DOI: 10.1111/vco.12551] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
115 Wang X, Zhang J, Fu J, Wang J, Ye S, Liu W, Shao C. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells. Int J Radiat Biol 2015;91:452-8. [PMID: 25651038 DOI: 10.3109/09553002.2015.1012308] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
116 Bellot GL, Liu D, Pervaiz S. ROS, autophagy, mitochondria and cancer: Ras, the hidden master? Mitochondrion 2013;13:155-62. [DOI: 10.1016/j.mito.2012.06.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 5.3] [Reference Citation Analysis]
117 Chang CM, Lan KL, Huang WS, Lee YJ, Lee TW, Chang CH, Chuang CM. 188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. Int J Mol Sci 2017;18:E903. [PMID: 28441355 DOI: 10.3390/ijms18050903] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
118 Panzarini E, Inguscio V, Tenuzzo BA, Carata E, Dini L. Nanomaterials and autophagy: new insights in cancer treatment. Cancers (Basel) 2013;5:296-319. [PMID: 24216709 DOI: 10.3390/cancers5010296] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
119 Sewell-Loftin MK, Bayer SVH, Crist E, Hughes T, Joison SM, Longmore GD, George SC. Cancer-associated fibroblasts support vascular growth through mechanical force. Sci Rep 2017;7:12574. [PMID: 28974764 DOI: 10.1038/s41598-017-13006-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
120 Grasso C, Jansen G, Giovannetti E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Critical Reviews in Oncology/Hematology 2017;114:139-52. [DOI: 10.1016/j.critrevonc.2017.03.026] [Cited by in Crossref: 89] [Cited by in F6Publishing: 91] [Article Influence: 17.8] [Reference Citation Analysis]
121 Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus 2014;27:685-92. [PMID: 24028437 DOI: 10.1111/dote.12124] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
122 Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med 2011;9:62. [PMID: 21605374 DOI: 10.1186/1741-7015-9-62] [Cited by in Crossref: 100] [Cited by in F6Publishing: 89] [Article Influence: 9.1] [Reference Citation Analysis]
123 Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020;12:E2819. [PMID: 33008042 DOI: 10.3390/cancers12102819] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
124 Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 2017;112:21-30. [PMID: 28325262 DOI: 10.1016/j.critrevonc.2017.02.004] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 10.0] [Reference Citation Analysis]
125 Terpinskaya TI, Osipov AV, Kuznetsova TE, Ryzhkovskaya EL, Ulaschik VS, Ivanov IA, Tsetlin VI, Utkin YN. α-conotoxins revealed different roles of nicotinic cholinergic receptor subtypes in oncogenesis of Ehrlich tumor and in the associated inflammation. Dokl Biochem Biophys 2015;463:216-9. [PMID: 26335815 DOI: 10.1134/S1607672915040055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
126 Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109:8983-8988. [PMID: 22615405 DOI: 10.1073/pnas.1203244109] [Cited by in Crossref: 265] [Cited by in F6Publishing: 264] [Article Influence: 26.5] [Reference Citation Analysis]
127 Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol. 2014;92:43-54. [PMID: 25168677 DOI: 10.1016/j.bcp.2014.08.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
128 Yun CW, Jeon J, Go G, Lee JH, Lee SH. The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. Int J Mol Sci 2020;22:E179. [PMID: 33375363 DOI: 10.3390/ijms22010179] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
129 Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle 2011;10:2521-8. [PMID: 21768775 DOI: 10.4161/cc.10.15.16584] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 6.7] [Reference Citation Analysis]
130 Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, Andò S, Howell A, Martinez-Outschoorn UE, Sotgia F. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11:3599-3610. [PMID: 22935696 DOI: 10.4161/cc.21884] [Cited by in Crossref: 133] [Cited by in F6Publishing: 125] [Article Influence: 13.3] [Reference Citation Analysis]