1 |
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023;101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Reference Citation Analysis]
|
2 |
Costa RODA, Passos TS, Silva EMDS, dos Santos NCS, Morais AHDA. Encapsulated Peptides and Proteins with an Effect on Satiety. Nanomaterials 2023;13:1166. [DOI: 10.3390/nano13071166] [Reference Citation Analysis]
|
3 |
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023;:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Reference Citation Analysis]
|
4 |
Amgoth C, Patra S, Wasnik K, Maity P, Paik P. Controlled synthesis of thermosensitive tunable porous film of ( pNIPAM )‐ b ‐( PCL ) copolymer for sustain drug delivery. J of Applied Polymer Sci 2023. [DOI: 10.1002/app.53854] [Reference Citation Analysis]
|
5 |
Sharma P, Mehta M, Tandel N, K. Tyagi R. Introductory Chapter: Liposome - A Versatile Tool for Drug Delivery in Nanobiomedicine. Liposomes - Recent Advances, New Perspectives and Applications 2023. [DOI: 10.5772/intechopen.109426] [Reference Citation Analysis]
|
6 |
Tseu GYW, Kamaruzaman KA. A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules 2023;28. [PMID: 36771161 DOI: 10.3390/molecules28031498] [Reference Citation Analysis]
|
7 |
Zafar MN, Abuwatfa WH, Husseini GA. Acoustically-Activated Liposomal Nanocarriers to Mitigate the Side Effects of Conventional Chemotherapy with a Focus on Emulsion-Liposomes. Pharmaceutics 2023;15. [PMID: 36839744 DOI: 10.3390/pharmaceutics15020421] [Reference Citation Analysis]
|
8 |
Collodel G, Moretti E, Noto D, Corsaro R, Signorini C, Bonechi C, Cangeloni L, Luca G, Arato I, Mancuso F. Effects and Mechanisms Activated by Treatment with Cationic, Anionic and Zwitterionic Liposomes on an In Vitro Model of Porcine Pre-Pubertal Sertoli Cells. Int J Mol Sci 2023;24. [PMID: 36674712 DOI: 10.3390/ijms24021201] [Reference Citation Analysis]
|
9 |
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023;15. [PMID: 36679199 DOI: 10.3390/polym15020318] [Reference Citation Analysis]
|
10 |
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023;157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Reference Citation Analysis]
|
11 |
Dahiya S, Dahiya R. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00007-6] [Reference Citation Analysis]
|
12 |
Saddiqi ME, Kadir AA, Abdullah FFJ, Zakaria MZAB, Banke IS. Preparation, characterization and in vitro cytotoxicity evaluation of free and liposome-encapsulated tylosin. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100108] [Reference Citation Analysis]
|
13 |
Momtazi-borojeni AA, Hatamipour M, Sarborji MR, Jaafari MR, Sahebkar A. Preclinical toxicity assessment of anionic nanoliposomes. Advanced Industrial and Engineering Polymer Research 2022. [DOI: 10.1016/j.aiepr.2022.11.002] [Reference Citation Analysis]
|
14 |
Nikolova MP, Kumar EM, Chavali MS. Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022;14:2195. [PMID: 36297630 DOI: 10.3390/pharmaceutics14102195] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Auvinen V, Laurén P, Shen B, Isokuortti J, Durandin N, Lajunen T, Linko V, Laaksonen T. Nanoparticle release from anionic nanocellulose hydrogel matrix. Cellulose. [DOI: 10.1007/s10570-022-04875-1] [Reference Citation Analysis]
|
16 |
Rani V, Venkatesan J, Prabhu A. Liposomes- A promising strategy for drug delivery in anticancer applications. Journal of Drug Delivery Science and Technology 2022;76:103739. [DOI: 10.1016/j.jddst.2022.103739] [Reference Citation Analysis]
|
17 |
Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022;14:1965. [PMID: 36145713 DOI: 10.3390/pharmaceutics14091965] [Reference Citation Analysis]
|
18 |
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials (Basel) 2022;12:3051. [PMID: 36080088 DOI: 10.3390/nano12173051] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
19 |
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Advances in Colloid and Interface Science 2022. [DOI: 10.1016/j.cis.2022.102757] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Chen Z, Liu B, Gong Z, Huang H, Gong Y, Xiao W. Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (-)-Epigallocatechin-3-Gallate Nanoparticles. Molecules 2022;27:4894. [PMID: 35956844 DOI: 10.3390/molecules27154894] [Reference Citation Analysis]
|
21 |
Lamparelli EP, Ciardulli MC, Scala P, Scognamiglio M, Charlier B, Di Pietro P, Izzo V, Vecchione C, Maffulli N, Della Porta G. Lipid nano-vesicles for thyroid hormone encapsulation: A comparison between different fabrication technologies, drug loading, and an in vitro delivery to human tendon stem/progenitor cells in 2D and 3D culture. Int J Pharm 2022;624:122007. [PMID: 35820518 DOI: 10.1016/j.ijpharm.2022.122007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
22 |
Santhosh SK, Kootery KP, Umesh M, Alex PM, Mani M, Roy A, Sarojini S. Nanovaccinology and Superbugs. Nanovaccinology as Targeted Therapeutics 2022. [DOI: 10.1002/9781119858041.ch3] [Reference Citation Analysis]
|
23 |
Zheng H, Tao H, Wan J, Lee KY, Zheng Z, Leung SSY. Preparation of Drug-Loaded Liposomes with Multi-Inlet Vortex Mixers. Pharmaceutics 2022;14. [PMID: 35745796 DOI: 10.3390/pharmaceutics14061223] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Cruz-nova P, Ancira-cortez A, Ferro-flores G, Ocampo-garcía B, Gibbens-bandala B. Controlled-Release Nanosystems with a Dual Function of Targeted Therapy and Radiotherapy in Colorectal Cancer. Pharmaceutics 2022;14:1095. [DOI: 10.3390/pharmaceutics14051095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022;8:1763-90. [PMID: 35439408 DOI: 10.1021/acsbiomaterials.2c00026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Sun W, Zhang C, Yu X, Guo J, Ma H, Liu K, Luo P, Ren J. Preparation and pharmacokinetic study of diosmetin long-circulating liposomes modified with lactoferrin. Journal of Functional Foods 2022;91:105027. [DOI: 10.1016/j.jff.2022.105027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Wang BZ, Luo LJ, Vunjak-Novakovic G. RNA and Protein Delivery by Cell-Secreted and Bioengineered Extracellular Vesicles. Adv Healthc Mater 2022;11:e2101557. [PMID: 34706168 DOI: 10.1002/adhm.202101557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Abuwatfa WH, Awad NS, Pitt WG, Husseini GA. Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers 2022;14:925. [DOI: 10.3390/polym14050925] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
|
29 |
Parchekani J, Allahverdi A, Taghdir M, Naderi-Manesh H. Design and simulation of the liposomal model by using a coarse-grained molecular dynamics approach towards drug delivery goals. Sci Rep 2022;12:2371. [PMID: 35149771 DOI: 10.1038/s41598-022-06380-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Thapa Magar K, Boafo GF, Li X, Chen Z, He W. Liposome-based delivery of biological drugs. Chinese Chemical Letters 2022;33:587-96. [DOI: 10.1016/j.cclet.2021.08.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
|
31 |
Andra VVSNL, Bhatraju LVKP, Ruddaraju LK. A Comprehensive Review on Novel Liposomal Methodologies, Commercial Formulations, Clinical Trials and Patents. BioNanoSci . [DOI: 10.1007/s12668-022-00941-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
32 |
Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA. Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics 2022;14:254. [DOI: 10.3390/pharmaceutics14020254] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
33 |
Nguyen HL, Gupta RK, Nguyen TA. Nanoencapsulation of tyrosine kinase inhibitors for oncological therapeutics. Smart Nanomaterials for Bioencapsulation 2022. [DOI: 10.1016/b978-0-323-91229-7.00014-3] [Reference Citation Analysis]
|
34 |
Naskar A, Cho H, Lee S, Kim KS. Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics 2021;13:1887. [PMID: 34834302 DOI: 10.3390/pharmaceutics13111887] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
35 |
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021;178:113992. [PMID: 34597748 DOI: 10.1016/j.addr.2021.113992] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
36 |
de la Fuente M, Lombardero L, Gómez-González A, Solari C, Angulo-Barturen I, Acera A, Vecino E, Astigarraga E, Barreda-Gómez G. Enzyme Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021;22:9181. [PMID: 34502086 DOI: 10.3390/ijms22179181] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
37 |
Gyanani V, Haley JC, Goswami R. Challenges of Current Anticancer Treatment Approaches with Focus on Liposomal Drug Delivery Systems. Pharmaceuticals (Basel) 2021;14:835. [PMID: 34577537 DOI: 10.3390/ph14090835] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
38 |
Momtazi-Borojeni AA, Abdollahi E, Jaafari MR, Banach M, Watts GF, Sahebkar A. Negatively-charged liposome nanoparticles can prevent dyslipidemia and atherosclerosis progression in the rabbit model. Curr Vasc Pharmacol 2021. [PMID: 34414873 DOI: 10.2174/1570161119666210820115150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
39 |
Aoyama S, Nakagawa R, Mulé JJ, Mailloux AW. Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Front Immunol 2021;12:675538. [PMID: 34054863 DOI: 10.3389/fimmu.2021.675538] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|