BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Re F, Strominger JL. Separate functional domains of human MD-2 mediate Toll-like receptor 4-binding and lipopolysaccharide responsiveness. J Immunol. 2003;171:5272-5276. [PMID: 14607928 DOI: 10.4049/jimmunol.171.10.5272] [Cited by in Crossref: 87] [Cited by in F6Publishing: 83] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Mattis DM, Chervin AS, Ranoa DR, Kelley SL, Tapping RI, Kranz DM. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses. Mol Immunol 2015;68:203-12. [PMID: 26320630 DOI: 10.1016/j.molimm.2015.08.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
2 Lambrianides A, Carroll CJ, Pierangeli SS, Pericleous C, Branch W, Rice J, Latchman DS, Townsend P, Isenberg DA, Rahman A, Giles IP. Effects of polyclonal IgG derived from patients with different clinical types of the antiphospholipid syndrome on monocyte signaling pathways. J Immunol 2010;184:6622-8. [PMID: 20483743 DOI: 10.4049/jimmunol.0902765] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 5.2] [Reference Citation Analysis]
3 Unitt J, Hornigold D. Plant lectins are novel Toll-like receptor agonists. Biochem Pharmacol 2011;81:1324-8. [PMID: 21420389 DOI: 10.1016/j.bcp.2011.03.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
4 Peng Y, Gong JP, Liu CA, Li XH, Gan L, Li SB. Expression of toll-like receptor 4 and MD-2 gene and protein in Kupffer cells after ischemia-reperfu-sion in rat liver graft. World J Gastroenterol. 2004;10:2890-2893. [PMID: 15334694 DOI: 10.3748/wjg.v10.i19.2890] [Cited by in CrossRef: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
5 Manček-keber M, Jerala R. Postulates for validating TLR4 agonists: Highlights. Eur J Immunol 2015;45:356-70. [DOI: 10.1002/eji.201444462] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
6 Liu D, Gu X, Scafidi J, Davis AE 3rd. N-linked glycosylation is required for c1 inhibitor-mediated protection from endotoxin shock in mice. Infect Immun 2004;72:1946-55. [PMID: 15039314 DOI: 10.1128/IAI.72.4.1946-1955.2004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
7 Nakazawa T, Takai T, Hatanaka H, Mizuuchi E, Nagamune T, Okumura K, Ogawa H. Multiple-mutation at a potential ligand-binding region decreased allergenicity of a mite allergen Der f 2 without disrupting global structure. FEBS Letters 2005;579:1988-94. [DOI: 10.1016/j.febslet.2005.01.088] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
8 Saitoh S, Miyake K. Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem Rec 2006;6:311-9. [PMID: 17304555 DOI: 10.1002/tcr.20093] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
9 Thomas WR. Innate affairs of allergens. Clin Exp Allergy 2013;43:152-63. [PMID: 23331557 DOI: 10.1111/j.1365-2222.2012.04059.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
10 S Lashkari B, Anumba DO. Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4. PLoS One 2017;12:e0173646. [PMID: 28296959 DOI: 10.1371/journal.pone.0173646] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Gradišar H, Keber MM, Pristovšek P, Jerala R. MD-2 as the target of curcumin in the inhibition of response to LPS. Journal of Leukocyte Biology 2007;82:968-74. [DOI: 10.1189/jlb.1206727] [Cited by in Crossref: 101] [Cited by in F6Publishing: 97] [Article Influence: 7.2] [Reference Citation Analysis]
12 Schaub B, Bellou A, Gibbons FK, Velasco G, Campo M, He H, Liang Y, Gillman MW, Gold D, Weiss ST, Perkins DL, Finn PW. TLR2 and TLR4 stimulation differentially induce cytokine secretion in human neonatal, adult, and murine mononuclear cells. J Interferon Cytokine Res 2004;24:543-52. [PMID: 15450130 DOI: 10.1089/jir.2004.24.543] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
13 Liu D, Cramer CC, Scafidi J, Davis AE 3rd. N-linked glycosylation at Asn3 and the positively charged residues within the amino-terminal domain of the c1 inhibitor are required for interaction of the C1 Inhibitor with Salmonella enterica serovar typhimurium lipopolysaccharide and lipid A. Infect Immun 2005;73:4478-87. [PMID: 16040958 DOI: 10.1128/IAI.73.8.4478-4487.2005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
14 Cluff CW, Baldridge JR, Stöver AG, Evans JT, Johnson DA, Lacy MJ, Clawson VG, Yorgensen VM, Johnson CL, Livesay MT, Hershberg RM, Persing DH. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect Immun 2005;73:3044-52. [PMID: 15845512 DOI: 10.1128/IAI.73.5.3044-3052.2005] [Cited by in Crossref: 85] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
15 Spitzer AL, Harris HW. Statins attenuate sepsis. Surgery 2006;139:283-7. [DOI: 10.1016/j.surg.2005.08.029] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
16 Noubir S, Lee JS, Reiner NE. Pleiotropic Effects of Phosphatidylinositol 3‐Kinase in Monocyte Cell Regulation. Elsevier; 2006. pp. 51-95. [DOI: 10.1016/s0079-6603(06)81002-0] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
17 Xing T, Li L, Cao H, Huang J. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure. Clin Exp Immunol. 2007;147:184-188. [PMID: 17177978 DOI: 10.1111/j.1365-2249.2006.03259.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 33] [Article Influence: 0.8] [Reference Citation Analysis]
18 Mancek-Keber M, Jerala R. Structural similarity between the hydrophobic fluorescent probe and lipid A as a ligand of MD-2. FASEB J 2006;20:1836-42. [PMID: 16940155 DOI: 10.1096/fj.06-5862com] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 2.4] [Reference Citation Analysis]
19 Tumurkhuu G, Dagvadorj J, Jones HD, Chen S, Shimada K, Crother TR, Arditi M. Alternatively spliced myeloid differentiation protein-2 inhibits TLR4-mediated lung inflammation. J Immunol 2015;194:1686-94. [PMID: 25576596 DOI: 10.4049/jimmunol.1402123] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
20 Miyake K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol. 2004;12:186-192. [PMID: 15051069 DOI: 10.1016/j.tim.2004.02.009] [Cited by in Crossref: 221] [Cited by in F6Publishing: 200] [Article Influence: 13.0] [Reference Citation Analysis]
21 Lee S, Kim K, Rhyu I, Koh S, Lee D, Choi B. Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology 2006;152:535-46. [DOI: 10.1099/mic.0.28470-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
22 Teghanemt A, Weiss JP, Gioannini TL. Radioiodination of an endotoxin·MD-2 complex generates a novel sensitive, high-affinity ligand for TLR4. Innate Immun 2013;19:545-60. [PMID: 23439691 DOI: 10.1177/1753425913475688] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
23 Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 2008;181:1245-54. [PMID: 18606678 DOI: 10.4049/jimmunol.181.2.1245] [Cited by in Crossref: 101] [Cited by in F6Publishing: 95] [Article Influence: 7.8] [Reference Citation Analysis]
24 MacRedmond R, Greene C, Taggart CC, McElvaney N, O'Neill S. Respiratory epithelial cells require Toll-like receptor 4 for induction of human beta-defensin 2 by lipopolysaccharide. Respir Res 2005;6:116. [PMID: 16219107 DOI: 10.1186/1465-9921-6-116] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 4.3] [Reference Citation Analysis]
25 Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R. Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. J Immunol 2008;180:6107-15. [PMID: 18424732 DOI: 10.4049/jimmunol.180.9.6107] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
26 Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191-1195. [PMID: 19252480 DOI: 10.1038/nature07830] [Cited by in Crossref: 1336] [Cited by in F6Publishing: 1218] [Article Influence: 111.3] [Reference Citation Analysis]
27 Teghanemt A, Re F, Prohinar P, Widstrom R, Gioannini TL, Weiss JP. Novel roles in human MD-2 of phenylalanines 121 and 126 and tyrosine 131 in activation of Toll-like receptor 4 by endotoxin. J Biol Chem 2008;283:1257-66. [PMID: 17977838 DOI: 10.1074/jbc.M705994200] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
28 Lang LL, Wang L, Liu L. Exogenous MD-2 confers lipopolysaccharide responsiveness to human corneal epithelial cells with intracellular expression of TLR4 and CD14. Inflammation 2011;34:371-8. [PMID: 20700758 DOI: 10.1007/s10753-010-9244-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
29 Okuno T, Koutsogiannaki S, Hou L, Bu W, Ohto U, Eckenhoff RG, Yokomizo T, Yuki K. Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Toll-like receptor 4 system. FASEB J 2019;33:14528-41. [PMID: 31675483 DOI: 10.1096/fj.201901570R] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
30 Geiger-Maor A, Levi I, Even-Ram S, Smith Y, Bowdish DM, Nussbaum G, Rachmilewitz J. Cells exposed to sublethal oxidative stress selectively attract monocytes/macrophages via scavenger receptors and MyD88-mediated signaling. J Immunol 2012;188:1234-44. [PMID: 22219328 DOI: 10.4049/jimmunol.1101740] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
31 Kim SY, Koo JE, Seo YJ, Tyagi N, Jeong E, Choi J, Lim K, Park Z, Lee JY. Suppression of Toll-like receptor 4 activation by caffeic acid phenethyl ester is mediated by interference of LPS binding to MD2: Inhibition of LPS binding to MD2 by caffeic acid. Br J Pharmacol 2013;168:1933-45. [DOI: 10.1111/bph.12091] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.1] [Reference Citation Analysis]
32 Sabroe I, Parker LC, Dower SK, Whyte MK. The role of TLR activation in inflammation. J Pathol. 2008;214:126-135. [PMID: 18161748 DOI: 10.1002/path.2264] [Cited by in Crossref: 125] [Cited by in F6Publishing: 112] [Article Influence: 9.6] [Reference Citation Analysis]
33 Kobayashi M, Saitoh S, Tanimura N, Takahashi K, Kawasaki K, Nishijima M, Fujimoto Y, Fukase K, Akashi-takamura S, Miyake K. Regulatory Roles for MD-2 and TLR4 in Ligand-Induced Receptor Clustering. J Immunol 2006;176:6211-8. [DOI: 10.4049/jimmunol.176.10.6211] [Cited by in Crossref: 131] [Cited by in F6Publishing: 127] [Article Influence: 8.7] [Reference Citation Analysis]
34 O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177-197. [PMID: 19474110 DOI: 10.1124/pr.109.001073] [Cited by in Crossref: 302] [Cited by in F6Publishing: 277] [Article Influence: 25.2] [Reference Citation Analysis]
35 Barata TS, Teo I, Brocchini S, Zloh M, Shaunak S. Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses. PLoS Comput Biol 2011;7:e1002095. [PMID: 21738462 DOI: 10.1371/journal.pcbi.1002095] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
36 Tissières P, Dunn-Siegrist I, Schäppi M, Elson G, Comte R, Nobre V, Pugin J. Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 2008;111:2122-31. [PMID: 18056837 DOI: 10.1182/blood-2007-06-097782] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.9] [Reference Citation Analysis]
37 Mcgreal EP. Structural Basis of Pattern Recognition by Innate Immune Molecules. In: Kishore U, editor. Target Pattern Recognition in Innate Immunity. New York: Springer; 2009. pp. 139-61. [DOI: 10.1007/978-1-4419-0901-5_10] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
38 Noubir S, Hmama Z, Reiner NE. Dual Receptors and Distinct Pathways Mediate Interleukin-1 Receptor-associated Kinase Degradation in Response to Lipopolysaccharide. Journal of Biological Chemistry 2004;279:25189-95. [DOI: 10.1074/jbc.m312431200] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
39 Mueller GA. Contributions and Future Directions for Structural Biology in the Study of Allergens. Int Arch Allergy Immunol 2017;174:57-66. [PMID: 28992615 DOI: 10.1159/000481078] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
40 Koo JE, Park ZY, Kim ND, Lee JY. Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2. Biochem Biophys Res Commun 2013;434:600-5. [PMID: 23583403 DOI: 10.1016/j.bbrc.2013.03.123] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
41 Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 2008;180:1895-902. [PMID: 18209087 DOI: 10.4049/jimmunol.180.3.1895] [Cited by in Crossref: 334] [Cited by in F6Publishing: 323] [Article Influence: 25.7] [Reference Citation Analysis]
42 Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 2009;284:15052-60. [PMID: 19321453 DOI: 10.1074/jbc.M901429200] [Cited by in Crossref: 77] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
43 Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013;3:3. [PMID: 23408095 DOI: 10.3389/fcimb.2013.00003] [Cited by in Crossref: 104] [Cited by in F6Publishing: 101] [Article Influence: 13.0] [Reference Citation Analysis]
44 Teghanemt A, Widstrom RL, Gioannini TL, Weiss JP. Isolation of monomeric and dimeric secreted MD-2. Endotoxin.sCD14 and Toll-like receptor 4 ectodomain selectively react with the monomeric form of secreted MD-2. J Biol Chem 2008;283:21881-9. [PMID: 18519568 DOI: 10.1074/jbc.M800672200] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
45 Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Seminars in Immunology 2007;19:3-10. [DOI: 10.1016/j.smim.2006.12.002] [Cited by in Crossref: 358] [Cited by in F6Publishing: 344] [Article Influence: 25.6] [Reference Citation Analysis]
46 Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol. 2010;16:1321-1329. [PMID: 20238398 DOI: 10.3748/wjg.v16.i11.1321] [Cited by in CrossRef: 228] [Cited by in F6Publishing: 206] [Article Influence: 20.7] [Reference Citation Analysis]
47 Duan G, Zhu J, Wan J, Li X, Ge X, Liu L, Liu Y. A synthetic MD-2 mimetic peptide attenuates lipopolysaccharide-induced inflammatory responses in vivo and in vitro. International Immunopharmacology 2010;10:1091-100. [DOI: 10.1016/j.intimp.2010.06.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
48 Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 2007;316:1632-4. [PMID: 17569869 DOI: 10.1126/science.1139111] [Cited by in Crossref: 354] [Cited by in F6Publishing: 319] [Article Influence: 25.3] [Reference Citation Analysis]
49 Bannerman DD, Eiting KT, Winn RK, Harlan JM. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide. Am J Pathol 2004;165:1423-31. [PMID: 15466406 DOI: 10.1016/s0002-9440(10)63400-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
50 White AF, Demchenko AV. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv Carbohydr Chem Biochem 2014;71:339-89. [PMID: 25480508 DOI: 10.1016/B978-0-12-800128-8.00005-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
51 Tapping RI. Innate immune sensing and activation of cell surface Toll-like receptors. Seminars in Immunology 2009;21:175-84. [DOI: 10.1016/j.smim.2009.05.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
52 Brown DP, Jones DC, Anderson KJ, Lapaque N, Buerki RA, Trowsdale J, Allen RL. The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection. BMC Immunol 2009;10:56. [PMID: 19860908 DOI: 10.1186/1471-2172-10-56] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
53 Gao M, London N, Cheng K, Tamura R, Jin J, Schueler-Furman O, Yin H. Rationally Designed Macrocyclic Peptides as Synergistic Agonists of LPS-Induced Inflammatory Response. Tetrahedron 2014;70:7664-8. [PMID: 25400297 DOI: 10.1016/j.tet.2014.07.026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
54 Nayak BN, Kaur G, Buttar HS. TNF-α modulation by natural bioactive molecules in mouse RAW 264.7 macrophage cells. J Complement Integr Med 2016;13:1-7. [PMID: 26457790 DOI: 10.1515/jcim-2015-0024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
55 Mitsuzawa H, Nishitani C, Hyakushima N, Shimizu T, Sano H, Matsushima N, Fukase K, Kuroki Y. Recombinant soluble forms of extracellular TLR4 domain and MD-2 inhibit lipopolysaccharide binding on cell surface and dampen lipopolysaccharide-induced pulmonary inflammation in mice. J Immunol 2006;177:8133-9. [PMID: 17114488 DOI: 10.4049/jimmunol.177.11.8133] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
56 Chen L, Fu W, Zheng L, Wang Y, Liang G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 2018;23:1187-202. [PMID: 29330126 DOI: 10.1016/j.drudis.2018.01.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
57 Buchholz BM, Chanthaphavong RS, Bauer AJ. Nonhemopoietic cell TLR4 signaling is critical in causing early lipopolysaccharide-induced ileus. J Immunol. 2009;183:6744-6753. [PMID: 19846874 DOI: 10.4049/jimmunol.0901620] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
58 Di Lorenzo F, Kubik Ł, Oblak A, Lorè NI, Cigana C, Lanzetta R, Parrilli M, Hamad MA, De Soyza A, Silipo A, Jerala R, Bragonzi A, Valvano MA, Martín-Santamaría S, Molinaro A. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. J Biol Chem 2015;290:21305-19. [PMID: 26160169 DOI: 10.1074/jbc.M115.649087] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
59 Ohta S, Bahrun U, Tanaka M, Kimoto M. Identification of a novel isoform of MD-2 that downregulates lipopolysaccharide signaling. Biochemical and Biophysical Research Communications 2004;323:1103-8. [DOI: 10.1016/j.bbrc.2004.08.203] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
60 Hyakushima N, Mitsuzawa H, Nishitani C, Sano H, Kuronuma K, Konishi M, Himi T, Miyake K, Kuroki Y. Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J Immunol 2004;173:6949-54. [PMID: 15557191 DOI: 10.4049/jimmunol.173.11.6949] [Cited by in Crossref: 81] [Cited by in F6Publishing: 75] [Article Influence: 5.1] [Reference Citation Analysis]
61 Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130:906-917. [PMID: 17803912 DOI: 10.1016/j.cell.2007.08.002] [Cited by in Crossref: 736] [Cited by in F6Publishing: 682] [Article Influence: 52.6] [Reference Citation Analysis]
62 Zimmer SM, Zughaier SM, Tzeng YL, Stephens DS. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Glycobiology 2007;17:847-56. [PMID: 17545685 DOI: 10.1093/glycob/cwm057] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
63 Mineshiba J, Myokai F, Mineshiba F, Matsuura K, Nishimura F, Takashiba S. Transcriptional regulation of beta-defensin-2 by lipopolysaccharide in cultured human cervical carcinoma (HeLa) cells. FEMS Immunol Med Microbiol 2005;45:37-44. [PMID: 15985221 DOI: 10.1016/j.femsim.2005.01.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
64 Ahmad B, Batool M, Kim MS, Choi S. Computational-Driven Epitope Verification and Affinity Maturation of TLR4-Targeting Antibodies. Int J Mol Sci 2021;22:5989. [PMID: 34206009 DOI: 10.3390/ijms22115989] [Reference Citation Analysis]
65 Tichomirowa M, Theodoropoulou M, Lohrer P, Schaaf L, Losa M, Uhl E, Lange M, Arzt E, Stalla GK, Renner U. Bacterial endotoxin (lipopolysaccharide) stimulates interleukin-6 production and inhibits growth of pituitary tumour cells expressing the toll-like receptor 4. J Neuroendocrinol 2005;17:152-60. [PMID: 15796767 DOI: 10.1111/j.1365-2826.2005.01286.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
66 Mao TK, Lian ZX, Selmi C, Ichiki Y, Ashwood P, Ansari AA, Coppel RL, Shimoda S, Ishibashi H, Gershwin ME. Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology. 2005;42:802-808. [PMID: 16175622 DOI: 10.1002/hep.20859] [Cited by in Crossref: 127] [Cited by in F6Publishing: 124] [Article Influence: 7.9] [Reference Citation Analysis]
67 Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020;57:4825-44. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Keestra AM, van Putten JPM. Unique Properties of the Chicken TLR4/MD-2 Complex: Selective Lipopolysaccharide Activation of the MyD88-Dependent Pathway. J Immunol 2008;181:4354-62. [DOI: 10.4049/jimmunol.181.6.4354] [Cited by in Crossref: 110] [Cited by in F6Publishing: 104] [Article Influence: 8.5] [Reference Citation Analysis]
69 Mellal K, Omri S, Mulumba M, Tahiri H, Fortin C, Dorion MF, Pham H, Garcia Ramos Y, Zhang J, Pundir S, Joyal JS, Bouchard JF, Sennlaub F, Febbraio M, Hardy P, Gravel SP, Marleau S, Lubell WD, Chemtob S, Ong H. Immunometabolic modulation of retinal inflammation by CD36 ligand. Sci Rep 2019;9:12903. [PMID: 31501473 DOI: 10.1038/s41598-019-49472-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
70 Zimmer SM, Liu J, Clayton JL, Stephens DS, Snyder JP. Paclitaxel binding to human and murine MD-2. J Biol Chem 2008;283:27916-26. [PMID: 18650420 DOI: 10.1074/jbc.M802826200] [Cited by in Crossref: 57] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
71 Anwar MA, Panneerselvam S, Shah M, Choi S. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection. Sci Rep 2015;5:7657. [PMID: 25563849 DOI: 10.1038/srep07657] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
72 Miller LC, Lager KM, Kehrli ME Jr. Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol 2009;16:360-5. [PMID: 19144789 DOI: 10.1128/CVI.00269-08] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
73 Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci U S A 2004;101:4186-91. [PMID: 15010525 DOI: 10.1073/pnas.0306906101] [Cited by in Crossref: 272] [Cited by in F6Publishing: 254] [Article Influence: 16.0] [Reference Citation Analysis]
74 Cario E, Golenbock DT, Visintin A, Rünzi M, Gerken G, Podolsky DK. Trypsin-sensitive modulation of intestinal epithelial MD-2 as mechanism of lipopolysaccharide tolerance. J Immunol 2006;176:4258-66. [PMID: 16547263 DOI: 10.4049/jimmunol.176.7.4258] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 2.7] [Reference Citation Analysis]
75 Teghanemt A, Prohinar P, Gioannini TL, Weiss JP. Transfer of monomeric endotoxin from MD-2 to CD14: characterization and functional consequences. J Biol Chem 2007;282:36250-6. [PMID: 17934216 DOI: 10.1074/jbc.M705995200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
76 Mishra V, Pathak C. Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. International Journal of Biological Macromolecules 2019;122:425-51. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
77 Thomas WR. Molecular mimicry as the key to the dominance of the house dust mite allergen Der p 2. Expert Review of Clinical Immunology 2014;5:233-7. [DOI: 10.1586/eci.09.5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
78 Divanovic S, Trompette A, Petiniot LK, Allen JL, Flick LM, Belkaid Y, Madan R, Haky JJ, Karp CL. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. Journal of Leukocyte Biology 2007;82:265-71. [DOI: 10.1189/jlb.0107021] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 3.1] [Reference Citation Analysis]
79 Viriyakosol S, Tobias PS, Kirkland TN. Mutational analysis of membrane and soluble forms of human MD-2. J Biol Chem 2006;281:11955-64. [PMID: 16467306 DOI: 10.1074/jbc.M511627200] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
80 Gruber A, Mancek M, Wagner H, Kirschning CJ, Jerala R. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem 2004;279:28475-82. [PMID: 15111623 DOI: 10.1074/jbc.M400993200] [Cited by in Crossref: 97] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
81 Shishido R, Ohishi K, Suzuki R, Takishita K, Ohtsu D, Okutsu K, Tokutake K, Katsumata E, Bando T, Fujise Y, Murayama T, Maruyama T. Cetacean Toll-like receptor 4 and myeloid differentiation factor 2, and possible cetacean-specific responses against Gram-negative bacteria. Comparative Immunology, Microbiology and Infectious Diseases 2010;33:e89-98. [DOI: 10.1016/j.cimid.2010.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
82 Gray P, Michelsen KS, Sirois CM, Lowe E, Shimada K, Crother TR, Chen S, Brikos C, Bulut Y, Latz E, Underhill D, Arditi M. Identification of a novel human MD-2 splice variant that negatively regulates Lipopolysaccharide-induced TLR4 signaling. J Immunol 2010;184:6359-66. [PMID: 20435923 DOI: 10.4049/jimmunol.0903543] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
83 Muroi M, Tanamoto K. Structural Regions of MD-2 That Determine the Agonist-Antagonist Activity of Lipid IVa. Journal of Biological Chemistry 2006;281:5484-91. [DOI: 10.1074/jbc.m509193200] [Cited by in Crossref: 54] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]