BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM. Induction of a novel mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-deficient and Toll-like receptor 4-deficient mice. J Immunol. 2001;166:1075-1078. [PMID: 11145687 DOI: 10.4049/jimmunol.166.2.1075] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Knapp S, de Vos AF, Florquin S, Golenbock DT, van der Poll T. Lipopolysaccharide binding protein is an essential component of the innate immune response to Escherichia coli peritonitis in mice. Infect Immun 2003;71:6747-53. [PMID: 14638760 DOI: 10.1128/IAI.71.12.6747-6753.2003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
2 Arnardottir HH, Freysdottir J, Hardardottir I. Two circulating neutrophil populations in acute inflammation in mice. Inflamm Res 2012;61:931-9. [PMID: 22585035 DOI: 10.1007/s00011-012-0484-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
3 van 't Veer C, van den Pangaart PS, Kruijswijk D, Florquin S, de Vos AF, van der Poll T. Delineation of the role of Toll-like receptor signaling during peritonitis by a gradually growing pathogenic Escherichia coli. J Biol Chem 2011;286:36603-18. [PMID: 21690093 DOI: 10.1074/jbc.M110.189126] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
4 Glezer I, Zekki H, Scavone C, Rivest S. Modulation of the innate immune response by NMDA receptors has neuropathological consequences. J Neurosci 2003;23:11094-103. [PMID: 14657167 [PMID: 14657167 DOI: 10.1523/jneurosci.23-35-11094.2003] [Cited by in Crossref: 27] [Article Influence: 1.5] [Reference Citation Analysis]
5 Zhou L, Somasundaram R, Nederhof RF, Dijkstra G, Faber KN, Peppelenbosch MP, Fuhler GM. Impact of human granulocyte and monocyte isolation procedures on functional studies. Clin Vaccine Immunol 2012;19:1065-74. [PMID: 22552601 DOI: 10.1128/CVI.05715-11] [Cited by in Crossref: 67] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
6 MacArthur CJ, Hefeneider SH, Kempton JB, Trune DR. C3H/HeJ mouse model for spontaneous chronic otitis media. Laryngoscope 2006;116:1071-9. [PMID: 16826039 DOI: 10.1097/01.mlg.0000224527.41288.c4] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 2.8] [Reference Citation Analysis]
7 Trune DR, Zheng QY. Mouse models for human otitis media. Brain Res 2009;1277:90-103. [PMID: 19272362 DOI: 10.1016/j.brainres.2009.02.047] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
8 Feterowski C, Novotny A, Kaiser-Moore S, Mühlradt PF, Rossmann-Bloeck T, Rump M, Holzmann B, Weighardt H. Attenuated pathogenesis of polymicrobial peritonitis in mice after TLR2 agonist pre-treatment involves ST2 up-regulation. Int Immunol 2005;17:1035-46. [PMID: 16000329 DOI: 10.1093/intimm/dxh282] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 2.1] [Reference Citation Analysis]
9 Oakley MS, Majam V, Mahajan B, Gerald N, Anantharaman V, Ward JM, Faucette LJ, McCutchan TF, Zheng H, Terabe M, Berzofsky JA, Aravind L, Kumar S. Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice. PLoS One 2009;4:e6793. [PMID: 19710907 DOI: 10.1371/journal.pone.0006793] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
10 Tan Y, Kagan JC. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell 2014;54:212-23. [PMID: 24766885 DOI: 10.1016/j.molcel.2014.03.012] [Cited by in Crossref: 115] [Cited by in F6Publishing: 99] [Article Influence: 16.4] [Reference Citation Analysis]
11 Lee JS, Frevert CW, Matute-Bello G, Wurfel MM, Wong VA, Lin SM, Ruzinski J, Mongovin S, Goodman RB, Martin TR. TLR-4 pathway mediates the inflammatory response but not bacterial elimination in E. coli pneumonia. Am J Physiol Lung Cell Mol Physiol. 2005;289:L731-L738. [PMID: 16024722 DOI: 10.1152/ajplung.00196.2005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 2.7] [Reference Citation Analysis]
12 Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, Florquin S, van der Poll T. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 2004;72:788-94. [PMID: 14742522 DOI: 10.1128/IAI.72.2.788-794.2004] [Cited by in Crossref: 175] [Cited by in F6Publishing: 79] [Article Influence: 10.3] [Reference Citation Analysis]
13 Fang CW, Yao YM, Shi ZG, Yu Y, Wu Y, Lu LR, Sheng ZY. Lipopolysaccharide-binding protein and lipopolysaccharide receptor CD14 gene expression after thermal injury and its potential mechanism(s). J Trauma 2002;53:957-67. [PMID: 12435950 DOI: 10.1097/00005373-200211000-00024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
14 Long C, Wang Y, Herrera AH, Horiuchi K, Walcheck B. In vivo role of leukocyte ADAM17 in the inflammatory and host responses during E. coli-mediated peritonitis. J Leukoc Biol 2010;87:1097-101. [PMID: 20154226 DOI: 10.1189/jlb.1109763] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 4.7] [Reference Citation Analysis]
15 Gong JP, Dai LL, Liu CA, Wu CX, Shi YJ, Li SW, Li XH. Expression of CD14 protein and its gene in liver sinusoidal endothelial cells during endotoxemia. World J Gastroenterol 2002;8:551-4. [PMID: 12046090 DOI: 10.3748/wjg.v8.i3.551] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
16 Matsuo S, Yang WL, Aziz M, Kameoka S, Wang P. Fatty acid synthase inhibitor C75 ameliorates experimental colitis. Mol Med 2014;20:1-9. [PMID: 24306512 DOI: 10.2119/molmed.2013.00113] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
17 Echchannaoui H, Frei K, Letiembre M, Strieter RM, Adachi Y, Landmann R. CD14 deficiency leads to increased MIP-2 production, CXCR2 expression, neutrophil transmigration, and early death in pneumococcal infection. Journal of Leukocyte Biology 2005;78:705-15. [DOI: 10.1189/jlb.0205063] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
18 Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem 2014;289:1174-82. [PMID: 24275652 DOI: 10.1074/jbc.M113.523167] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
19 Yang KK, Dorner BG, Merkel U, Ryffel B, Schütt C, Golenbock D, Freeman MW, Jack RS. Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice. J Immunol 2002;169:4475-80. [PMID: 12370383 DOI: 10.4049/jimmunol.169.8.4475] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 3.2] [Reference Citation Analysis]
20 Deng M, Scott MJ, Loughran P, Gibson G, Sodhi C, Watkins S, Hackam D, Billiar TR. Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis. J Immunol 2013;190:5152-60. [PMID: 23562812 DOI: 10.4049/jimmunol.1300496] [Cited by in Crossref: 119] [Cited by in F6Publishing: 109] [Article Influence: 14.9] [Reference Citation Analysis]
21 MacArthur CJ, Pillers DA, Pang J, Degagne JM, Kempton JB, Trune DR. Gram-negative pathogen Klebsiella oxytoca is associated with spontaneous chronic otitis media in Toll-like receptor 4-deficient C3H/HeJ mice. Acta Otolaryngol 2008;128:132-8. [PMID: 17851949 DOI: 10.1080/00016480701387124] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
22 Zanoni I, Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol. 2013;3:32. [PMID: 23898465 DOI: 10.3389/fcimb.2013.00032] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 12.4] [Reference Citation Analysis]
23 Liu X, Zhang P, Bao Y, Han Y, Wang Y, Zhang Q, Zhan Z, Meng J, Li Y, Li N, Zhang WJ, Cao X. Zinc finger protein ZBTB20 promotes Toll-like receptor-triggered innate immune responses by repressing IκBα gene transcription. Proc Natl Acad Sci U S A 2013;110:11097-102. [PMID: 23776228 DOI: 10.1073/pnas.1301257110] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 5.4] [Reference Citation Analysis]
24 Roy MF, Malo D. Genetic regulation of host responses to Salmonella infection in mice. Genes Immun 2002;3:381-93. [PMID: 12424619 DOI: 10.1038/sj.gene.6363924] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 3.6] [Reference Citation Analysis]
25 Ramphal R, Balloy V, Jyot J, Verma A, Si-Tahar M, Chignard M. Control of Pseudomonas aeruginosa in the lung requires the recognition of either lipopolysaccharide or flagellin. J Immunol 2008;181:586-92. [PMID: 18566425 DOI: 10.4049/jimmunol.181.1.586] [Cited by in Crossref: 91] [Cited by in F6Publishing: 80] [Article Influence: 7.0] [Reference Citation Analysis]
26 Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 2004;172:3377-81. [PMID: 15004134 DOI: 10.4049/jimmunol.172.6.3377] [Cited by in Crossref: 133] [Cited by in F6Publishing: 128] [Article Influence: 7.8] [Reference Citation Analysis]
27 Bainbridge BW, Coats SR, Darveau RP. Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 2002;7:29-37. [PMID: 16013214 DOI: 10.1902/annals.2002.7.1.29] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 3.2] [Reference Citation Analysis]
28 Meng J, Gong M, Björkbacka H, Golenbock DT. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions. J Immunol 2011;187:3683-93. [PMID: 21865549 DOI: 10.4049/jimmunol.1101397] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
29 Ma CY, Shi GY, Shi CS, Kao YC, Lin SW, Wu HL. Monocytic thrombomodulin triggers LPS- and gram-negative bacteria-induced inflammatory response. J Immunol 2012;188:6328-37. [PMID: 22573811 DOI: 10.4049/jimmunol.1102266] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
30 Darveau RP. The oral microbial consortium's interaction with the periodontal innate defense system. DNA Cell Biol 2009;28:389-95. [PMID: 19435427 DOI: 10.1089/dna.2009.0864] [Cited by in Crossref: 99] [Cited by in F6Publishing: 87] [Article Influence: 8.3] [Reference Citation Analysis]
31 Mueller M, Postius S, Thimm JG, Gueinzius K, Muehldorfer I, Hermann C. Toll-like receptors 2 and 4 do not contribute to clearance of Chlamydophila pneumoniae in mice, but are necessary for the release of monokines. Immunobiology 2004;209:599-608. [PMID: 15638128 DOI: 10.1016/j.imbio.2004.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
32 Pedron T, Girard R, Chaby R. TLR4-dependent lipopolysaccharide-induced shedding of tumor necrosis factor receptors in mouse bone marrow granulocytes. J Biol Chem 2003;278:20555-64. [PMID: 12663667 DOI: 10.1074/jbc.M203551200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
33 Zweigner J, Gramm H, Singer OC, Wegscheider K, Schumann RR. High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes. Blood 2001;98:3800-8. [DOI: 10.1182/blood.v98.13.3800] [Cited by in Crossref: 151] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
34 Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 2002;169:3155-62. [PMID: 12218133 DOI: 10.4049/jimmunol.169.6.3155] [Cited by in Crossref: 255] [Cited by in F6Publishing: 232] [Article Influence: 13.4] [Reference Citation Analysis]
35 Rathinam VA, Fitzgerald KA. Immunology: Lipopolysaccharide sensing on the inside. Nature. 2013;501:173-175. [PMID: 24005321 DOI: 10.1038/nature12556] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
36 Ayala A, Chung CS, Lomas JL, Song GY, Doughty LA, Gregory SH, Cioffi WG, LeBlanc BW, Reichner J, Simms HH, Grutkoski PS. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. Am J Pathol 2002;161:2283-94. [PMID: 12466142 DOI: 10.1016/S0002-9440(10)64504-X] [Cited by in Crossref: 113] [Cited by in F6Publishing: 61] [Article Influence: 6.3] [Reference Citation Analysis]
37 Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379-414. [PMID: 12857774 DOI: 10.1128/cmr.16.3.379-414.2003] [Cited by in Crossref: 491] [Cited by in F6Publishing: 162] [Article Influence: 27.3] [Reference Citation Analysis]
38 Cunningham PN, Wang Y, Guo R, He G, Quigg RJ. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 2004;172:2629-35. [PMID: 14764737 DOI: 10.4049/jimmunol.172.4.2629] [Cited by in Crossref: 183] [Cited by in F6Publishing: 164] [Article Influence: 10.8] [Reference Citation Analysis]
39 Schwartz DA. The Genetics of Innate Immunity. Chest 2002;121:62S-8S. [DOI: 10.1378/chest.121.3_suppl.62s] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
40 Rupp C, Bode KA, Leopold Y, Sauer P, Gotthardt DN. Pathological features of primary sclerosing cholangitis identified by bile proteomic analysis. Biochim Biophys Acta Mol Basis Dis 2018;1864:1380-9. [PMID: 28943450 DOI: 10.1016/j.bbadis.2017.09.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
41 Holmqvist B, Olsson CF, Svensson M, Svanborg C, Forsell J, Alm P. Expression of nitric oxide synthase isoforms in the mouse kidney: cellular localization and influence by lipopolysaccharide and Toll-like receptor 4. J Mol Hist 2006;36:499-516. [DOI: 10.1007/s10735-006-9028-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
42 Gangloff SC, Guenounou M. Toll-like receptors and immune response in allergic disease. Clin Rev Allergy Immunol 2004;26:115-25. [PMID: 15146108 DOI: 10.1007/s12016-004-0006-0] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 2.8] [Reference Citation Analysis]
43 Gitlin JM, Loftin CD. Cyclooxygenase-2 inhibition increases lipopolysaccharide-induced atherosclerosis in mice. Cardiovasc Res 2009;81:400-7. [PMID: 18948273 DOI: 10.1093/cvr/cvn286] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 3.7] [Reference Citation Analysis]
44 Zhang X, Li N, Shao H, Meng Y, Wang L, Wu Q, Yao Y, Li J, Bian J, Zhang Y, Deng X. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression. Sci Rep 2016;6:29359. [PMID: 27405597 DOI: 10.1038/srep29359] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
45 Miyake K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol. 2004;12:186-192. [PMID: 15051069 DOI: 10.1016/j.tim.2004.02.009] [Cited by in Crossref: 221] [Cited by in F6Publishing: 193] [Article Influence: 13.0] [Reference Citation Analysis]
46 Loof TG, Goldmann O, Medina E. Immune recognition of Streptococcus pyogenes by dendritic cells. Infect Immun 2008;76:2785-92. [PMID: 18391010 DOI: 10.1128/IAI.01680-07] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
47 Bleharski JR, Niazi KR, Sieling PA, Cheng G, Modlin RL. Signaling lymphocytic activation molecule is expressed on CD40 ligand-activated dendritic cells and directly augments production of inflammatory cytokines. J Immunol 2001;167:3174-81. [PMID: 11544303 DOI: 10.4049/jimmunol.167.6.3174] [Cited by in Crossref: 78] [Cited by in F6Publishing: 75] [Article Influence: 3.9] [Reference Citation Analysis]
48 Kesteman N, Vansanten G, Pajak B, Goyert SM, Moser M. Injection of lipopolysaccharide induces the migration of splenic neutrophils to the T cell area of the white pulp: role of CD14 and CXC chemokines. J Leukoc Biol 2008;83:640-7. [PMID: 18156186 DOI: 10.1189/jlb.0807578] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
49 Fritz JH, Girardin SE. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. Journal of Endotoxin Research 2005;11:390-4. [DOI: 10.1177/09680519050110060301] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 4.6] [Reference Citation Analysis]
50 Skirecki T, Cavaillon J. Inner sensors of endotoxin – implications for sepsis research and therapy. FEMS Microbiology Reviews 2019;43:239-56. [DOI: 10.1093/femsre/fuz004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
51 Komura H, Miksa M, Wu R, Goyert SM, Wang P. Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol 2009;182:581-7. [PMID: 19109191 DOI: 10.4049/jimmunol.182.1.581] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
52 Metkar S, Kim KS, Silver J, Goyert SM. Differential expression of CD14-dependent and independent pathways for chemokine induction regulates neutrophil trafficking in infection. J Leukoc Biol 2012;92:389-96. [PMID: 22591691 DOI: 10.1189/jlb.0112011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
53 Chen W, Kuolee R, Shen H, Bùsa M, Conlan JW. Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis. Microbial Pathogenesis 2004;37:185-91. [DOI: 10.1016/j.micpath.2004.06.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 2.5] [Reference Citation Analysis]
54 Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR, Howald WN, Way SS, Hajjar AM. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun. 2004;72:5041-5051. [PMID: 15321997 DOI: 10.1128/iai.72.9.5041-5051.2004] [Cited by in Crossref: 352] [Cited by in F6Publishing: 163] [Article Influence: 20.7] [Reference Citation Analysis]
55 Ojurongbe O, Funwei RI, Snyder TJ, Aziz N, Li Y, Falade CO, Thomas BN. Genetic Diversity of CD14 Promoter Gene Polymorphism (rs2569190) is Associated With Regulation of Malaria Parasitemia and Susceptibility to Plasmodium falciparum Infection. Infect Dis (Auckl) 2017;10:1178633617726781. [PMID: 28970738 DOI: 10.1177/1178633617726781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
56 Weber GF, Schlautkötter S, Kaiser-Moore S, Altmayr F, Holzmann B, Weighardt H. Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis. Infect Immun 2007;75:1690-7. [PMID: 17261606 DOI: 10.1128/IAI.01564-06] [Cited by in Crossref: 49] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
57 Tiberio L, Fletcher L, Eldridge JH, Duncan DD. Host factors impacting the innate response in humans to the candidate adjuvants RC529 and monophosphoryl lipid A. Vaccine 2004;22:1515-23. [PMID: 15063577 DOI: 10.1016/j.vaccine.2003.10.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 1.5] [Reference Citation Analysis]
58 Axtelle T, Pribble J. An overview of clinical studies in healthy subjects and patients with severe sepsis with IC14, a CD14-specific chimeric monoclonal antibody. Journal of Endotoxin Research 2003;9:385-9. [DOI: 10.1177/09680519030090061301] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
59 Schwartz DA. Inhaled endotoxin, a risk for airway disease in some people. Respiration Physiology 2001;128:47-55. [DOI: 10.1016/s0034-5687(01)00264-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
60 Yang WL, Sharma A, Zhang F, Matsuo S, Wang Z, Wang H, Wang P. Milk fat globule epidermal growth factor-factor 8-derived peptide attenuates organ injury and improves survival in sepsis. Crit Care 2015;19:375. [PMID: 26507263 DOI: 10.1186/s13054-015-1094-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
61 Jimenez R, Belcher E, Sriskandan S, Lucas R, McMaster S, Vojnovic I, Warner TD, Mitchell JA. Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle. Proc Natl Acad Sci U S A 2005;102:4637-42. [PMID: 15755814 DOI: 10.1073/pnas.0407655101] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
62 Ward TL, Goto K, Altosaar I. Ingested soluble CD14 contributes to the functional pool of circulating sCD14 in mice. Immunobiology 2014;219:537-46. [PMID: 24703105 DOI: 10.1016/j.imbio.2014.03.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
63 Lee JW, Paape MJ, Elsasser TH, Zhao X. Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli. Infect Immun 2003;71:4034-9. [PMID: 12819092 DOI: 10.1128/IAI.71.7.4034-4039.2003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
64 Lorenz E, Chemotti DC, Jiang AL, McDougal LD. Differential involvement of toll-like receptors 2 and 4 in the host response to acute respiratory infections with wild-type and mutant Haemophilus influenzae strains. Infect Immun 2005;73:2075-82. [PMID: 15784548 DOI: 10.1128/IAI.73.4.2075-2082.2005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
65 Calkins CM, Barsness K, Bensard DD, Vasquez-Torres A, Raeburn CD, Meng X, McIntyre RC. Toll-like receptor-4 signaling mediates pulmonary neutrophil sequestration in response to gram-positive bacterial enterotoxin. J Surg Res. 2002;104:124-130. [PMID: 12020131 DOI: 10.1006/jsre.2002.6422] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
66 Ruchaud-Sparagano MH, Mills R, Scott J, Simpson AJ. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing. Immunol Cell Biol 2014;92:799-809. [PMID: 25001496 DOI: 10.1038/icb.2014.55] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
67 Doherty TM, Olsen AW, van Pinxteren L, Andersen P. Oral vaccination with subunit vaccines protects animals against aerosol infection with Mycobacterium tuberculosis. Infect Immun 2002;70:3111-21. [PMID: 12011005 DOI: 10.1128/IAI.70.6.3111-3121.2002] [Cited by in Crossref: 74] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
68 Radsak MP, Hilf N, Singh-jasuja H, Braedel S, Brossart P, Rammensee H, Schild H. The heat shock protein Gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood 2003;101:2810-5. [DOI: 10.1182/blood-2002-07-2261] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 3.1] [Reference Citation Analysis]