BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR. Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol. 2000;164:549-553. [PMID: 10623792 DOI: 10.4049/jimmunol.164.2.549] [Cited by in Crossref: 204] [Cited by in F6Publishing: 192] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Dai LL, Gong JP, Zuo GQ, Wu CX, Shi YJ, Li XH, Peng Y, Deng W, Li SW, Liu CA. Synthesis of endotoxin receptor CD14 protein in Kupffer cells and its role in alcohol-induced liver disease. World J Gastroenterol 2003;9:622-6. [PMID: 12632533 DOI: 10.3748/wjg.v9.i3.622] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
2 Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011;68:2243-54. [PMID: 21560069 DOI: 10.1007/s00018-011-0716-4] [Cited by in Crossref: 89] [Cited by in F6Publishing: 77] [Article Influence: 8.9] [Reference Citation Analysis]
3 Wang C, Shen M, Zhang N, Wang S, Xu Y, Chen S, Chen F, Yang K, He T, Wang A, Su Y, Cheng T, Zhao J, Wang J. Reduction Impairs the Antibacterial Activity but Benefits the LPS Neutralization Ability of Human Enteric Defensin 5. Sci Rep 2016;6:22875. [PMID: 26960718 DOI: 10.1038/srep22875] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
4 Tsutsumi-ishii Y, Shimada K, Daida H, Toman R, Nagaoka I. Low potency of Chlamydophila LPS to activate human mononuclear cells due to its reduced affinities for CD14 and LPS-binding protein. International Immunology 2008;20:199-208. [DOI: 10.1093/intimm/dxm129] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
5 Haney EF, Mansour SC, Hancock RE. Antimicrobial Peptides: An Introduction. Methods Mol Biol 2017;1548:3-22. [PMID: 28013493 DOI: 10.1007/978-1-4939-6737-7_1] [Cited by in Crossref: 109] [Cited by in F6Publishing: 82] [Article Influence: 36.3] [Reference Citation Analysis]
6 Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 2002;419:77-81. [DOI: 10.1038/nature01023] [Cited by in Crossref: 277] [Cited by in F6Publishing: 251] [Article Influence: 14.6] [Reference Citation Analysis]
7 Levy O. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood 2000;96:2664-72. [DOI: 10.1182/blood.v96.8.2664] [Cited by in Crossref: 130] [Article Influence: 6.2] [Reference Citation Analysis]
8 Manocha S, Feinstein D, Kumar A, Kumar A. Novel therapies for sepsis: antiendotoxin therapies. Expert Opinion on Investigational Drugs 2005;11:1795-812. [DOI: 10.1517/13543784.11.12.1795] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 2.4] [Reference Citation Analysis]
9 de la Fuente-núñez C, Silva ON, Lu TK, Franco OL. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacology & Therapeutics 2017;178:132-40. [DOI: 10.1016/j.pharmthera.2017.04.002] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 13.3] [Reference Citation Analysis]
10 Mansour SC, Pena OM, Hancock RE. Host defense peptides: front-line immunomodulators. Trends in Immunology 2014;35:443-50. [DOI: 10.1016/j.it.2014.07.004] [Cited by in Crossref: 294] [Cited by in F6Publishing: 255] [Article Influence: 42.0] [Reference Citation Analysis]
11 Huang C, Yang X, Huang J, Liu X, Yang X, Jin H, Huang Q, Li L, Zhou R. Porcine Beta-Defensin 2 Provides Protection Against Bacterial Infection by a Direct Bactericidal Activity and Alleviates Inflammation via Interference With the TLR4/NF-κB Pathway. Front Immunol 2019;10:1673. [PMID: 31379864 DOI: 10.3389/fimmu.2019.01673] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
12 Okuyama-Nishida Y, Akiyama N, Sugimori G, Nomura K, Ogawa K, Homma KJ, Sekimizu K, Tsujimoto M, Natori S. Prevention of death in bacterium-infected mice by a synthetic antimicrobial peptide, L5, through activation of host immunity. Antimicrob Agents Chemother 2009;53:2510-6. [PMID: 19289519 DOI: 10.1128/AAC.00863-08] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 David SA. Antimicrobial peptides for gram-negative sepsis: a case for the polymyxins. Front Immunol 2012;3:252. [PMID: 22912638 DOI: 10.3389/fimmu.2012.00252] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
14 Wu G, Fan X, Li L, Wang H, Ding J, Hongbin W, Zhao R, Gou L, Shen Z, Xi T. Interaction of antimicrobial peptide s-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli. Int J Antimicrob Agents 2010;35:250-4. [PMID: 20045294 DOI: 10.1016/j.ijantimicag.2009.11.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
15 Hsu D, Chu P, Liu M. The non-peptide chemical 3,4-methylenedioxyphenol blocked lipopolysaccharide (LPS) from binding to LPS-binding protein and inhibited pro-inflammatory cytokines. Innate Immun 2009;15:380-5. [DOI: 10.1177/1753425909341806] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
16 Muhle SA, Tam JP. Design of Gram-negative selective antimicrobial peptides. Biochemistry 2001;40:5777-85. [PMID: 11341843 DOI: 10.1021/bi0100384] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 3.1] [Reference Citation Analysis]
17 McInturff JE, Wang SJ, Machleidt T, Lin TR, Oren A, Hertz CJ, Krutzik SR, Hart S, Zeh K, Anderson DH, Gallo RL, Modlin RL, Kim J. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J Invest Dermatol 2005;125:256-63. [PMID: 16098035 DOI: 10.1111/j.0022-202X.2005.23805.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
18 Sun L, Wang W, Xiao W, Yang H. The Roles of Cathelicidin LL-37 in Inflammatory Bowel Disease. Inflamm Bowel Dis 2016;22:1986-91. [PMID: 27135484 DOI: 10.1097/MIB.0000000000000804] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
19 Schilling JD, Mulvey MA, Vincent CD, Lorenz RG, Hultgren SJ. Bacterial Invasion Augments Epithelial Cytokine Responses to Escherichia coli Through a Lipopolysaccharide-Dependent Mechanism. J Immunol 2001;166:1148-55. [DOI: 10.4049/jimmunol.166.2.1148] [Cited by in Crossref: 172] [Cited by in F6Publishing: 151] [Article Influence: 8.6] [Reference Citation Analysis]
20 Silva T, Gomes MS. Immuno-Stimulatory Peptides as a Potential Adjunct Therapy against Intra-Macrophagic Pathogens. Molecules 2017;22:E1297. [PMID: 28777342 DOI: 10.3390/molecules22081297] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
21 Wang X, Brandt D, Thakur NL, Wiens M, Batel R, Schröder HC, Müller WEG. Molecular cross-talk between sponge host and associated microbes. Phytochem Rev 2013;12:369-90. [DOI: 10.1007/s11101-012-9226-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
22 David SA, Sil D. Development of Small-Molecule Endotoxin Sequestering Agents. In: Wang X, Quinn PJ, editors. Endotoxins: Structure, Function and Recognition. Dordrecht: Springer Netherlands; 2010. pp. 255-83. [DOI: 10.1007/978-90-481-9078-2_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
23 Wang J, Li Y, Wang X, Chen W, Sun H, Wang J. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2. Biochim Biophys Acta 2014;1838:2910-8. [PMID: 25109934 DOI: 10.1016/j.bbamem.2014.07.028] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
24 Awang T, Pongprayoon P. The adsorption of human defensin 5 on bacterial membranes: simulation studies. J Mol Model 2018;24:273. [PMID: 30187138 DOI: 10.1007/s00894-018-3812-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
25 Arias C, Guizy M, Luque-Ortega JR, Guerrero E, de la Torre BG, Andreu D, Rivas L, Valenzuela C. The induction of NOS2 expression by the hybrid cecropin A-melittin antibiotic peptide CA(1-8)M(1-18) in the monocytic line RAW 264.7 is triggered by a temporary and reversible plasma membrane permeation. Biochim Biophys Acta 2006;1763:110-9. [PMID: 16377003 DOI: 10.1016/j.bbamcr.2005.11.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
26 Gong JP, Dai LL, Liu CA, Wu CX, Shi YJ, Li SW, Li XH. Expression of CD14 protein and its gene in liver sinusoidal endothelial cells during endotoxemia. World J Gastroenterol 2002;8:551-4. [PMID: 12046090 DOI: 10.3748/wjg.v8.i3.551] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
27 Wan M, van der Does AM, Tang X, Lindbom L, Agerberth B, Haeggström JZ. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol 2014;95:971-81. [PMID: 24550523 DOI: 10.1189/jlb.0513304] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 11.4] [Reference Citation Analysis]
28 Brown KL, Poon GFT, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock REW, Johnson P. Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. J I 2011;186:5497-505. [DOI: 10.4049/jimmunol.1002508] [Cited by in Crossref: 90] [Cited by in F6Publishing: 90] [Article Influence: 9.0] [Reference Citation Analysis]
29 Sun W, Zheng Y, Lu Z, Wang H, Feng Z, Wang J, Xiao S, Liu F, Liu J. LL-37 attenuates inflammatory impairment via mTOR signaling-dependent mitochondrial protection. Int J Biochem Cell Biol 2014;54:26-35. [PMID: 24984264 DOI: 10.1016/j.biocel.2014.06.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
30 Hirsch T, Metzig M, Niederbichler A, Steinau HU, Eriksson E, Steinstraesser L. Role of host defense peptides of the innate immune response in sepsis. Shock 2008;30:117-26. [PMID: 18091568 DOI: 10.1097/shk.0b013e318160de11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.3] [Reference Citation Analysis]
31 Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE. Impact of LL-37 on anti-infective immunity. J Leukoc Biol. 2005;77:451-459. [PMID: 15569695 DOI: 10.1189/jlb.0704380] [Cited by in Crossref: 247] [Cited by in F6Publishing: 242] [Article Influence: 14.5] [Reference Citation Analysis]
32 Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135:1-11. [PMID: 20116332 DOI: 10.1016/j.clim.2009.12.004] [Cited by in Crossref: 344] [Cited by in F6Publishing: 291] [Article Influence: 31.3] [Reference Citation Analysis]
33 Shi W, Chen F, Zou X, Jiao S, Wang S, Hu Y, Lan L, Tang F, Huang W. Design, synthesis, and antibacterial evaluation of vancomycin-LPS binding peptide conjugates. Bioorg Med Chem Lett 2021;45:128122. [PMID: 34015504 DOI: 10.1016/j.bmcl.2021.128122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, Yamazaki K, Sayama K, Taubman MA, Kurihara H, Hashimoto K, Sugai M. Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 2003;71:3730-9. [PMID: 12819054 DOI: 10.1128/IAI.71.7.3730-3739.2003] [Cited by in Crossref: 146] [Cited by in F6Publishing: 63] [Article Influence: 8.1] [Reference Citation Analysis]
35 Griener TP, Strecker JG, Humphries RM, Mulvey GL, Fuentealba C, Hancock RE, Armstrong GD. Lipopolysaccharide renders transgenic mice expressing human serum amyloid P component sensitive to Shiga toxin 2. PLoS One 2011;6:e21457. [PMID: 21731756 DOI: 10.1371/journal.pone.0021457] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
36 López-Abarrategui C, Del Monte-Martínez A, Reyes-Acosta O, Franco OL, Otero-González AJ. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides. Front Microbiol 2013;4:389. [PMID: 24409171 DOI: 10.3389/fmicb.2013.00389] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
37 Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 2006;1758:1513-22. [PMID: 16854372 DOI: 10.1016/j.bbamem.2006.05.017] [Cited by in Crossref: 201] [Cited by in F6Publishing: 175] [Article Influence: 13.4] [Reference Citation Analysis]
38 Diamond G, Ryan L. Beta-defensins: what are they really doing in the oral cavity? Oral Dis 2011;17:628-35. [PMID: 21332602 DOI: 10.1111/j.1601-0825.2011.01799.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
39 Khara JS, Obuobi S, Wang Y, Hamilton MS, Robertson BD, Newton SM, Yang YY, Langford PR, Ee PLR. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomater 2017;57:103-14. [PMID: 28457962 DOI: 10.1016/j.actbio.2017.04.032] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
40 van Dijk A, van Eldik M, Veldhuizen EJ, Tjeerdsma-van Bokhoven HL, de Zoete MR, Bikker FJ, Haagsman HP. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides. PLoS One 2016;11:e0147919. [PMID: 26848845 DOI: 10.1371/journal.pone.0147919] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
41 Singh S, Kalle M, Papareddy P, Schmidtchen A, Malmsten M. Lipopolysaccharide Interactions of C-Terminal Peptides from Human Thrombin. Biomacromolecules 2013;14:1482-92. [DOI: 10.1021/bm400150c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
42 Bhunia A, Chua GL, Domadia PN, Warshakoon H, Cromer JR, David SA, Bhattacharjya S. Interactions of a designed peptide with lipopolysaccharide: Bound conformation and anti-endotoxic activity. Biochemical and Biophysical Research Communications 2008;369:853-7. [DOI: 10.1016/j.bbrc.2008.02.105] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
43 Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 2001;167:3329-38. [PMID: 11544322 DOI: 10.4049/jimmunol.167.6.3329] [Cited by in Crossref: 181] [Cited by in F6Publishing: 164] [Article Influence: 9.1] [Reference Citation Analysis]
44 Ifrah D, Doisy X, Ryge TS, Hansen PR. Structure-activity relationship study of anoplin. J Peptide Sci 2005;11:113-21. [DOI: 10.1002/psc.598] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.5] [Reference Citation Analysis]
45 David SA. Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit 2001;14:370-87. [PMID: 11757070 DOI: 10.1002/jmr.549] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 4.4] [Reference Citation Analysis]
46 Mangoni ML, Shai Y. Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Biochimica et Biophysica Acta (BBA) - Biomembranes 2009;1788:1610-9. [DOI: 10.1016/j.bbamem.2009.04.021] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 6.3] [Reference Citation Analysis]
47 Bartlett KH, McCray PB Jr, Thorne PS. Reduction in the bactericidal activity of selected cathelicidin peptides by bovine calf serum or exogenous endotoxin. Int J Antimicrob Agents 2004;23:606-12. [PMID: 15194132 DOI: 10.1016/j.ijantimicag.2004.02.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.7] [Reference Citation Analysis]
48 Ding JL, Ho B. Antimicrobial peptides: Resistant-proof antibiotics of the new millennium. Drug Dev Res 2004;62:317-35. [DOI: 10.1002/ddr.10394] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
49 Dwivedi R, Aggarwal P, Bhavesh NS, Kaur KJ. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids 2019;51:1443-60. [PMID: 31485742 DOI: 10.1007/s00726-019-02779-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
50 Nguyen TB, Adisechan AK, Suresh Kumar EV, Balakrishna R, Kimbrell MR, Miller KA, Datta A, David SA. Protection from endotoxic shock by EVK-203, a novel alkylpolyamine sequestrant of lipopolysaccharide. Bioorg Med Chem 2007;15:5694-709. [PMID: 17583517 DOI: 10.1016/j.bmc.2007.06.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
51 Srivastava S, Kumar A, Tripathi AK, Tandon A, Ghosh JK. Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence. Biochem J 2016;473:4045-62. [PMID: 27609815 DOI: 10.1042/BCJ20160713] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
52 von Schlieffen E, Oskolkova OV, Schabbauer G, Gruber F, Blüml S, Genest M, Kadl A, Marsik C, Knapp S, Chow J, Leitinger N, Binder BR, Bochkov VN. Multi-hit inhibition of circulating and cell-associated components of the toll-like receptor 4 pathway by oxidized phospholipids. Arterioscler Thromb Vasc Biol 2009;29:356-62. [PMID: 19112167 DOI: 10.1161/ATVBAHA.108.173799] [Cited by in Crossref: 64] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
53 Barlow PG, Li Y, Wilkinson TS, Bowdish DM, Lau YE, Cosseau C, Haslett C, Simpson AJ, Hancock RE, Davidson DJ. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 2006;80:509-20. [PMID: 16793910 DOI: 10.1189/jlb.1005560] [Cited by in Crossref: 109] [Cited by in F6Publishing: 104] [Article Influence: 7.3] [Reference Citation Analysis]
54 Koziel J, Karim AY, Przybyszewska K, Ksiazek M, Rapala-Kozik M, Nguyen KA, Potempa J. Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia. J Innate Immun 2010;2:288-93. [PMID: 20375548 DOI: 10.1159/000281881] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
55 Bian T, Li L, Lyu J, Cui D, Lei L, Yan F. Human β-defensin 3 suppresses Porphyromonas gingivalis lipopolysaccharide-induced inflammation in RAW 264.7 cells and aortas of ApoE-deficient mice. Peptides 2016;82:92-100. [DOI: 10.1016/j.peptides.2016.06.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
56 van der Does AM, Hiemstra PS, Mookherjee N. Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects. In: Matsuzaki K, editor. Antimicrobial Peptides. Singapore: Springer; 2019. pp. 149-71. [DOI: 10.1007/978-981-13-3588-4_10] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 14.0] [Reference Citation Analysis]
57 Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-Neutralizing Antimicrobial Proteins of the Human Placenta. J Immunol 2002;168:2356-64. [DOI: 10.4049/jimmunol.168.5.2356] [Cited by in Crossref: 83] [Cited by in F6Publishing: 82] [Article Influence: 4.4] [Reference Citation Analysis]
58 Pane K, Sgambati V, Zanfardino A, Smaldone G, Cafaro V, Angrisano T, Pedone E, Di Gaetano S, Capasso D, Haney EF, Izzo V, Varcamonti M, Notomista E, Hancock RE, Di Donato A, Pizzo E. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J 2016;283:2115-31. [PMID: 27028511 DOI: 10.1111/febs.13725] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
59 Balakrishna R, Wood SJ, Nguyen TB, Miller KA, Suresh Kumar EV, Datta A, David SA. Structural correlates of antibacterial and membrane-permeabilizing activities in acylpolyamines. Antimicrob Agents Chemother 2006;50:852-61. [PMID: 16495242 DOI: 10.1128/AAC.50.3.852-861.2006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
60 Bowdish DM, Hancock RE. Anti-endotoxin properties of cationic host defence peptides and proteins. Journal of Endotoxin Research 2005;11:230-6. [DOI: 10.1177/09680519050110040801] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
61 Liu D, Gu X, Scafidi J, Davis AE 3rd. N-linked glycosylation is required for c1 inhibitor-mediated protection from endotoxin shock in mice. Infect Immun 2004;72:1946-55. [PMID: 15039314 DOI: 10.1128/IAI.72.4.1946-1955.2004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
62 Mora P, Masip I, Cortés N, Marquina R, Merino R, Merino J, Carbonell T, Mingarro I, Messeguer A, Pérez-Payá E. Identification from a positional scanning peptoid library of in vivo active compounds that neutralize bacterial endotoxins. J Med Chem 2005;48:1265-8. [PMID: 15715495 DOI: 10.1021/jm040834i] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
63 Grieco P, Luca V, Auriemma L, Carotenuto A, Saviello MR, Campiglia P, Barra D, Novellino E, Mangoni ML. Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta: ALANINE SCANNING OF TEMPORIN-1TA. J Peptide Sci 2011;17:358-65. [DOI: 10.1002/psc.1350] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
64 Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006;306:27-66. [PMID: 16909917 DOI: 10.1007/3-540-29916-5_2] [Cited by in Crossref: 69] [Cited by in F6Publishing: 119] [Article Influence: 4.6] [Reference Citation Analysis]
65 Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontol 2000 2015;69:96-110. [DOI: 10.1111/prd.12093] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
66 Martin L, van Meegern A, Doemming S, Schuerholz T. Antimicrobial Peptides in Human Sepsis. Front Immunol 2015;6:404. [PMID: 26347737 DOI: 10.3389/fimmu.2015.00404] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 8.3] [Reference Citation Analysis]
67 Mookherjee N, Wilson HL, Doria S, Popowych Y, Falsafi R, Yu JJ, Li Y, Veatch S, Roche FM, Brown KL, Brinkman FSL, Hokamp K, Potter A, Babiuk LA, Griebel PJ, Hancock REW. Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. Journal of Leukocyte Biology 2006;80:1563-74. [DOI: 10.1189/jlb.0106048] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 5.5] [Reference Citation Analysis]
68 Li P, Sun M, Ho B, Ding J. The specificity of Sushi peptides for endotoxin and anionic phospholipids: potential application of POPG as an adjuvant for anti-LPS strategies. Biochemical Society Transactions 2006;34:270-2. [DOI: 10.1042/bst0340270] [Cited by in Crossref: 8] [Article Influence: 0.5] [Reference Citation Analysis]
69 Levy O. A neutrophil-derived anti-infective molecule: bactericidal/permeability-increasing protein. Antimicrob Agents Chemother 2000;44:2925-31. [PMID: 11036002 DOI: 10.1128/AAC.44.11.2925-2931.2000] [Cited by in Crossref: 57] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
70 Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018;29:2127-39. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
71 Marta Guarna M, Coulson R, Rubinchik E. Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol Lett 2006;257:1-6. [PMID: 16553825 DOI: 10.1111/j.1574-6968.2006.00156.x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 2.8] [Reference Citation Analysis]
72 González-Navarro H, Mora P, Pastor M, Serrano L, Mingarro I, Pérez-Payá E. Identification of peptides that neutralize bacterial endotoxins using beta-hairpin conformationally restricted libraries. Mol Divers 2000;5:117-26. [PMID: 12197068 DOI: 10.1023/a:1016207717213] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
73 Duplantier AJ, van Hoek ML. The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds. Front Immunol. 2013;4:143. [PMID: 23840194 DOI: 10.3389/fimmu.2013.00143] [Cited by in Crossref: 96] [Cited by in F6Publishing: 83] [Article Influence: 12.0] [Reference Citation Analysis]
74 Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016;1858:546-66. [DOI: 10.1016/j.bbamem.2015.11.003] [Cited by in Crossref: 157] [Cited by in F6Publishing: 122] [Article Influence: 31.4] [Reference Citation Analysis]
75 Svarovsky SA, Gonzalez-moa MJ. High-Throughput Platform for Rapid Deployment of Antimicrobial Agents. ACS Comb Sci 2011;13:634-8. [DOI: 10.1021/co200088c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
76 Shang D, Liang H, Wei S, Yan X, Yang Q, Sun Y. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl Microbiol Biotechnol 2014;98:8685-95. [PMID: 25056289 DOI: 10.1007/s00253-014-5927-9] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
77 Srivastava S, Ghosh JK. Introduction of a lysine residue promotes aggregation of temporin L in lipopolysaccharides and augmentation of its antiendotoxin property. Antimicrob Agents Chemother 2013;57:2457-66. [PMID: 23478966 DOI: 10.1128/AAC.00169-13] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 4.1] [Reference Citation Analysis]
78 Payoungkiattikun W, Joompang A, Thongchot S, Nowichai B, Jangpromma N, Klaynongsruang S. Evidence of multi-functional peptide activity: potential role of KT2 and RT2 for anti-inflammatory, anti-oxidative stress, and anti-apoptosis properties. Appl Biol Chem 2020;63. [DOI: 10.1186/s13765-019-0488-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
79 Bowdish DM, Davidson DJ, Scott MG, Hancock RE. Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 2005;49:1727-32. [PMID: 15855488 DOI: 10.1128/AAC.49.5.1727-1732.2005] [Cited by in Crossref: 228] [Cited by in F6Publishing: 93] [Article Influence: 14.3] [Reference Citation Analysis]
80 McMichael JW, Roghanian A, Jiang L, Ramage R, Sallenave JM. The antimicrobial antiproteinase elafin binds to lipopolysaccharide and modulates macrophage responses. Am J Respir Cell Mol Biol 2005;32:443-52. [PMID: 15668324 DOI: 10.1165/rcmb.2004-0250OC] [Cited by in Crossref: 47] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
81 Hahn F, Schepers U. Solid Phase Chemistry for the Directed Synthesis of Biologically Active Polyamine Analogs, Derivatives, and Conjugates. In: Bräse S, editor. Combinatorial Chemistry on Solid Supports. Berlin: Springer Berlin Heidelberg; 2007. pp. 135-208. [DOI: 10.1007/128_2007_135] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
82 Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol. 2006;176:2455-2464. [PMID: 16456005 DOI: 10.4049/jimmunol.176.4.2455] [Cited by in Crossref: 358] [Cited by in F6Publishing: 346] [Article Influence: 23.9] [Reference Citation Analysis]
83 Peri F, Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv. 2012;30:251-260. [PMID: 21664961 DOI: 10.1016/j.biotechadv.2011.05.014] [Cited by in Crossref: 113] [Cited by in F6Publishing: 109] [Article Influence: 11.3] [Reference Citation Analysis]
84 Saravanan R, Holdbrook DA, Petrlova J, Singh S, Berglund NA, Choong YK, Kjellström S, Bond PJ, Malmsten M, Schmidtchen A. Structural basis for endotoxin neutralisation and anti-inflammatory activity of thrombin-derived C-terminal peptides. Nat Commun 2018;9:2762. [PMID: 30018388 DOI: 10.1038/s41467-018-05242-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
85 Pistolic J, Cosseau C, Li Y, Yu JJ, Filewod NC, Gellatly S, Rehaume LM, Bowdish DM, Hancock RE. Host defence peptide LL-37 induces IL-6 expression in human bronchial epithelial cells by activation of the NF-kappaB signaling pathway. J Innate Immun 2009;1:254-67. [PMID: 20375583 DOI: 10.1159/000171533] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 2.9] [Reference Citation Analysis]
86 Wang Z, Liu X, Da Teng, Mao R, Hao Y, Yang N, Wang X, Li Z, Wang X, Wang J. Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli. Commun Biol 2020;3:41. [PMID: 31974490 DOI: 10.1038/s42003-020-0761-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
87 Napoli MD, Luccia BD, Vitiello G, D'Errico G, Carpentieri A, Pezzella A, Pizzo E, Notomista E, Varcamonti M, Zanfardino A. Characterisation of EFV12 a bio-active small peptide produced by the human intestinal isolate Lactobacillus gasseri SF1109. Benef Microbes 2020;11:815-24. [PMID: 33245013 DOI: 10.3920/BM2020.0124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Voss S, Welte S, Fotin-Mleczek M, Fischer R, Ulmer AJ, Jung G, Wiesmüller KH, Brock R. A CD14 domain with lipopolysaccharide-binding and -neutralizing activity. Chembiochem 2006;7:275-86. [PMID: 16444757 DOI: 10.1002/cbic.200500257] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
89 Khalaf H, Nakka SS, Sandén C, Svärd A, Hultenby K, Scherbak N, Aili D, Bengtsson T. Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis. BMC Microbiol 2016;16:188. [PMID: 27538539 DOI: 10.1186/s12866-016-0810-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 5.4] [Reference Citation Analysis]
90 Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock RE. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J Immunol 2000;165:3358-65. [PMID: 10975854 DOI: 10.4049/jimmunol.165.6.3358] [Cited by in Crossref: 86] [Cited by in F6Publishing: 74] [Article Influence: 4.1] [Reference Citation Analysis]
91 Malan M, Serem JC, Bester MJ, Neitz AW, Gaspar AR. Anti-inflammatory and anti-endotoxin properties of peptides derived from the carboxy-terminal region of a defensin from the tick Ornithodoros savignyi. J Pept Sci 2016;22:43-51. [PMID: 26662999 DOI: 10.1002/psc.2838] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
92 Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC, Yazdanbakhsh M, Bikker FJ, van der Kleij D. Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 2009;390:295-303. [PMID: 19166322 DOI: 10.1515/BC.2009.037] [Cited by in Crossref: 49] [Cited by in F6Publishing: 19] [Article Influence: 4.1] [Reference Citation Analysis]
93 Yu H, Dong J, Gu Y, Liu H, Xin A, Shi H, Sun F, Zhang Y, Lin D, Diao H. The novel human β-defensin 114 regulates lipopolysaccharide (LPS)-mediated inflammation and protects sperm from motility loss. J Biol Chem 2013;288:12270-82. [PMID: 23482568 DOI: 10.1074/jbc.M112.411884] [Cited by in Crossref: 39] [Cited by in F6Publishing: 14] [Article Influence: 4.9] [Reference Citation Analysis]
94 Zughaier SM, Shafer WM, Stephens DS. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 2005;7:1251-62. [PMID: 16098213 DOI: 10.1111/j.1462-5822.2005.00549.x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 84] [Article Influence: 5.6] [Reference Citation Analysis]
95 Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2012;32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Cited by in Crossref: 367] [Cited by in F6Publishing: 304] [Article Influence: 36.7] [Reference Citation Analysis]
96 Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 2013;49:131-7. [PMID: 24071034 DOI: 10.1016/j.peptides.2013.09.007] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 8.3] [Reference Citation Analysis]
97 Gong JP, Liu CA, Wu CX, Li SW, Shi YJ, Li XH. Nuclear factor kB activity in patients with acute severe cholangitis. World J Gastroenterol 2002;8:346-9. [PMID: 11925622 DOI: 10.3748/wjg.v8.i2.346] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
98 Brandenburg K, Andrä J, Garidel P, Gutsmann T. Peptide-based treatment of sepsis. Appl Microbiol Biotechnol 2011;90:799-808. [PMID: 21369803 DOI: 10.1007/s00253-011-3185-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
99 Wang Z, Wang X, Wang J. Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources. Mar Drugs 2018;16:E57. [PMID: 29439417 DOI: 10.3390/md16020057] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
100 Steinstraesser L, Kraneburg UM, Hirsch T, Kesting M, Steinau HU, Jacobsen F, Al-Benna S. Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 2009;10:3951-70. [PMID: 19865528 DOI: 10.3390/ijms10093951] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 4.9] [Reference Citation Analysis]
101 Paranjape SM, Lauer TW, Montelaro RC, Mietzner TA, Vij N. Modulation of proinflammatory activity by the engineered cationic antimicrobial peptide WLBU-2. F1000Res 2013;2:36. [PMID: 24555033 DOI: 10.12688/f1000research.2-36.v1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
102 Liu H, Yu H, Gu Y, Xin A, Zhang Y, Diao H, Lin D. Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl Microbiol Biotechnol 2013;97:3395-408. [PMID: 23229569 DOI: 10.1007/s00253-012-4588-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
103 Laselva O, Stone TA, Bear CE, Deber CM. Anti-Infectives Restore ORKAMBI® Rescue of F508del-CFTR Function in Human Bronchial Epithelial Cells Infected with Clinical Strains of P. aeruginosa. Biomolecules 2020;10:E334. [PMID: 32092967 DOI: 10.3390/biom10020334] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]
104 Sur A, Pradhan B, Banerjee A, Aich P. Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PLoS One 2015;10:e0123905. [PMID: 25876153 DOI: 10.1371/journal.pone.0123905] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
105 Chéneau C, Eichholz K, Tran TH, Tran TTP, Paris O, Henriquet C, Bajramovic JJ, Pugniere M, Kremer EJ. Lactoferrin Retargets Human Adenoviruses to TLR4 to Induce an Abortive NLRP3-Associated Pyroptotic Response in Human Phagocytes. Front Immunol 2021;12:685218. [PMID: 34093588 DOI: 10.3389/fimmu.2021.685218] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
106 Li H, Zhang S, Nie B, Long T, Qu X, Yue B. KR-12-a5 Reverses Adverse Effects of Lipopolysaccharides on HBMSC Osteogenic Differentiation by Influencing BMP/Smad and P38 MAPK Signaling Pathways. Front Pharmacol 2019;10:639. [PMID: 31231225 DOI: 10.3389/fphar.2019.00639] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
107 Bosso A, Pirone L, Gaglione R, Pane K, Del Gatto A, Zaccaro L, Di Gaetano S, Diana D, Fattorusso R, Pedone E, Cafaro V, Haagsman HP, van Dijk A, Scheenstra MR, Zanfardino A, Crescenzi O, Arciello A, Varcamonti M, Veldhuizen EJA, Di Donato A, Notomista E, Pizzo E. A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence. Biochim Biophys Acta Gen Subj 2017;1861:2342-53. [PMID: 28454736 DOI: 10.1016/j.bbagen.2017.04.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
108 Wang J, Chou S, Yang Z, Yang Y, Wang Z, Song J, Dou X, Shan A. Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides. J Med Chem 2018;61:3889-907. [PMID: 29648811 DOI: 10.1021/acs.jmedchem.7b01729] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
109 Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa—Review. Comparative Immunology, Microbiology and Infectious Diseases 2013;36:433-48. [DOI: 10.1016/j.cimid.2013.03.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
110 Devine DA. Antimicrobial peptides in defence of the oral and respiratory tracts. Mol Immunol 2003;40:431-43. [PMID: 14568389 DOI: 10.1016/s0161-5890(03)00162-7] [Cited by in Crossref: 65] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
111 Mora P, De La Paz ML, Pérez-payá E. Bioactive peptides derived from the Limulus anti-lipopolysaccharide factor: structure-activity relationships and formation of mixed peptide/lipid complexes. J Pept Sci 2008;14:963-71. [DOI: 10.1002/psc.1033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
112 Moerman L, Verdonck F, Willems J, Tytgat J, Bosteels S. Antimicrobial peptides from scorpion venom induce Ca(2+) signaling in HL-60 cells. Biochem Biophys Res Commun 2003;311:90-7. [PMID: 14575699 DOI: 10.1016/j.bbrc.2003.09.175] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
113 Pulido D, Nogués MV, Boix E, Torrent M. Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. J Innate Immun 2012;4:327-36. [PMID: 22441679 DOI: 10.1159/000336713] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
114 Hansen FC, Kalle-brune M, van der Plas MJA, Strömdahl A, Malmsten M, Mörgelin M, Schmidtchen A. The Thrombin-Derived Host Defense Peptide GKY25 Inhibits Endotoxin-Induced Responses through Interactions with Lipopolysaccharide and Macrophages/Monocytes. J I 2015;194:5397-406. [DOI: 10.4049/jimmunol.1403009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
115 Ramanathan B, Davis EG, Ross CR, Blecha F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 2002;4:361-72. [PMID: 11909747 DOI: 10.1016/s1286-4579(02)01549-6] [Cited by in F6Publishing: 59] [Reference Citation Analysis]
116 Wan M, Sabirsh A, Wetterholm A, Agerberth B, Haeggström JZ. Leukotriene B4 triggers release of the cathelicidin LL-37 from human neutrophils: novel lipid-peptide interactions in innate immune responses. FASEB J 2007;21:2897-905. [PMID: 17446260 DOI: 10.1096/fj.06-7974com] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 3.3] [Reference Citation Analysis]
117 Giacometti A, Cirioni O, Ghiselli R, Orlando F, Mocchegiani F, D'amato G, Silvestri C, Riva A, Prete MD, Saba V, Scalise G. Antiendotoxin Activity of Antimicrobial Peptides and Glycopeptides. Journal of Chemotherapy 2013;15:129-33. [DOI: 10.1179/joc.2003.15.2.129] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
118 Oppenheim JJ, Biragyn A, Kwak LW, Yang D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 2003;62 Suppl 2:ii17-21. [PMID: 14532141 DOI: 10.1136/ard.62.suppl_2.ii17] [Cited by in Crossref: 134] [Cited by in F6Publishing: 147] [Article Influence: 7.4] [Reference Citation Analysis]
119 Saravanan R, Mohanram H, Joshi M, Domadia PN, Torres J, Ruedl C, Bhattacharjya S. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Biochimica et Biophysica Acta (BBA) - Biomembranes 2012;1818:1613-24. [DOI: 10.1016/j.bbamem.2012.03.015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
120 Mookherjee N, Rehaume LM, Hancock RE. Cathelicidins and functional analogues as antisepsis molecules. Expert Opin Ther Targets 2007;11:993-1004. [PMID: 17665972 DOI: 10.1517/14728222.11.8.993] [Cited by in Crossref: 81] [Cited by in F6Publishing: 79] [Article Influence: 5.8] [Reference Citation Analysis]
121 Golda A, Kosikowska-Adamus P, Babyak O, Lech M, Wysocka M, Lesner A, Potempa J, Koziel J. Conjugate of Enkephalin and Temporin Peptides as a Novel Therapeutic Agent for Sepsis. Bioconjug Chem 2018;29:4127-39. [PMID: 30525485 DOI: 10.1021/acs.bioconjchem.8b00763] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
122 Saido-Sakanaka H, Ishibashi J, Momotani E, Amano F, Yamakawa M. In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin. Peptides 2004;25:19-27. [PMID: 15003352 DOI: 10.1016/j.peptides.2003.12.009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
123 Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jübner M, Maronde E. The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J 2006;20:1701-2. [PMID: 16790530 DOI: 10.1096/fj.05-4970fje] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 3.9] [Reference Citation Analysis]
124 Liu D, Cramer CC, Scafidi J, Davis AE 3rd. N-linked glycosylation at Asn3 and the positively charged residues within the amino-terminal domain of the c1 inhibitor are required for interaction of the C1 Inhibitor with Salmonella enterica serovar typhimurium lipopolysaccharide and lipid A. Infect Immun 2005;73:4478-87. [PMID: 16040958 DOI: 10.1128/IAI.73.8.4478-4487.2005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
125 Premratanachai P, Joly S, Johnson GK, McCray PB Jr, Jia HP, Guthmiller JM. Expression and regulation of novel human beta-defensins in gingival keratinocytes. Oral Microbiol Immunol 2004;19:111-7. [PMID: 14871351 DOI: 10.1111/j.0902-0055.2002.00127.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
126 Rosenfeld Y, Papo N, Shai Y. Endotoxin (Lipopolysaccharide) Neutralization by Innate Immunity Host-Defense Peptides. Journal of Biological Chemistry 2006;281:1636-43. [DOI: 10.1074/jbc.m504327200] [Cited by in Crossref: 270] [Cited by in F6Publishing: 96] [Article Influence: 18.0] [Reference Citation Analysis]
127 Paduszynska MA, Greber KE, Paduszynski W, Sawicki W, Kamysz W. Activity of Temporin A and Short Lipopeptides Combined with Gentamicin against Biofilm Formed by Staphylococcus aureus and Pseudomonas aeruginosa. Antibiotics (Basel) 2020;9:E566. [PMID: 32887236 DOI: 10.3390/antibiotics9090566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
128 Li J, Csakai A, Jin J, Zhang F, Yin H. Therapeutic Developments Targeting Toll-like Receptor-4-Mediated Neuroinflammation. ChemMedChem. 2016;11:154-165. [PMID: 26136385 DOI: 10.1002/cmdc.201500188] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
129 van Dijk A, Molhoek EM, Veldhuizen EJ, Bokhoven JLT, Wagendorp E, Bikker F, Haagsman HP. Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Molecular Immunology 2009;46:2465-73. [DOI: 10.1016/j.molimm.2009.05.019] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 4.2] [Reference Citation Analysis]
130 Domadia PN, Bhunia A, Ramamoorthy A, Bhattacharjya S. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. J Am Chem Soc 2010;132:18417-28. [PMID: 21128620 DOI: 10.1021/ja1083255] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 7.1] [Reference Citation Analysis]
131 Som A, Navasa N, Percher A, Scott RW, Tew GN, Anguita J. Identification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities. Clin Vaccine Immunol 2012;19:1784-91. [PMID: 22956655 DOI: 10.1128/CVI.00291-12] [Cited by in Crossref: 32] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
132 Ma Z, Yang J, Han J, Gao L, Liu H, Lu Z, Zhao H, Bie X. Insights into the Antimicrobial Activity and Cytotoxicity of Engineered α-Helical Peptide Amphiphiles. J Med Chem 2016;59:10946-62. [DOI: 10.1021/acs.jmedchem.6b00922] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
133 Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes LF. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IκBα/MAPK/ERK signaling pathways. Eur J Pharmacol 2014;724:168-74. [PMID: 24361309 DOI: 10.1016/j.ejphar.2013.12.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
134 Martínez-Sernández V, Orbegozo-Medina RA, Romarís F, Paniagua E, Ubeira FM. Usefulness of ELISA Methods for Assessing LPS Interactions with Proteins and Peptides. PLoS One 2016;11:e0156530. [PMID: 27249227 DOI: 10.1371/journal.pone.0156530] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
135 McCormick TS, Weinberg A. Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol 2000 2010;54:195-206. [PMID: 20712640 DOI: 10.1111/j.1600-0757.2010.00373.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 3.9] [Reference Citation Analysis]
136 Dhople V, Krukemeyer A, Ramamoorthy A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 2006;1758:1499-512. [PMID: 16978580 DOI: 10.1016/j.bbamem.2006.07.007] [Cited by in Crossref: 212] [Cited by in F6Publishing: 183] [Article Influence: 14.1] [Reference Citation Analysis]
137 McCurtain JL, Gilbertsen AJ, Evert C, Williams BJ, Hunter RC. Agmatine accumulation by Pseudomonas aeruginosa clinical isolates confers antibiotic tolerance and dampens host inflammation. J Med Microbiol 2019;68:446-55. [PMID: 30688634 DOI: 10.1099/jmm.0.000928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
138 van Dijk A, Tersteeg-zijderveld MH, Tjeerdsma-van Bokhoven JL, Jansman AJ, Veldhuizen EJ, Haagsman HP. Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature Cathelicidin-2 upon stimulation with LPS. Molecular Immunology 2009;46:1517-26. [DOI: 10.1016/j.molimm.2008.12.015] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
139 Madeira A, Burgelin I, Perron H, Curtin F, Lang AB, Faucard R. MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: Relevance of GNbAC1 in multiple sclerosis treatment. J Neuroimmunol 2016;291:29-38. [PMID: 26857492 DOI: 10.1016/j.jneuroim.2015.12.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
140 Sawai MV, Waring AJ, Kearney WR, Mccray PB, Forsyth WR, Lehrer RI, Tack BF. Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Engineering, Design and Selection 2002;15:225-32. [DOI: 10.1093/protein/15.3.225] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 3.2] [Reference Citation Analysis]
141 Jahnsen RD, Haney EF, Franzyk H, Hancock RE. Characterization of a proteolytically stable multifunctional host defense peptidomimetic. Chem Biol 2013;20:1286-95. [PMID: 24120333 DOI: 10.1016/j.chembiol.2013.09.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
142 Krishnakumari V, Binny TM, Adicherla H, Nagaraj R. Escherichia coli Lipopolysaccharide Modulates Biological Activities of Human-β-Defensin Analogues but Not Non-Ribosomally Synthesized Peptides. ACS Omega 2020;5:6366-75. [PMID: 32258871 DOI: 10.1021/acsomega.9b03770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
143 Scheenstra MR, van den Belt M, Tjeerdsma-van Bokhoven JLM, Schneider VAF, Ordonez SR, van Dijk A, Veldhuizen EJA, Haagsman HP. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci Rep 2019;9:4780. [PMID: 30886247 DOI: 10.1038/s41598-019-41246-6] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 16.5] [Reference Citation Analysis]
144 Dixon DR, Karimi-naser L, Darveau RP, Leung KP. The anti-endotoxic effects of the KSL-W decapeptide on Escherichia coli O55:B5 and various oral lipopolysaccharides. J Periodontal Res 2008;43:422-30. [DOI: 10.1111/j.1600-0765.2007.01067.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
145 Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009;15:2377-92. [PMID: 19601838 DOI: 10.2174/138161209788682325] [Cited by in Crossref: 325] [Cited by in F6Publishing: 281] [Article Influence: 27.1] [Reference Citation Analysis]
146 Fine DH. Lactoferrin: A Roadmap to the Borderland between Caries and Periodontal Disease. J Dent Res 2015;94:768-76. [PMID: 25784250 DOI: 10.1177/0022034515577413] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
147 Auvynet C, Rosenstein Y. Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J. 2009;276:6497-6508. [PMID: 19817855 DOI: 10.1111/j.1742-4658.2009.07360.x] [Cited by in Crossref: 123] [Cited by in F6Publishing: 108] [Article Influence: 10.3] [Reference Citation Analysis]
148 van Dijk A, Molhoek E, Bikker F, Yu P, Veldhuizen E, Haagsman H. Avian cathelicidins: Paradigms for the development of anti-infectives. Veterinary Microbiology 2011;153:27-36. [DOI: 10.1016/j.vetmic.2011.03.028] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
149 Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002;169:3883-91. [PMID: 12244186 DOI: 10.4049/jimmunol.169.7.3883] [Cited by in Crossref: 453] [Cited by in F6Publishing: 420] [Article Influence: 23.8] [Reference Citation Analysis]
150 Bartlett KH, McCray PB Jr, Thorne PS. Novispirin G10-induced lung toxicity in a Klebsiella pneumoniae infection model. Antimicrob Agents Chemother 2003;47:3901-6. [PMID: 14638500 DOI: 10.1128/AAC.47.12.3901-3906.2003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
151 Meade KG, O'Farrelly C. β-Defensins: Farming the Microbiome for Homeostasis and Health. Front Immunol 2018;9:3072. [PMID: 30761155 DOI: 10.3389/fimmu.2018.03072] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 27.0] [Reference Citation Analysis]
152 Mohanram H, Bhattacharjya S. Cysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity. Biochim Biophys Acta 2014;1840:3006-16. [PMID: 24997421 DOI: 10.1016/j.bbagen.2014.06.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
153 Romero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) 2020;21:309-22. [PMID: 31804896 DOI: 10.1089/sur.2019.266] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
154 Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. PLoS One 2013;8:e72718. [PMID: 24039798 DOI: 10.1371/journal.pone.0072718] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
155 Caiaffa KS, Dos Santos VR, Abuna GF, Santos-Filho NA, Cilli EM, Sakai VT, Cintra LTA, Duque C. Cytocompatibility and Synergy of EGCG and Cationic Peptides Against Bacteria Related to Endodontic Infections, in Planktonic and Biofilm Conditions. Probiotics Antimicrob Proteins 2021. [PMID: 34402021 DOI: 10.1007/s12602-021-09830-3] [Reference Citation Analysis]
156 Andrä J, Gutsmann T, Garidel P, Brandenburg K. Invited review: Mechanisms of endotoxin neutralization by synthetic cationic compounds. Journal of Endotoxin Research 2006;12:261-77. [DOI: 10.1177/09680519060120050201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
157 Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379-414. [PMID: 12857774 DOI: 10.1128/cmr.16.3.379-414.2003] [Cited by in Crossref: 491] [Cited by in F6Publishing: 166] [Article Influence: 27.3] [Reference Citation Analysis]
158 Bhattacharjya S, Domadia PN, Bhunia A, Malladi S, David SA. High-Resolution Solution Structure of a Designed Peptide Bound to Lipopolysaccharide:  Transferred Nuclear Overhauser Effects, Micelle Selectivity, and Anti-Endotoxic Activity ,. Biochemistry 2007;46:5864-74. [DOI: 10.1021/bi6025159] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 2.6] [Reference Citation Analysis]
159 Abdolhosseini M, Nandula SR, Song J, Hirt H, Gorr SU. Lysine substitutions convert a bacterial-agglutinating peptide into a bactericidal peptide that retains anti-lipopolysaccharide activity and low hemolytic activity. Peptides 2012;35:231-8. [PMID: 22484285 DOI: 10.1016/j.peptides.2012.03.017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
160 Steinstraesser L, Alarcon W, Fan M, Klein RD, Aminlari A, Zuccaro C, Su GL, Wang SC. Thermal injury induces expression of CD14 in human skin. Burns 2002;28:223-30. [DOI: 10.1016/s0305-4179(02)00034-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
161 Chen F, Tang Y, Zheng H, Xu Y, Wang J, Wang C. Roles of the Conserved Amino Acid Residues in Reduced Human Defensin 5: Cysteine and Arginine Are Indispensable for Its Antibacterial Action and LPS Neutralization. ChemMedChem 2019;14:1457-65. [DOI: 10.1002/cmdc.201900282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
162 Cantini F, Luzi C, Bouchemal N, Savarin P, Bozzi A, Sette M. Effect of positive charges in the structural interaction of crabrolin isoforms with lipopolysaccharide. J Pep Sci 2020;26. [DOI: 10.1002/psc.3271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
163 Jönsson D, Nilsson BO. The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. J Periodontal Res 2012;47:330-5. [PMID: 22066867 DOI: 10.1111/j.1600-0765.2011.01436.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
164 Schmidt NW, Agak GW, Deshayes S, Yu Y, Blacker A, Champer J, Xian W, Kasko AM, Kim J, Wong GCL. Pentobra: A Potent Antibiotic with Multiple Layers of Selective Antimicrobial Mechanisms against Propionibacterium Acnes. J Invest Dermatol 2015;135:1581-9. [PMID: 25668237 DOI: 10.1038/jid.2015.40] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
165 Vandenplas ML, Carlson RW, Jeyaretnam BS, Mcneill B, Barton MH, Norton N, Murray TF, Moore JN. Rhizobium Sin-1 Lipopolysaccharide (LPS) Prevents Enteric LPS-induced Cytokine Production. Journal of Biological Chemistry 2002;277:41811-6. [DOI: 10.1074/jbc.m205252200] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
166 Ren JD, Gu JS, Gao HF, Xia PY, Xiao GX. A synthetic cyclic peptide derived from Limulus anti-lipopolysaccharide factor neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 2008;8:775-81. [PMID: 18442780 DOI: 10.1016/j.intimp.2008.01.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
167 Wilmes M, Sahl HG. Defensin-based anti-infective strategies. Int J Med Microbiol 2014;304:93-9. [PMID: 24119539 DOI: 10.1016/j.ijmm.2013.08.007] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
168 Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2019;88:173-84. [PMID: 29432957 DOI: 10.1016/j.semcdb.2018.02.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
169 Stassen M, Müller C, Arnold M, Hültner L, Klein-Hessling S, Neudörfl C, Reineke T, Serfling E, Schmitt E. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-kappa B is decisively involved in the expression of IL-9. J Immunol 2001;166:4391-8. [PMID: 11254693 DOI: 10.4049/jimmunol.166.7.4391] [Cited by in Crossref: 105] [Cited by in F6Publishing: 100] [Article Influence: 5.3] [Reference Citation Analysis]
170 Srivastava RM, Srivastava S, Singh M, Bajpai VK, Ghosh JK. Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide. J Biol Chem 2012;287:1980-95. [PMID: 22128186 DOI: 10.1074/jbc.M111.302893] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
171 Grubor B, Meyerholz DK, Ackermann MR. Collectins and cationic antimicrobial peptides of the respiratory epithelia. Vet Pathol 2006;43:595-612. [PMID: 16966437 DOI: 10.1354/vp.43-5-595] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
172 Taniguchi M, Ochiai A, Matsushima K, Tajima K, Kato T, Saitoh E, Tanaka T. Endotoxin-neutralizing activity and mechanism of action of a cationic α-helical antimicrobial octadecapeptide derived from α-amylase of rice. Peptides 2016;75:101-8. [DOI: 10.1016/j.peptides.2015.11.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
173 Asai Y, Takaori K, Yamamoto T, Ogawa T. Protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions. FEMS Immunology & Medical Microbiology 2005;43:91-8. [DOI: 10.1016/j.femsim.2004.07.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
174 Almaraz-De-Santiago J, Solis-Torres N, Quintana-Belmares R, Rodríguez-Carlos A, Rivas-Santiago B, Huerta-García J, Mercado-Reyes M, Enciso-Moreno JA, Villagomez-Castro J, González-Curiel I, Osornio-Vargas Á, Rivas-Santiago CE. Long-term exposure to particulate matter from air pollution alters airway β-defensin-3 and -4 and cathelicidin host defense peptides production in a murine model. Peptides 2021;142:170581. [PMID: 34052349 DOI: 10.1016/j.peptides.2021.170581] [Reference Citation Analysis]
175 Winter J, Wenghoefer M. Human Defensins: Potential Tools for Clinical Applications. Polymers 2012;4:691-709. [DOI: 10.3390/polym4010691] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
176 Kindrachuk J, Jenssen H, Elliott M, Nijnik A, Magrangeas-Janot L, Pasupuleti M, Thorson L, Ma S, Easton DM, Bains M, Finlay B, Breukink EJ, Georg-Sahl H, Hancock RE. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immun 2013;19:315-27. [PMID: 23109507 DOI: 10.1177/1753425912461456] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
177 Li P, Ho B, Ding JL. Recombinant factor C competes against LBP to bind lipopolysaccharide and neutralizes the endotoxicity. J Endotoxin Res 2007;13:150-7. [PMID: 17621557 DOI: 10.1177/0968051907079573] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
178 Pizzo E, Zanfardino A, Di Giuseppe AM, Bosso A, Landi N, Ragucci S, Varcamonti M, Notomista E, Di Maro A. A new active antimicrobial peptide from PD-L4, a type 1 ribosome inactivating protein of Phytolacca dioica L.: A new function of RIPs for plant defence? FEBS Letters 2015;589:2812-8. [DOI: 10.1016/j.febslet.2015.08.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
179 Garcia AE, Tai KP, Puttamadappa SS, Shekhtman A, Ouellette AJ, Camarero JA. Biosynthesis and antimicrobial evaluation of backbone-cyclized α-defensins. Biochemistry 2011;50:10508-19. [PMID: 22040603 DOI: 10.1021/bi201430f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
180 Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol. 2002;46:741-749. [PMID: 12516770 DOI: 10.1111/j.1348-0421.2002.tb02759.x] [Cited by in Crossref: 151] [Cited by in F6Publishing: 134] [Article Influence: 8.4] [Reference Citation Analysis]
181 Bhunia A, Mohanram H, Domadia PN, Torres J, Bhattacharjya S. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. J Biol Chem 2009;284:21991-2004. [PMID: 19520860 DOI: 10.1074/jbc.M109.013573] [Cited by in Crossref: 79] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
182 West NP, Pyne DB, Renshaw G, Cripps AW. Antimicrobial peptides and proteins, exercise and innate mucosal immunity. FEMS Immunol Med Microbiol 2006;48:293-304. [PMID: 17132140 DOI: 10.1111/j.1574-695X.2006.00132.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
183 Hashimoto M, Asai Y, Ogawa T. Treponemal Phospholipids Inhibit Innate Immune Responses Induced by Pathogen-associated Molecular Patterns. Journal of Biological Chemistry 2003;278:44205-13. [DOI: 10.1074/jbc.m306735200] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
184 Viryasova GM, Golenkina EA, Hianik T, Soshnikova NV, Dolinnaya NG, Gaponova TV, Romanova YM, Sud'ina GF. Magic Peptide: Unique Properties of the LRR11 Peptide in the Activation of Leukotriene Synthesis in Human Neutrophils. Int J Mol Sci 2021;22:2671. [PMID: 33800897 DOI: 10.3390/ijms22052671] [Reference Citation Analysis]
185 Suphasiriroj W, Mikami M, Shimomura H, Sato S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 2013;84:256-64. [PMID: 22443521 DOI: 10.1902/jop.2012.110652] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
186 Shang D, Zhang Q, Dong W, Liang H, Bi X. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Acta Biomaterialia 2016;33:153-65. [DOI: 10.1016/j.actbio.2016.01.019] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 5.4] [Reference Citation Analysis]
187 Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS, Campopiano DJ, Govan JR, Valvano MA. A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol 2007;189:3639-44. [PMID: 17337576 DOI: 10.1128/JB.00153-07] [Cited by in Crossref: 77] [Cited by in F6Publishing: 51] [Article Influence: 5.5] [Reference Citation Analysis]
188 Laube DM, Yim S, Ryan LK, Kisich KO, Diamond G. Antimicrobial peptides in the airway. Curr Top Microbiol Immunol 2006;306:153-82. [PMID: 16909921 DOI: 10.1007/3-540-29916-5_6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 54] [Article Influence: 1.7] [Reference Citation Analysis]
189 Brandenburg L, Merres J, Albrecht L, Varoga D, Pufe T. Antimicrobial Peptides: Multifunctional Drugs for Different Applications. Polymers 2012;4:539-60. [DOI: 10.3390/polym4010539] [Cited by in Crossref: 68] [Cited by in F6Publishing: 34] [Article Influence: 7.6] [Reference Citation Analysis]
190 Coorens M, Scheenstra MR, Veldhuizen EJ, Haagsman HP. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Sci Rep 2017;7:40874. [PMID: 28102367 DOI: 10.1038/srep40874] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 11.8] [Reference Citation Analysis]
191 Reins RY, Baidouri H, McDermott AM. Vitamin D Activation and Function in Human Corneal Epithelial Cells During TLR-Induced Inflammation. Invest Ophthalmol Vis Sci 2015;56:7715-27. [PMID: 26641549 DOI: 10.1167/iovs.15-17768] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
192 Shental-Bechor D, Haliloglu T, Ben-Tal N. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method. Biophys J 2007;93:1858-71. [PMID: 17496025 DOI: 10.1529/biophysj.106.103812] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]