BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sullivan C, Charette J, Catchen J, Lage CR, Giasson G, Postlethwait JH, Millard PJ, Kim CH. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J Immunol 2009;183:5896-908. [PMID: 19812203 DOI: 10.4049/jimmunol.0803285] [Cited by in Crossref: 107] [Cited by in F6Publishing: 105] [Article Influence: 8.9] [Reference Citation Analysis]
Number Citing Articles
1 Planchart A, Mattingly CJ, Allen D, Ceger P, Casey W, Hinton D, Kanungo J, Kullman SW, Tal T, Bondesson M, Burgess SM, Sullivan C, Kim C, Behl M, Padilla S, Reif DM, Tanguay RL, Hamm J. Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX 2016;33:435-52. [PMID: 27328013 DOI: 10.14573/altex.1601281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
2 Paudel YN, Khan SU, Othman I, Shaikh MF. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem Neurosci 2021;12:3288-302. [PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825] [Reference Citation Analysis]
3 Anwar MA, Choi S. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar Drugs 2014;12:2485-514. [PMID: 24796306 DOI: 10.3390/md12052485] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
4 Zhang Y, Gui J. Molecular regulation of interferon antiviral response in fish. Developmental & Comparative Immunology 2012;38:193-202. [DOI: 10.1016/j.dci.2012.06.003] [Cited by in Crossref: 191] [Cited by in F6Publishing: 182] [Article Influence: 21.2] [Reference Citation Analysis]
5 Voogdt CGP, Wagenaar JA, van Putten JPM. Duplicated TLR5 of zebrafish functions as a heterodimeric receptor. Proc Natl Acad Sci U S A 2018;115:E3221-9. [PMID: 29555749 DOI: 10.1073/pnas.1719245115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
6 Palti Y. Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 2011;35:1263-72. [PMID: 21414346 DOI: 10.1016/j.dci.2011.03.006] [Cited by in Crossref: 308] [Cited by in F6Publishing: 289] [Article Influence: 30.8] [Reference Citation Analysis]
7 Cao M, Yan X, Yang N, Fu Q, Xue T, Zhao S, Hu J, Li Q, Song L, Zhang X, Su B, Li C. Genome-wide characterization of Toll-like receptors in black rockfish Sebastes schlegelii: Evolution and response mechanisms following Edwardsiella tarda infection. Int J Biol Macromol 2020;164:949-62. [PMID: 32679322 DOI: 10.1016/j.ijbiomac.2020.07.111] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
8 Yoder JA, Litman GW. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 2011;63:123-41. [PMID: 21191578 DOI: 10.1007/s00251-010-0506-4] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 5.2] [Reference Citation Analysis]
9 Han P, Wang S, Zhang Q, Zhang S, Shao R, Xu W, Zhang W, Xu Q, Wei Q, Qi Z. Molecular characterization and expression analysis of TLR1 and TLR4 from the endangered fish Dabry's sturgeon (Acipenser dabryanus). Developmental & Comparative Immunology 2018;86:180-8. [DOI: 10.1016/j.dci.2018.05.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
10 Seppola M, Mikkelsen H, Johansen A, Steiro K, Myrnes B, Nilsen IW. Ultrapure LPS induces inflammatory and antibacterial responses attenuated in vitro by exogenous sera in Atlantic cod and Atlantic salmon. Fish Shellfish Immunol 2015;44:66-78. [PMID: 25655332 DOI: 10.1016/j.fsi.2015.01.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
11 van der Aa LM, Chadzinska M, Derks W, Scheer M, Levraud J, Boudinot P, Lidy Verburg-van Kemenade B. Diversification of IFNγ-inducible CXCb chemokines in cyprinid fish. Developmental & Comparative Immunology 2012;38:243-53. [DOI: 10.1016/j.dci.2012.05.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
12 Gao Q, Xiao Y, Zhang C, Min M, Peng S, Shi Z. Molecular characterization and expression analysis of toll-like receptor 2 in response to bacteria in silvery pomfret intestinal epithelial cells. Fish & Shellfish Immunology 2016;58:1-9. [DOI: 10.1016/j.fsi.2016.08.057] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
13 Song H, Yan YL, Titus T, He X, Postlethwait JH. The role of stat1b in zebrafish hematopoiesis. Mech Dev 2011;128:442-56. [PMID: 21914475 DOI: 10.1016/j.mod.2011.08.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
14 Pan CY, Wu JL, Hui CF, Lin CH, Chen JY. Insights into the antibacterial and immunomodulatory functions of the antimicrobial peptide, epinecidin-1, against Vibrio vulnificus infection in zebrafish. Fish Shellfish Immunol 2011;31:1019-25. [PMID: 21925271 DOI: 10.1016/j.fsi.2011.09.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.8] [Reference Citation Analysis]
15 Goldsmith JR, Jobin C. Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol. 2012;2012:817341. [PMID: 22701308 DOI: 10.1155/2012/817341] [Cited by in Crossref: 84] [Cited by in F6Publishing: 91] [Article Influence: 9.3] [Reference Citation Analysis]
16 Zhou Y, Liang Q, Li W, Gu Y, Liao X, Fang W, Li X. Characterization and functional analysis of toll-like receptor 4 in Chinese soft-shelled turtle Pelodiscus sinensis. Dev Comp Immunol 2016;63:128-35. [PMID: 27259833 DOI: 10.1016/j.dci.2016.05.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
17 Su J, Yu X. Editorial: Ligands, Adaptors and Pathways of TLRs in Non-mammals. Front Immunol 2019;10:2439. [PMID: 31681318 DOI: 10.3389/fimmu.2019.02439] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Philip AM, Wang Y, Mauro A, El-Rass S, Marshall JC, Lee WL, Slutsky AS, dosSantos CC, Wen XY. Development of a zebrafish sepsis model for high-throughput drug discovery. Mol Med 2017;23:134-48. [PMID: 28598490 DOI: 10.2119/molmed.2016.00188] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
19 Qi Z, Wang S, Zhu X, Yang Y, Han P, Zhang Q, Zhang S, Shao R, Xu Q, Wei Q. Molecular characterization of three toll-like receptors (TLR21, TLR22, and TLR25) from a primitive ray-finned fish Dabry's sturgeon (Acipenser dabryanus). Fish & Shellfish Immunology 2018;82:200-11. [DOI: 10.1016/j.fsi.2018.08.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
20 van der Vaart M, Spaink HP, Meijer AH. Pathogen recognition and activation of the innate immune response in zebrafish. Adv Hematol 2012;2012:159807. [PMID: 22811714 DOI: 10.1155/2012/159807] [Cited by in Crossref: 76] [Cited by in F6Publishing: 83] [Article Influence: 8.4] [Reference Citation Analysis]
21 Giri SS, Chi C, Jun JW, Park SC. Use of bacterial subcellular components as immunostimulants in fish aquaculture. Rev Aquacult 2018;10:474-92. [DOI: 10.1111/raq.12182] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
22 Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, Kim CH. Study of host-microbe interactions in zebrafish. Methods Cell Biol 2011;105:87-116. [PMID: 21951527 DOI: 10.1016/B978-0-12-381320-6.00004-7] [Cited by in Crossref: 79] [Cited by in F6Publishing: 46] [Article Influence: 8.8] [Reference Citation Analysis]
23 Forn-Cuní G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep 2017;7:41905. [PMID: 28157230 DOI: 10.1038/srep41905] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 12.5] [Reference Citation Analysis]
24 Douek AM, Amiri Khabooshan M, Henry J, Stamatis SA, Kreuder F, Ramm G, Änkö ML, Wlodkowic D, Kaslin J. An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. Int J Mol Sci 2021;22:5948. [PMID: 34073041 DOI: 10.3390/ijms22115948] [Reference Citation Analysis]
25 Wu C, Deng H, Li D, Fan L, Yao D, Zhi X, Mao H, Hu C. Ctenopharyngodon idella Tollip regulates MyD88-induced NF-κB activation. Dev Comp Immunol 2021;123:104162. [PMID: 34090930 DOI: 10.1016/j.dci.2021.104162] [Reference Citation Analysis]
26 Lai R, Liu H, Jakovlić I, Zhan F, Wei J, Yang P, Wang W. Molecular cloning and expression of toll-like receptor 4 (tlr4) in the blunt snout bream (Megalobrama amblycephala). Developmental & Comparative Immunology 2016;59:63-76. [DOI: 10.1016/j.dci.2016.01.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
27 Renshaw SA, Trede NS. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech. 2012;5:38-47. [PMID: 22228790 DOI: 10.1242/dmm.007138] [Cited by in Crossref: 230] [Cited by in F6Publishing: 208] [Article Influence: 25.6] [Reference Citation Analysis]
28 Candel S, Sepulcre MP, Espín-palazón R, Tyrkalska SD, de Oliveira S, Meseguer J, Mulero V. Md1 and Rp105 regulate innate immunity and viral resistance in zebrafish. Developmental & Comparative Immunology 2015;50:155-65. [DOI: 10.1016/j.dci.2015.01.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
29 Oehlers SH, Flores MV, Hall CJ, Swift S, Crosier KE, Crosier PS. The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. Dis Model Mech. 2011;4:832-841. [PMID: 21729873 DOI: 10.1242/dmm.006122] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 6.6] [Reference Citation Analysis]
30 Zhang Z, Ran C, Ding QW, Liu HL, Xie MX, Yang YL, Xie YD, Gao CC, Zhang HL, Zhou ZG. Ability of prebiotic polysaccharides to activate a HIF1α-antimicrobial peptide axis determines liver injury risk in zebrafish. Commun Biol 2019;2:274. [PMID: 31372513 DOI: 10.1038/s42003-019-0526-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
31 Xinxian W, Peng J, Guixiang T, Jinjin W, Xiaocong Z, Junqiang H, Xianle Y, Hong L. Effect of common carp (Cyprinus carpio) TLR9 overexpression on the expression of downstream interferon-associated immune factor mRNAs in epithelioma papulosum cyprini cells. Veterinary Immunology and Immunopathology 2016;170:47-53. [DOI: 10.1016/j.vetimm.2015.10.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
32 Meng Z, Zhang XY, Guo J, Xiang LX, Shao JZ. Scavenger receptor in fish is a lipopolysaccharide recognition molecule involved in negative regulation of NF-κB activation by competing with TNF receptor-associated factor 2 recruitment into the TNF-α signaling pathway. J Immunol. 2012;189:4024-4039. [PMID: 22988031 DOI: 10.4049/jimmunol.1201244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
33 He Y, Pan H, Zhang G, He S. Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates. Sci China Life Sci 2019;62:566-78. [PMID: 30929190 DOI: 10.1007/s11427-019-9481-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
34 Huang R, Dong F, Jang S, Liao L, Zhu Z, Wang Y. Isolation and analysis of a novel grass carp toll-like receptor 4 (tlr4) gene cluster involved in the response to grass carp reovirus. Developmental & Comparative Immunology 2012;38:383-8. [DOI: 10.1016/j.dci.2012.06.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
35 Yang Y, Millán JL, Mecsas J, Guillemin K. Intestinal alkaline phosphatase deficiency leads to lipopolysaccharide desensitization and faster weight gain. Infect Immun 2015;83:247-58. [PMID: 25348635 DOI: 10.1128/IAI.02520-14] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.1] [Reference Citation Analysis]
36 Forn-Cuní G, Varela M, Fernández-Rodríguez CM, Figueras A, Novoa B. Liver immune responses to inflammatory stimuli in a diet-induced obesity model of zebrafish. J Endocrinol. 2015;224:159-170. [PMID: 25371540 DOI: 10.1530/joe-14-0398] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.1] [Reference Citation Analysis]
37 Yang Y, Wandler AM, Postlethwait JH, Guillemin K. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates. Front Immunol 2012;3:314. [PMID: 23091474 DOI: 10.3389/fimmu.2012.00314] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
38 Boudinot P, Zou J, Ota T, Buonocore F, Scapigliati G, Canapa A, Cannon J, Litman G, Hansen JD. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths. J Exp Zool B Mol Dev Evol 2014;322:415-37. [PMID: 24482296 DOI: 10.1002/jez.b.22559] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 6.4] [Reference Citation Analysis]
39 Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020;22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 15.0] [Reference Citation Analysis]
40 Srivastava N, Shelly A, Kumar M, Pant A, Das B, Majumdar T, Mazumder S. Aeromonas hydrophila utilizes TLR4 topology for synchronous activation of MyD88 and TRIF to orchestrate anti-inflammatory responses in zebrafish. Cell Death Discov 2017;3:17067. [PMID: 29142761 DOI: 10.1038/cddiscovery.2017.67] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
41 Chen SN, Zou PF, Nie P. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) in fish: current knowledge and future perspectives. Immunology 2017;151:16-25. [PMID: 28109007 DOI: 10.1111/imm.12714] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 17.8] [Reference Citation Analysis]
42 Liu K, Xu Y, Wang Y, Wei S, Feng D, Huang Q, Zhang S, Liu Z. Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish. Developmental & Comparative Immunology 2016;60:91-5. [DOI: 10.1016/j.dci.2016.02.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
43 Zhang X, Zhang G, Shi Z, Yuan Y, Zheng H, Lin L, Wei K, Ji W. Expression analysis of nine Toll-like receptors in yellow catfish ( Pelteobagrus fulvidraco ) responding to Aeromonas hydrophila challenge. Fish & Shellfish Immunology 2017;63:384-93. [DOI: 10.1016/j.fsi.2017.02.021] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
44 Qi D, Chao Y, Zhang C, Wang Z, Wang W, Chen Q, Zheng Z, Zhang Z. Duplication of toll-like receptor 22 in teleost fishes. Fish & Shellfish Immunology 2019;94:752-60. [DOI: 10.1016/j.fsi.2019.09.067] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
45 Purcell MK, Laing KJ, Winton JR. Immunity to fish rhabdoviruses. Viruses 2012;4:140-66. [PMID: 22355456 DOI: 10.3390/v4010140] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 7.2] [Reference Citation Analysis]
46 Klee EW, Schneider H, Clark KJ, Cousin MA, Ebbert JO, Hooten WM, Karpyak VM, Warner DO, Ekker SC. Zebrafish: a model for the study of addiction genetics. Hum Genet 2012;131:977-1008. [PMID: 22207143 DOI: 10.1007/s00439-011-1128-0] [Cited by in Crossref: 78] [Cited by in F6Publishing: 77] [Article Influence: 7.8] [Reference Citation Analysis]
47 Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. Developmental & Comparative Immunology 2014;46:35-52. [DOI: 10.1016/j.dci.2014.02.003] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 7.3] [Reference Citation Analysis]
48 Pietretti D, Spaink HP, Falco A, Forlenza M, Wiegertjes GF. Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Molecular Immunology 2013;56:745-56. [DOI: 10.1016/j.molimm.2013.07.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
49 Galindo-Villegas J, García-Moreno D, de Oliveira S, Meseguer J, Mulero V. Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proc Natl Acad Sci U S A 2012;109:E2605-14. [PMID: 22949679 DOI: 10.1073/pnas.1209920109] [Cited by in Crossref: 112] [Cited by in F6Publishing: 101] [Article Influence: 12.4] [Reference Citation Analysis]
50 Candel S, Tyrkalska SD, García-moreno D, Meseguer J, Mulero V. Identification of Evolutionarily Conserved Md1 Splice Variants That Regulate Innate Immunity through Differential Induction of NF-кB. J I 2016;197:1379-88. [DOI: 10.4049/jimmunol.1502052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
51 Keij FM, Koch BEV, Lozano Vigario F, Simons SHP, van Hasselt JGC, Taal HR, Knibbe CAJ, Spaink HP, Reiss IKM, Krekels EHJ. Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. J Clin Transl Sci 2021;5:e140. [PMID: 34422320 DOI: 10.1017/cts.2021.803] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018;9:1105. [PMID: 29892285 DOI: 10.3389/fimmu.2018.01105] [Cited by in Crossref: 66] [Cited by in F6Publishing: 56] [Article Influence: 22.0] [Reference Citation Analysis]
53 Kanther M, Rawls JF. Host-microbe interactions in the developing zebrafish. Curr Opin Immunol 2010;22:10-9. [PMID: 20153622 DOI: 10.1016/j.coi.2010.01.006] [Cited by in Crossref: 156] [Cited by in F6Publishing: 151] [Article Influence: 14.2] [Reference Citation Analysis]
54 Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011;108:235-248. [PMID: 21252151 DOI: 10.1161/circresaha.110.223875] [Cited by in Crossref: 389] [Cited by in F6Publishing: 246] [Article Influence: 38.9] [Reference Citation Analysis]
55 Antonopoulou E, Kaitetzidou E, Castellana B, Panteli N, Kyriakis D, Vraskou Y, Planas JV. In Vivo Effects of Lipopolysaccharide on Peroxisome Proliferator-Activated Receptor Expression in Juvenile Gilthead Seabream (Sparus Aurata). Biology (Basel) 2017;6:E36. [PMID: 28946685 DOI: 10.3390/biology6040036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
56 Liu Y, Li M, Fan S, Lin Y, Lin B, Luo F, Zhang C, Chen S, Li Y, Xu A. A unique feature of Toll/IL-1 receptor domain-containing adaptor protein is partially responsible for lipopolysaccharide insensitivity in zebrafish with a highly conserved function of MyD88. J Immunol 2010;185:3391-400. [PMID: 20702732 DOI: 10.4049/jimmunol.0903147] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
57 Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668-675. [PMID: 23778794 DOI: 10.1038/ni.2635] [Cited by in Crossref: 318] [Cited by in F6Publishing: 286] [Article Influence: 39.8] [Reference Citation Analysis]
58 Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. Fish Shellfish Immunol 2014;41:380-8. [PMID: 25241605 DOI: 10.1016/j.fsi.2014.09.022] [Cited by in Crossref: 157] [Cited by in F6Publishing: 146] [Article Influence: 22.4] [Reference Citation Analysis]
59 García-garcía E, Gómez-gonzález NE, Meseguer J, García-ayala A, Mulero V. Histamine regulates the inflammatory response of the tunicate Styela plicata. Developmental & Comparative Immunology 2014;46:382-91. [DOI: 10.1016/j.dci.2014.05.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
60 Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol 2017;14:80-9. [PMID: 27721456 DOI: 10.1038/cmi.2016.50] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 13.4] [Reference Citation Analysis]
61 Qi D, Xia M, Chao Y, Zhao Y, Wu R. Identification, molecular evolution of toll-like receptors in a Tibetan schizothoracine fish (Gymnocypris eckloni) and their expression profiles in response to acute hypoxia. Fish Shellfish Immunol 2017;68:102-13. [PMID: 28698123 DOI: 10.1016/j.fsi.2017.07.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
62 Hudson RC, Gray C, Kiss-Toth E, Chico TJ, Qwarnstrom EE. Bioinformatics Analysis of the FREM1 Gene-Evolutionary Development of the IL-1R1 Co-Receptor, TILRR. Biology (Basel) 2012;1:484-94. [PMID: 24832504 DOI: 10.3390/biology1030484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
63 Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: Indications from infection studies. Developmental & Comparative Immunology 2014;43:205-22. [DOI: 10.1016/j.dci.2013.08.010] [Cited by in Crossref: 134] [Cited by in F6Publishing: 128] [Article Influence: 19.1] [Reference Citation Analysis]
64 Zhang J, Liu S, Rajendran K, Sun L, Zhang Y, Sun F, Kucuktas H, Liu H, Liu Z. Pathogen recognition receptors in channel catfish: III Phylogeny and expression analysis of Toll-like receptors. Developmental & Comparative Immunology 2013;40:185-94. [DOI: 10.1016/j.dci.2013.01.009] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 10.0] [Reference Citation Analysis]
65 Yao C, Huang X, Fan Z, Kong P, Wang Z. Cloning and expression analysis of interferon regulatory factor (IRF) 3 and 7 in large yellow croaker, Larimichthys crocea. Fish & Shellfish Immunology 2012;32:869-78. [DOI: 10.1016/j.fsi.2012.02.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
66 Patel B, Banerjee R, Basu M, Lenka SS, Paichha M, Samanta M, Das S. Toll like receptor induces Ig synthesis in Catla catla by activating MAPK and NF-κB signalling. Molecular Immunology 2019;105:62-75. [DOI: 10.1016/j.molimm.2018.11.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Lee FF, Chuang HC, Chen NY, Nagarajan G, Chiou PP. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish. PLoS One 2015;10:e0126388. [PMID: 25955250 DOI: 10.1371/journal.pone.0126388] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
68 Gabor KA, Charette JR, Pietraszewski MJ, Wingfield DJ, Shim JS, Millard PJ, Kim CH. A DN-mda5 transgenic zebrafish model demonstrates that Mda5 plays an important role in snakehead rhabdovirus resistance. Dev Comp Immunol 2015;51:298-304. [PMID: 25634485 DOI: 10.1016/j.dci.2015.01.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
69 Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol 2012;946:253-75. [PMID: 21948373 DOI: 10.1007/978-1-4614-0106-3_15] [Cited by in Crossref: 127] [Cited by in F6Publishing: 122] [Article Influence: 14.1] [Reference Citation Analysis]
70 Wiegertjes GF, Wentzel AS, Spaink HP, Elks PM, Fink IR. Polarization of immune responses in fish: The ‘macrophages first’ point of view. Molecular Immunology 2016;69:146-56. [DOI: 10.1016/j.molimm.2015.09.026] [Cited by in Crossref: 82] [Cited by in F6Publishing: 72] [Article Influence: 16.4] [Reference Citation Analysis]
71 van den Bos R, Cromwijk S, Tschigg K, Althuizen J, Zethof J, Whelan R, Flik G, Schaaf M. Early Life Glucocorticoid Exposure Modulates Immune Function in Zebrafish (Danio rerio) Larvae. Front Immunol 2020;11:727. [PMID: 32411141 DOI: 10.3389/fimmu.2020.00727] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Kanther M, Sun X, Mühlbauer M, Mackey LC, Flynn EJ 3rd, Bagnat M, Jobin C, Rawls JF. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology 2011;141:197-207. [PMID: 21439961 DOI: 10.1053/j.gastro.2011.03.042] [Cited by in Crossref: 143] [Cited by in F6Publishing: 131] [Article Influence: 14.3] [Reference Citation Analysis]
73 Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011;12:1000-17. [PMID: 21366518 DOI: 10.2174/138945011795677809] [Cited by in Crossref: 166] [Cited by in F6Publishing: 157] [Article Influence: 16.6] [Reference Citation Analysis]
74 Hsu AY, Gurol T, Sobreira TJP, Zhang S, Moore N, Cai C, Zhang ZY, Deng Q. Development and Characterization of an Endotoxemia Model in Zebra Fish. Front Immunol 2018;9:607. [PMID: 29651289 DOI: 10.3389/fimmu.2018.00607] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
75 Zhang W, Tan B, Deng J, Dong X, Yang Q, Chi S, Liu H, Zhang S, Xie S, Zhang H. Mechanisms by Which Fermented Soybean Meal and Soybean Meal Induced Enteritis in Marine Fish Juvenile Pearl Gentian Grouper. Front Physiol 2021;12:646853. [PMID: 33967821 DOI: 10.3389/fphys.2021.646853] [Reference Citation Analysis]
76 Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. J Immunol 2021;206:1046-57. [PMID: 33472906 DOI: 10.4049/jimmunol.1901288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
77 Rauta PR, Samanta M, Dash HR, Nayak B, Das S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunology Letters 2014;158:14-24. [DOI: 10.1016/j.imlet.2013.11.013] [Cited by in Crossref: 178] [Cited by in F6Publishing: 165] [Article Influence: 25.4] [Reference Citation Analysis]
78 Meijer AH, van der Vaart M, Spaink HP. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish: Dissecting host-microbe interactions in zebrafish. Cell Microbiol 2014;16:39-49. [DOI: 10.1111/cmi.12236] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
79 Liao Z, Wan Q, Su H, Wu C, Su J. Pattern recognition receptors in grass carp Ctenopharyngodon idella: I. Organization and expression analysis of TLRs and RLRs. Developmental & Comparative Immunology 2017;76:93-104. [DOI: 10.1016/j.dci.2017.05.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
80 van der Vaart M, van Soest JJ, Spaink HP, Meijer AH. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Dis Model Mech. 2013;6:841-854. [PMID: 23471913 DOI: 10.1242/dmm.010843] [Cited by in Crossref: 98] [Cited by in F6Publishing: 93] [Article Influence: 12.3] [Reference Citation Analysis]
81 Secombes C, Wang T. The innate and adaptive immune system of fish. Infectious Disease in Aquaculture. Elsevier; 2012. pp. 3-68. [DOI: 10.1533/9780857095732.1.3] [Cited by in Crossref: 43] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
82 Sullivan C, Soos BL, Millard PJ, Kim CH, King BL. Modeling Virus-Induced Inflammation in Zebrafish: A Balance Between Infection Control and Excessive Inflammation. Front Immunol 2021;12:636623. [PMID: 34025644 DOI: 10.3389/fimmu.2021.636623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Bakkemo KR, Mikkelsen H, Bordevik M, Torgersen J, Winther-larsen HC, Vanberg C, Olsen R, Johansen L, Seppola M. Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic cod (Gadus morhua) macrophages. Fish & Shellfish Immunology 2011;31:993-1004. [DOI: 10.1016/j.fsi.2011.08.020] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
84 Lam PY, Peterson RT. Developing zebrafish disease models for in vivo small molecule screens. Curr Opin Chem Biol 2019;50:37-44. [PMID: 30928773 DOI: 10.1016/j.cbpa.2019.02.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 16.5] [Reference Citation Analysis]
85 Gonçalves A, Neves J, Coimbra J, Rodrigues P, Vijayan M, Wilson J. Cortisol plays a role in the high environmental ammonia associated suppression of the immune response in zebrafish. General and Comparative Endocrinology 2017;249:32-9. [DOI: 10.1016/j.ygcen.2017.02.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
86 Deng S, Jia P, Zhang J, Junaid M, Niu A, Ma Y, Fu A, Pei D. Transcriptomic response and perturbation of toxicity pathways in zebrafish larvae after exposure to graphene quantum dots (GQDs). Journal of Hazardous Materials 2018;357:146-58. [DOI: 10.1016/j.jhazmat.2018.05.063] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
87 Figueras A, Robledo D, Corvelo A, Hermida M, Pereiro P, Rubiolo JA, Gómez-Garrido J, Carreté L, Bello X, Gut M, Gut IG, Marcet-Houben M, Forn-Cuní G, Galán B, García JL, Abal-Fabeiro JL, Pardo BG, Taboada X, Fernández C, Vlasova A, Hermoso-Pulido A, Guigó R, Álvarez-Dios JA, Gómez-Tato A, Viñas A, Maside X, Gabaldón T, Novoa B, Bouza C, Alioto T, Martínez P. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life. DNA Res 2016;23:181-92. [PMID: 26951068 DOI: 10.1093/dnares/dsw007] [Cited by in Crossref: 88] [Cited by in F6Publishing: 74] [Article Influence: 17.6] [Reference Citation Analysis]
88 Wcisel DJ, Ota T, Litman GW, Yoder JA. Spotted Gar and the Evolution of Innate Immune Receptors. J Exp Zool B Mol Dev Evol 2017;328:666-84. [PMID: 28544607 DOI: 10.1002/jez.b.22738] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
89 Yang Y, Tomkovich S, Jobin C. Could a swimming creature inform us on intestinal diseases? Lessons from zebrafish. Inflamm Bowel Dis 2014;20:956-66. [PMID: 24577115 DOI: 10.1097/01.MIB.0000442923.85569.68] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
90 Wu B, Xin B, Jin M, Wei T, Bai Z. Comparative and phylogenetic analyses of three TIR domain-containing adaptors in metazoans: Implications for evolution of TLR signaling pathways. Developmental & Comparative Immunology 2011;35:764-73. [DOI: 10.1016/j.dci.2011.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
91 Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4570-7. [PMID: 20921418 DOI: 10.1073/pnas.1000072107] [Cited by in Crossref: 146] [Cited by in F6Publishing: 126] [Article Influence: 13.3] [Reference Citation Analysis]
92 Secombes CJ, Zou J. Evolution of Interferons and Interferon Receptors. Front Immunol 2017;8:209. [PMID: 28303139 DOI: 10.3389/fimmu.2017.00209] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 18.5] [Reference Citation Analysis]
93 Anderson JA, Loes AN, Waddell GL, Harms MJ. Tracing the evolution of novel features of human Toll-like receptor 4. Protein Sci 2019;28:1350-8. [PMID: 31075178 DOI: 10.1002/pro.3644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. Expression profiles of toll-like receptors in channel catfish (Ictalurus punctatus) after infection with Ichthyophthirius multifiliis. Fish Shellfish Immunol 2013;35:993-7. [PMID: 23742868 DOI: 10.1016/j.fsi.2013.05.023] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 7.0] [Reference Citation Analysis]
95 Iyer N, Al Qaryoute A, Kacham M, Jagadeeswaran P. Identification of zebrafish ortholog for human coagulation factor IX and its age-dependent expression. J Thromb Haemost 2021;19:2137-50. [PMID: 33974340 DOI: 10.1111/jth.15365] [Reference Citation Analysis]
96 Ribeiro CMS, Hermsen T, Taverne-thiele AJ, Savelkoul HFJ, Wiegertjes GF. Evolution of Recognition of Ligands from Gram-Positive Bacteria: Similarities and Differences in the TLR2-Mediated Response between Mammalian Vertebrates and Teleost Fish. J I 2010;184:2355-68. [DOI: 10.4049/jimmunol.0900990] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 6.1] [Reference Citation Analysis]
97 Shelley LK, Ross PS, Kennedy CJ. The effects of an in vitro exposure to 17β-estradiol and nonylphenol on rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2012;155:440-6. [DOI: 10.1016/j.cbpc.2011.11.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
98 Forlenza M, Fink IR, Raes G, Wiegertjes GF. Heterogeneity of macrophage activation in fish. Dev Comp Immunol 2011;35:1246-55. [PMID: 21414343 DOI: 10.1016/j.dci.2011.03.008] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 6.4] [Reference Citation Analysis]
99 Boltaña S, Tridico R, Teles M, Mackenzie S, Tort L. Lipopolysaccharides isolated from Aeromonas salmonicida and Vibrio anguillarum show quantitative but not qualitative differences in inflammatory outcome in Sparus aurata (Gilthead seabream). Fish Shellfish Immunol 2014;39:475-82. [PMID: 24954838 DOI: 10.1016/j.fsi.2014.06.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
100 Loes AN, Bridgham JT, Harms MJ. Coevolution of the Toll-Like Receptor 4 Complex with Calgranulins and Lipopolysaccharide. Front Immunol 2018;9:304. [PMID: 29515592 DOI: 10.3389/fimmu.2018.00304] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
101 Hansen JD, Vojtech LN, Laing KJ. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol 2011;35:886-97. [PMID: 21241729 DOI: 10.1016/j.dci.2011.01.008] [Cited by in Crossref: 143] [Cited by in F6Publishing: 128] [Article Influence: 14.3] [Reference Citation Analysis]
102 Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol 2020;8:620984. [PMID: 33520995 DOI: 10.3389/fcell.2020.620984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
103 Ye RR, Peterson DR, Seemann F, Kitamura SI, Lee JS, Lau TCK, Tsui SKW, Au DWT. Immune competence assessment in marine medaka (Orzyias melastigma)-a holistic approach for immunotoxicology. Environ Sci Pollut Res Int 2017;24:27687-701. [PMID: 27473621 DOI: 10.1007/s11356-016-7208-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
104 Gao S, Ren Y, Zhang H, Pan B, Gao H. Identification and expression analysis of IκB and NF-κB genes from Cyclina sinensis. Fish & Shellfish Immunology 2016;56:427-35. [DOI: 10.1016/j.fsi.2016.07.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
105 Quiniou SMA, Boudinot P, Bengtén E. Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: identification of novel fish TLRs. Immunogenetics 2013;65:511-30. [DOI: 10.1007/s00251-013-0694-9] [Cited by in Crossref: 89] [Cited by in F6Publishing: 85] [Article Influence: 11.1] [Reference Citation Analysis]