BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maroni L, Pierantonelli I, Banales JM, Benedetti A, Marzioni M. The significance of genetics for cholangiocarcinoma development. Ann Transl Med 2013;1:28. [PMID: 25332972 DOI: 10.3978/j.issn.2305-5839.2012.10.04] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
Number Citing Articles
1 Aravalli RN, Steer CJ. Immune-Mediated Therapies for Liver Cancer. Genes (Basel) 2017;8:E76. [PMID: 28218682 DOI: 10.3390/genes8020076] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
2 Tharehalli U, Svinarenko M, Lechel A. Remodelling and Improvements in Organoid Technology to Study Liver Carcinogenesis in a Dish. Stem Cells Int 2019;2019:3831213. [PMID: 30915124 DOI: 10.1155/2019/3831213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Poruk KE, Pawlik TM, Weiss MJ. Perioperative Management of Hilar Cholangiocarcinoma. J Gastrointest Surg 2015;19:1889-99. [PMID: 26022776 DOI: 10.1007/s11605-015-2854-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 6.7] [Reference Citation Analysis]
4 Zhou Q, Lin M, Feng X, Ma F, Zhu Y, Liu X, Qu C, Sui H, Sun B, Zhu A, Zhang H, Huang H, Gao Z, Zhao Y, Sun J, Bai Y, Jin J, Hong X, Zou C, Zhang Z. Targeting CLK3 inhibits the progression of cholangiocarcinoma by reprogramming nucleotide metabolism. J Exp Med 2020;217:e20191779. [PMID: 32453420 DOI: 10.1084/jem.20191779] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
5 Perez-Montoyo H. Therapeutic Potential of Autophagy Modulation in Cholangiocarcinoma. Cells 2020;9:E614. [PMID: 32143356 DOI: 10.3390/cells9030614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
6 Boonsri B, Yacqub-Usman K, Thintharua P, Myint KZ, Sae-Lao T, Collier P, Suriyonplengsaeng C, Larbcharoensub N, Balasubramanian B, Venkatraman S, Egbuniwe IU, Gomez D, Mukherjee A, Kumkate S, Janvilisri T, Zaitoun AM, Kuakpaetoon T, Tohtong R, Grabowska AM, Bates DO, Wongprasert K. Effect of Combining EGFR Tyrosine Kinase Inhibitors and Cytotoxic Agents on Cholangiocarcinoma Cells. Cancer Res Treat 2021;53:457-70. [PMID: 33070556 DOI: 10.4143/crt.2020.585] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Varamo C, Peraldo-Neia C, Ostano P, Basiricò M, Raggi C, Bernabei P, Venesio T, Berrino E, Aglietta M, Leone F, Cavalloni G. Establishment and Characterization of a New Intrahepatic Cholangiocarcinoma Cell Line Resistant to Gemcitabine. Cancers (Basel) 2019;11:E519. [PMID: 30979003 DOI: 10.3390/cancers11040519] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
8 Brito AF, Abrantes AM, Encarnação JC, Tralhão JG, Botelho MF. Cholangiocarcinoma: from molecular biology to treatment. Med Oncol 2015;32:245. [PMID: 26427701 DOI: 10.1007/s12032-015-0692-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
9 Mosbeh A, Halfawy K, Abdel-Mageed WS, Sweed D, Rahman MHA. Nuclear BAP1 loss is common in intrahepatic cholangiocarcinoma and a subtype of hepatocellular carcinoma but rare in pancreatic ductal adenocarcinoma. Cancer Genet 2018;224-225:21-8. [PMID: 29778232 DOI: 10.1016/j.cancergen.2018.03.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
10 Wu CE, Huang CY, Chen CP, Pan YR, Chang JW, Chen JS, Yeh CN, Lunec J. WIP1 Inhibition by GSK2830371 Potentiates HDM201 through Enhanced p53 Phosphorylation and Activation in Liver Adenocarcinoma Cells. Cancers (Basel) 2021;13:3876. [PMID: 34359777 DOI: 10.3390/cancers13153876] [Reference Citation Analysis]
11 Fehling SC, Miller AL, Garcia PL, Vance RB, Yoon KJ. The combination of BET and PARP inhibitors is synergistic in models of cholangiocarcinoma. Cancer Lett 2020;468:48-58. [PMID: 31605774 DOI: 10.1016/j.canlet.2019.10.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
12 Kwon RJ, Han ME, Kim JY, Liu L, Kim YH, Jung JS, Oh SO. ZHX1 Promotes the Proliferation, Migration and Invasion of Cholangiocarcinoma Cells. PLoS One. 2016;11:e0165516. [PMID: 27835650 DOI: 10.1371/journal.pone.0165516] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
13 Gradilone SA, Pisarello MJL, LaRusso NF. Primary Cilia in Tumor Biology: The Primary Cilium as a Therapeutic Target in Cholangiocarcinoma. Curr Drug Targets 2017;18:958-63. [PMID: 25706257 DOI: 10.2174/1389450116666150223162737] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
14 Lendvai G, Szekerczés T, Illyés I, Dóra R, Kontsek E, Gógl A, Kiss A, Werling K, Kovalszky I, Schaff Z, Borka K. Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis. Pathol Oncol Res 2020;26:3-15. [PMID: 30448973 DOI: 10.1007/s12253-018-0491-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]