BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang H, Shi HB, Yin SK. Polyamidoamine dendrimers as gene delivery carriers in the inner ear: How to improve transfection efficiency. Exp Ther Med 2011;2:777-81. [PMID: 22977574 DOI: 10.3892/etm.2011.296] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Taghavi Pourianazar N, Mutlu P, Gunduz U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2342-1] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 7.9] [Reference Citation Analysis]
2 Flores-Mejía R, Fragoso-Vázquez MJ, Pérez-Blas LG, Parra-Barrera A, Hernández-Castro SS, Estrada-Pérez AR, Rodrígues J, Lara-Padilla E, Ortiz-Morales A, Correa-Basurto J. Chemical characterization (LC-MS-ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021;11:8210. [PMID: 33859258 DOI: 10.1038/s41598-021-87560-w] [Reference Citation Analysis]
3 Amani A, Zare N, Asadi A, Asghari-Zakaria R. Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles. Turk J Biol 2018;42:63-75. [PMID: 30814871 DOI: 10.3906/biy-1706-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
4 Wang J, Cooper RC, Yang H. Polyamidoamine Dendrimer Grafted with an Acid-Responsive Charge-Reversal Layer for Improved Gene Delivery. Biomacromolecules 2020;21:4008-16. [PMID: 32820887 DOI: 10.1021/acs.biomac.0c00580] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiological Reviews. [DOI: 10.1152/physrev.00035.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
6 Zhang X, Hu H, Liu T, Yang Y, Peng Y, Cai Q, Fang L. Multi-armed poly(L-glutamic acid)-graft-polypropyleneinime as effective and serum resistant gene delivery vectors. Int J Pharm 2014;465:444-54. [PMID: 24576809 DOI: 10.1016/j.ijpharm.2014.02.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
7 Sarkar K, Madras G, Chatterjee K. Dendron conjugation to graphene oxide using click chemistry for efficient gene delivery. RSC Adv 2015;5:50196-211. [DOI: 10.1039/c5ra07004j] [Cited by in Crossref: 26] [Article Influence: 3.7] [Reference Citation Analysis]
8 Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today 2018;12:177-90. [PMID: 30511014 DOI: 10.1016/j.apmt.2018.05.002] [Cited by in Crossref: 118] [Cited by in F6Publishing: 101] [Article Influence: 29.5] [Reference Citation Analysis]
9 Mitra RN, Han Z, Merwin M, Al Taai M, Conley SM, Naash MI. Synthesis and characterization of glycol chitosan DNA nanoparticles for retinal gene delivery. ChemMedChem. 2014;9:189-196. [PMID: 24203490 DOI: 10.1002/cmdc.201300371] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
10 Georgiou TK. Star polymers for gene delivery: Star polymers for gene. Polym Int 2014;63:1130-3. [DOI: 10.1002/pi.4718] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
11 Mignani S, Rodrigues J, Roy R, Shi X, Ceña V, El Kazzouli S, Majoral JP. Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discov Today 2019;24:1184-92. [PMID: 30904723 DOI: 10.1016/j.drudis.2019.03.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
12 Mignani S, Rodrigues J, Roy R, Shi X, Ceña V, El Kazzouli S, Majoral J. Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today 2019;24:1184-92. [DOI: 10.1016/j.drudis.2019.03.001] [Reference Citation Analysis]
13 Ziemba B, Franiak-pietryga I, Pion M, Appelhans D, Muñoz-fernández MÁ, Voit B, Bryszewska M, Klajnert-maculewicz B. Toxicity and proapoptotic activity of poly(propylene imine) glycodendrimers in vitro: Considering their contrary potential as biocompatible entity and drug molecule in cancer. International Journal of Pharmaceutics 2014;461:391-402. [DOI: 10.1016/j.ijpharm.2013.12.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
14 Albukhaty S, Naderi-Manesh H, Tiraihi T, Sakhi Jabir M. Poly-l-lysine-coated superparamagnetic nanoparticles: a novel method for the transfection of pro-BDNF into neural stem cells. Artif Cells Nanomed Biotechnol 2018;46:S125-32. [PMID: 30033772 DOI: 10.1080/21691401.2018.1489272] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
15 Ji Y, Qian Y. A study using quantum chemical theory methods on the intrinsic fluorescence emission and the possible emission mechanisms of PAMAM. RSC Adv 2014;4:58788-94. [DOI: 10.1039/c4ra09184a] [Cited by in Crossref: 11] [Article Influence: 1.4] [Reference Citation Analysis]
16 Rai R, Alwani S, Badea I. Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers (Basel) 2019;11:E745. [PMID: 31027272 DOI: 10.3390/polym11040745] [Cited by in Crossref: 70] [Cited by in F6Publishing: 53] [Article Influence: 23.3] [Reference Citation Analysis]
17 Xu X, Zheng J, He Y, Lin K, Li S, Zhang Y, Song P, Zhou Y, Chen X. Nanocarriers for Inner Ear Disease Therapy. Front Cell Neurosci 2021;15:791573. [PMID: 34924960 DOI: 10.3389/fncel.2021.791573] [Reference Citation Analysis]
18 Avila YI, Chandler M, Cedrone E, Newton HS, Richardson M, Xu J, Clogston JD, Liptrott NJ, Afonin KA, Dobrovolskaia MA. Induction of Cytokines by Nucleic Acid Nanoparticles (NANPs) Depends on the Type of Delivery Carrier. Molecules 2021;26:652. [PMID: 33513786 DOI: 10.3390/molecules26030652] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Flores-mejía R, Fragoso-vázquez MJ, Pérez-blas LG, Parra-barrera A, Hernández-castro SS, Estrada-pérez AR, Rodrígues J, Lara-padilla E, Ortiz-morales A, Correa-basurto J. Chemical characterization (LC–MS–ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021;11. [DOI: 10.1038/s41598-021-87560-w] [Reference Citation Analysis]
20 Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:246-65. [DOI: 10.1080/00914037.2020.1825081] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ji Y, Yang X, Qian Y. Poly-amidoamine structure characterization: amide resonance structure of imidic acid (HO–CN) and tertiary ammonium. RSC Adv 2014;4:49535-40. [DOI: 10.1039/c4ra09081k] [Cited by in Crossref: 13] [Article Influence: 1.6] [Reference Citation Analysis]
22 Mishra B, Wilson DR, Sripathi SR, Suprenant MP, Rui Y, Wahlin KJ, Berlinicke CA, Green JJ, Zack DJ. A combinatorial library of biodegradable polyesters enables non-viral gene delivery to post-mitotic human stem cell-derived polarized RPE monolayers. Regen Eng Transl Med 2019;6:273-85. [PMID: 33732871 DOI: 10.1007/s40883-019-00118-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]