BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McCall RL, Sirianni RW. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp 2013;:51015. [PMID: 24429733 DOI: 10.3791/51015] [Cited by in Crossref: 58] [Cited by in F6Publishing: 77] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 2019;9:675-89. [PMID: 31384529 DOI: 10.1016/j.apsb.2019.01.011] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 26.3] [Reference Citation Analysis]
2 Prabhu S, Ananthanarayanan P, Aziz SK, Rai S, Mutalik S, Sadashiva SRB. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity. Toxicology and Applied Pharmacology 2017;320:60-72. [DOI: 10.1016/j.taap.2017.02.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
3 Andima M, Costabile G, Isert L, Ndakala AJ, Derese S, Merkel OM. Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity. Pharmaceutics 2018;10:E232. [PMID: 30445705 DOI: 10.3390/pharmaceutics10040232] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
4 Esposito E, Ruggiero F, Vecchione R, Netti PA. Room Temperature Consolidation of a Porous Poly(lactic-co-glycolic acid) Matrix by the Addition of Maltose to the Water-in-Oil Emulsion. Materials (Basel) 2016;9:E420. [PMID: 28773542 DOI: 10.3390/ma9060420] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
5 Ji J, Torrealba D, Ruyra À, Roher N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology (Basel) 2015;4:664-96. [PMID: 26492276 DOI: 10.3390/biology4040664] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
6 Cruz KP, Patricio BFC, Pires VC, Amorim MF, Pinho AGSF, Quadros HC, Dantas DAS, Chaves MHC, Formiga FR, Rocha HVA, Veras PST. Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Front Chem 2021;9:644827. [PMID: 34055735 DOI: 10.3389/fchem.2021.644827] [Reference Citation Analysis]
7 Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B Biointerfaces 2018;166:37-44. [PMID: 29533842 DOI: 10.1016/j.colsurfb.2018.02.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
8 Booysen E, Bezuidenhout M, van Staden ADP, Dimitrov D, Deane SM, Dicks LMT. Antibacterial Activity of Vancomycin Encapsulated in Poly(DL-lactide-co-glycolide) Nanoparticles Using Electrospraying. Probiotics Antimicrob Proteins 2019;11:310-6. [PMID: 29961212 DOI: 10.1007/s12602-018-9437-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Nader D, Yousef F, Kavanagh N, Ryan BK, Kerrigan SW. Targeting Internalized Staphylococcus aureus Using Vancomycin-Loaded Nanoparticles to Treat Recurrent Bloodstream Infections. Antibiotics (Basel) 2021;10:581. [PMID: 34068975 DOI: 10.3390/antibiotics10050581] [Reference Citation Analysis]
10 Zeeshan M, Ali H, Khan S, Mukhtar M, Khan MI, Arshad M. Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine 2019;14:1945-69. [DOI: 10.2217/nnm-2018-0415] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
11 Dimchevska S, Geskovski N, Petruševski G, Chacorovska M, Popeski-Dimovski R, Ugarkovic S, Goracinova K. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation. Drug Dev Ind Pharm 2017;43:502-10. [PMID: 27910713 DOI: 10.1080/03639045.2016.1268151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
12 Sudame A, Kandasamy G, Singh D, Tomy C, Maity D. Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;606:125355. [DOI: 10.1016/j.colsurfa.2020.125355] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020;22:E153. [PMID: 33375718 DOI: 10.3390/ijms22010153] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng 2018;9:105-27. [PMID: 29579402 DOI: 10.1146/annurev-chembioeng-060817-084055] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 15.5] [Reference Citation Analysis]
15 Yu Z, Zhou T, Luo Y, Dong L, Li C, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Modulation Effects of Toxoplasma gondii Histone H2A1 on Murine Macrophages and Encapsulation with Polymer as a Vaccine Candidate. Vaccines (Basel) 2020;8:E731. [PMID: 33287313 DOI: 10.3390/vaccines8040731] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Gregoriou Y, Gregoriou G, Yilmaz V, Kapnisis K, Prokopi M, Anayiotos A, Strati K, Dietis N, Constantinou AI, Andreou C. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics 2021;5:113-24. [PMID: 33391978 DOI: 10.7150/ntno.51955] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chishti N, Jagwani S, Dhamecha D, Jalalpure S, Dehghan MH. Preparation, Optimization, and In Vivo Evaluation of Nanoparticle-Based Formulation for Pulmonary Delivery of Anticancer Drug. Medicina (Kaunas) 2019;55:E294. [PMID: 31226865 DOI: 10.3390/medicina55060294] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
18 Wu YR, Choi HJ, Kang YG, Kim JK, Shin JW. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine 2017;12:7007-13. [PMID: 29026297 DOI: 10.2147/IJN.S146296] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 5.6] [Reference Citation Analysis]
19 Chhunchha B, Kubo E, Kompella UB, Singh DP. Engineered Sumoylation-Deficient Prdx6 Mutant Protein-Loaded Nanoparticles Provide Increased Cellular Defense and Prevent Lens Opacity. Antioxidants (Basel) 2021;10:1245. [PMID: 34439493 DOI: 10.3390/antiox10081245] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Cunha A, Gaubert A, Latxague L, Dehay B. PLGA-Based Nanoparticles for Neuroprotective Drug Delivery in Neurodegenerative Diseases. Pharmaceutics 2021;13:1042. [PMID: 34371733 DOI: 10.3390/pharmaceutics13071042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Hu B, Gao F, Li C, Zhang B, An M, Lu M, Liu Y, Liu Y. Rhein laden pH-responsive polymeric nanoparticles for treatment of osteoarthritis. AMB Express 2020;10:158. [PMID: 32865763 DOI: 10.1186/s13568-020-01095-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Khanal S, Adhikari U, Rijal NP, Bhattarai SR, Sankar J, Bhattarai N. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium. J Funct Biomater 2016;7:E21. [PMID: 27490577 DOI: 10.3390/jfb7030021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
23 Bracaglia LG, Piotrowski-Daspit AS, Lin CY, Moscato ZM, Wang Y, Tietjen GT, Saltzman WM. High-throughput quantitative microscopy-based half-life measurements of intravenously injected agents. Proc Natl Acad Sci U S A 2020;117:3502-8. [PMID: 32015123 DOI: 10.1073/pnas.1915450117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Umerska A, Gaucher C, Oyarzun-Ampuero F, Fries-Raeth I, Colin F, Villamizar-Sarmiento MG, Maincent P, Sapin-Minet A. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin. Antioxidants (Basel) 2018;7:E46. [PMID: 29587350 DOI: 10.3390/antiox7040046] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
25 Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021;13:2049. [PMID: 34959331 DOI: 10.3390/pharmaceutics13122049] [Reference Citation Analysis]
26 Sharma P, Dando I, Strippoli R, Kumar S, Somoza A, Cordani M, Tafani M. Nanomaterials for Autophagy-Related miRNA-34a Delivery in Cancer Treatment. Front Pharmacol 2020;11:1141. [PMID: 32792960 DOI: 10.3389/fphar.2020.01141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Dutta D, Salifu M, Sirianni RW, Stabenfeldt SE. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning. J Biomed Mater Res A 2016;104:688-96. [PMID: 26517011 DOI: 10.1002/jbm.a.35608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
28 Agarwal S, Mohamed MS, Mizuki T, Maekawa T, Sakthi Kumar D. Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy. J Mater Chem B 2019;7:5896-919. [PMID: 31423502 DOI: 10.1039/c9tb01131e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
29 Nandy A, Lee E, Mandal A, Saremi R, Sharma S. Microencapsulation of retinyl palmitate by melt dispersion for cosmetic application. J Microencapsul 2020;37:205-19. [PMID: 32039634 DOI: 10.1080/02652048.2020.1720029] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Mandal S, Zhou Y, Shibata A, Destache CJ. Confocal fluorescence microscopy: An ultra-sensitive tool used to evaluate intracellular antiretroviral nano-drug delivery in HeLa cells. AIP Adv 2015;5:084803. [PMID: 26221566 DOI: 10.1063/1.4926584] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
31 Prakapenka AV, Quihuis AM, Carson CG, Patel S, Bimonte-Nelson HA, Sirianni RW. Poly(lactic-co-glycolic Acid) Nanoparticle Encapsulated 17β-Estradiol Improves Spatial Memory and Increases Uterine Stimulation in Middle-Aged Ovariectomized Rats. Front Behav Neurosci 2020;14:597690. [PMID: 33424559 DOI: 10.3389/fnbeh.2020.597690] [Reference Citation Analysis]
32 Souery WN, Arun Kumar S, Prasca-Chamorro D, Moore DM, Good J, Bishop CJ. Controlling and quantifying the stability of amino acid-based cargo within polymeric delivery systems. J Control Release 2019;300:102-13. [PMID: 30826372 DOI: 10.1016/j.jconrel.2019.02.042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
33 Tukhvatulin A, Dzharullaeva A, Erokhova A, Zemskaya A, Balyasin M, Ozharovskaia T, Zubkova O, Shevlyagina N, Zhukhovitsky V, Fedyakina I, Pruss I, Shcheblyakov D, Naroditsky B, Logunov D, Gintsburg A. Adjuvantation of an Influenza Hemagglutinin Antigen with TLR4 and NOD2 Agonists Encapsulated in Poly(D,L-Lactide-Co-Glycolide) Nanoparticles Enhances Immunogenicity and Protection against Lethal Influenza Virus Infection in Mice. Vaccines (Basel) 2020;8:E519. [PMID: 32927915 DOI: 10.3390/vaccines8030519] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Amreddy N, Babu A, Muralidharan R, Munshi A, Ramesh R. Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment. Top Curr Chem (Cham) 2017;375:35. [PMID: 28290155 DOI: 10.1007/s41061-017-0128-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
35 Chung EP, Cotter JD, Prakapenka AV, Cook RL, DiPerna DM, Sirianni RW. Targeting Small Molecule Delivery to the Brain and Spinal Cord via Intranasal Administration of Rabies Virus Glycoprotein (RVG29)-Modified PLGA Nanoparticles. Pharmaceutics 2020;12:E93. [PMID: 31991664 DOI: 10.3390/pharmaceutics12020093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
36 Bai H, Xie B, Wang Z, Li M, Sun P, Wei S, Wang W, Wu H, Bai L, Li J. Application of the Tissue-Engineered Plant Scaffold as a Vascular Patch. ACS Omega 2021;6:11595-601. [PMID: 34056315 DOI: 10.1021/acsomega.1c00804] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Ou W, Jiang L, Thapa RK, Soe ZC, Poudel K, Chang JH, Ku SK, Choi HG, Yong CS, Kim JO. Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. Theranostics 2018;8:4574-90. [PMID: 30279723 DOI: 10.7150/thno.26758] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 12.8] [Reference Citation Analysis]
38 Prakapenka AV, Bimonte-Nelson HA, Sirianni RW. Engineering poly(lactic-co-glycolic acid) (PLGA) micro- and nano-carriers for Controlled Delivery of 17β-Estradiol. Ann Biomed Eng 2017;45:1697-709. [PMID: 28634732 DOI: 10.1007/s10439-017-1859-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
39 Allen ME, Golding A, Rus V, Karabin NB, Li S, Lescott CJ, Bobbala S, Scott EA, Szeto GL. Targeted Delivery of Chloroquine to Antigen-Presenting Cells Enhances Inhibition of the Type I Interferon Response. ACS Biomater Sci Eng 2021;7:5666-77. [PMID: 34813288 DOI: 10.1021/acsbiomaterials.1c01047] [Reference Citation Analysis]
40 Zuccari G, Baldassari S, Alfei S, Marengo B, Valenti GE, Domenicotti C, Ailuno G, Villa C, Marchitto L, Caviglioli G. D-α-Tocopherol-Based Micelles for Successful Encapsulation of Retinoic Acid. Pharmaceuticals (Basel) 2021;14:212. [PMID: 33806321 DOI: 10.3390/ph14030212] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Martinez de la Torre C, Grossman JH, Bobko AA, Bennewitz MF. Tuning the size and composition of manganese oxide nanoparticles through varying temperature ramp and aging time. PLoS One 2020;15:e0239034. [PMID: 32946514 DOI: 10.1371/journal.pone.0239034] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Cheng CY, Pho QH, Wu XY, Chin TY, Chen CM, Fang PH, Lin YC, Hsieh MF. PLGA Microspheres Loaded with β-Cyclodextrin Complexes of Epigallocatechin-3-Gallate for the Anti-Inflammatory Properties in Activated Microglial Cells. Polymers (Basel) 2018;10:E519. [PMID: 30966553 DOI: 10.3390/polym10050519] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
43 Jaimes-aguirre L, Morales-avila E, Ocampo-garcía BE, Medina LA, López-téllez G, Gibbens-bandala BV, Izquierdo-sánchez V. Biodegradable poly(D,L-lactide-co-glycolide)/poly(L-γ-glutamic acid) nanoparticles conjugated to folic acid for targeted delivery of doxorubicin. Materials Science and Engineering: C 2017;76:743-51. [DOI: 10.1016/j.msec.2017.03.145] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
44 Kauffman AC, Piotrowski-Daspit AS, Nakazawa KH, Jiang Y, Datye A, Saltzman WM. Tunability of Biodegradable Poly(amine- co-ester) Polymers for Customized Nucleic Acid Delivery and Other Biomedical Applications. Biomacromolecules 2018;19:3861-73. [PMID: 30110158 DOI: 10.1021/acs.biomac.8b00997] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
45 Alkholief M, Albasit H, Alhowyan A, Alshehri S, Raish M, Abul Kalam M, Alshamsan A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm J 2019;27:293-302. [PMID: 30766442 DOI: 10.1016/j.jsps.2018.11.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
46 Cook RL, Householder KT, Chung EP, Prakapenka AV, DiPerna DM, Sirianni RW. A critical evaluation of drug delivery from ligand modified nanoparticles: Confounding small molecule distribution and efficacy in the central nervous system. J Control Release 2015;220:89-97. [PMID: 26471392 DOI: 10.1016/j.jconrel.2015.10.013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
47 Ponnurangam S, O'Connell GD, Hung CT, Somasundaran P. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage. Colloids Surf B Biointerfaces 2015;136:207-13. [PMID: 26398146 DOI: 10.1016/j.colsurfb.2015.08.040] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
48 Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021;18:2015-31. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Reference Citation Analysis]
49 Sirianni RW, Zheng MQ, Patel TR, Shafbauer T, Zhou J, Saltzman WM, Carson RE, Huang Y. Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography. Bioconjug Chem 2014;25:2157-65. [PMID: 25322194 DOI: 10.1021/bc500315j] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
50 Yu Z, Lu Y, Cao W, Aleem MT, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Nano DNA Vaccine Encoding Toxoplasma gondii Histone Deacetylase SIR2 Enhanced Protective Immunity in Mice. Pharmaceutics 2021;13:1582. [PMID: 34683874 DOI: 10.3390/pharmaceutics13101582] [Reference Citation Analysis]
51 Bader AR, Li T, Wang W, Kohane DS, Loscalzo J, Zhang YY. Preparation and characterization of SDF-1α-chitosan-dextran sulfate nanoparticles. J Vis Exp 2015;:52323. [PMID: 25650558 DOI: 10.3791/52323] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
52 Waghulde M, Mujumdar A, Naik J. Preparation and characterization of miglitol-loaded Poly (d, l-lactide-co-glycolide) microparticles using high pressure homogenization-solvent evaporation method. International Journal of Polymeric Materials and Polymeric Biomaterials 2018;68:198-207. [DOI: 10.1080/00914037.2018.1434652] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Householder KT, DiPerna DM, Chung EP, Wohlleb GM, Dhruv HD, Berens ME, Sirianni RW. Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 2015;479:374-80. [PMID: 25562639 DOI: 10.1016/j.ijpharm.2015.01.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 10.4] [Reference Citation Analysis]
54 Yin Q, Yu W, Grzeskowiak CL, Li J, Huang H, Guo J, Chen L, Wang F, Zhao F, von Boehmer L, Metzner TJ, Leppert JT, Chien YH, Kuo CJ, Davis MM. Nanoparticle-enabled innate immune stimulation activates endogenous tumor-infiltrating T cells with broad antigen specificities. Proc Natl Acad Sci U S A 2021;118:e2016168118. [PMID: 34021082 DOI: 10.1073/pnas.2016168118] [Reference Citation Analysis]
55 Kelly SJ, Hirani A, Shahidadpury V, Solanki A, Halasz K, Varghese Gupta S, Madow B, Sutariya V. Aflibercept Nanoformulation Inhibits VEGF Expression in Ocular In Vitro Model: A Preliminary Report. Biomedicines 2018;6:E92. [PMID: 30208574 DOI: 10.3390/biomedicines6030092] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
56 Hung HI, Klein OJ, Peterson SW, Rokosh SR, Osseiran S, Nowell NH, Evans CL. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro. Sci Rep 2016;6:33234. [PMID: 27686626 DOI: 10.1038/srep33234] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
57 Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y. Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics 2017;7:2575-92. [PMID: 28819448 DOI: 10.7150/thno.20118] [Cited by in Crossref: 98] [Cited by in F6Publishing: 96] [Article Influence: 19.6] [Reference Citation Analysis]
58 Medina DX, Householder KT, Ceton R, Kovalik T, Heffernan JM, Shankar RV, Bowser RP, Wechsler-Reya RJ, Sirianni RW. Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo. J Control Release 2017;253:172-82. [PMID: 28263836 DOI: 10.1016/j.jconrel.2017.02.033] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
59 Moeinzadeh S, Jabbari E. Nanoparticles and Their Applications. In: Bhushan B, editor. Springer Handbook of Nanotechnology. Berlin: Springer Berlin Heidelberg; 2017. pp. 335-61. [DOI: 10.1007/978-3-662-54357-3_11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Tiribocchi A, Montessori A, Lauricella M, Bonaccorso F, Succi S, Aime S, Milani M, Weitz DA. The vortex-driven dynamics of droplets within droplets. Nat Commun 2021;12:82. [PMID: 33398018 DOI: 10.1038/s41467-020-20364-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
61 Sutariya V, Kelly SJ, Weigel RG, Tur J, Halasz K, Sharma NS, Tipparaju SM. Nanoparticle drug delivery characterization for fluticasone propionate and in vitro testing 1. Can J Physiol Pharmacol 2019;97:675-84. [PMID: 31100204 DOI: 10.1139/cjpp-2018-0569] [Reference Citation Analysis]
62 Mohan S, Raghavendran HB, Karunanithi P, Murali MR, Naveen SV, Talebian S, Mehrali M, Mehrali M, Natarajan E, Chan CK, Kamarul T. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic- co -glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells. ACS Appl Mater Interfaces 2017;9:9291-303. [DOI: 10.1021/acsami.6b13422] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
63 Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021;12:660932. [PMID: 33936096 DOI: 10.3389/fimmu.2021.660932] [Reference Citation Analysis]
64 He Y, Wang M, Fu M, Yuan X, Luo Y, Qiao B, Cao J, Wang Z, Hao L, Yuan G. Iron(II) phthalocyanine Loaded and AS1411 Aptamer Targeting Nanoparticles: A Nanocomplex for Dual Modal Imaging and Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020;15:5927-49. [PMID: 32848397 DOI: 10.2147/IJN.S254108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Langert KA, Goshu B, Stubbs EB Jr. Attenuation of experimental autoimmune neuritis with locally administered lovastatin-encapsulating poly(lactic-co-glycolic) acid nanoparticles. J Neurochem 2017;140:334-46. [PMID: 27861905 DOI: 10.1111/jnc.13892] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
66 Park J, Ramanathan R, Pham L, Woodrow KA. Chitosan enhances nanoparticle delivery from the reproductive tract to target draining lymphoid organs. Nanomedicine 2017;13:2015-25. [PMID: 28435136 DOI: 10.1016/j.nano.2017.04.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
67 Onesto V, Di Natale C, Profeta M, Netti PA, Vecchione R. Engineered PLGA-PVP/VA based formulations to produce electro-drawn fast biodegradable microneedles for labile biomolecule delivery. Prog Biomater 2020;9:203-17. [PMID: 33141337 DOI: 10.1007/s40204-020-00143-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Wong LR, Wong P, Ho PC. Metabolic Profiling of Female Tg2576 Mouse Brains Provides Novel Evidence Supporting Intranasal Low-Dose Pioglitazone for Long-Term Treatment at an Early Stage of Alzheimer's Disease. Biomedicines 2020;8:E589. [PMID: 33317213 DOI: 10.3390/biomedicines8120589] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
69 Devasvaran K, Jairaman S, Yahaya NA, Jaganath IBS, Khung YL, Lim V, Ngalim SH. PEG-b-PLGA Nanoparticles Loaded with Geraniin from Phyllanthus Watsonii Extract as a Phytochemical Delivery Model. Applied Sciences 2020;10:4891. [DOI: 10.3390/app10144891] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Nath P, Hamadna SS, Karamchand L, Foster J, Kopelman R, Amar JG, Ray A. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst 2021;146:3933-41. [PMID: 33982697 DOI: 10.1039/d1an00456e] [Reference Citation Analysis]
71 Kobes JE, Daryaei I, Howison CM, Bontrager JG, Sirianni RW, Meuillet EJ, Pagel MD. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor. Pancreas 2016;45:1158-66. [PMID: 26918875 DOI: 10.1097/MPA.0000000000000607] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
72 Sinclair A, O'Kelly MB, Bai T, Hung HC, Jain P, Jiang S. Self-Healing Zwitterionic Microgels as a Versatile Platform for Malleable Cell Constructs and Injectable Therapies. Adv Mater 2018;30:e1803087. [PMID: 30066374 DOI: 10.1002/adma.201803087] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
73 Gambles MT, Fan B, Borecki A, Gillies ER. Hybrid Polyester Self-Immolative Polymer Nanoparticles for Controlled Drug Release. ACS Omega 2018;3:5002-11. [PMID: 31458713 DOI: 10.1021/acsomega.8b00534] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
74 ÖztÜrk N, Kara A, Vural İ. Formulation and In Vitro Evaluation of Telmisartan Nanoparticles Prepared by Emulsion-Solvent Evaporation Technique. Turk J Pharm Sci 2020;17:492-9. [PMID: 33177929 DOI: 10.4274/tjps.galenos.2019.76402] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
75 Mocanu AG, Belu I, Croitoru O, Ciocîlteu MV, Manda CV, Neamtu J. Formulation and Characterization of Ciprofloxacin loaded PLGA Microspheres for Applications in Orthopedic Infections. Curr Health Sci J 2017;43:306-10. [PMID: 30595894 DOI: 10.12865/CHSJ.43.04.03] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
76 Dutta D, Fauer C, Mulleneux HL, Stabenfeldt SE. Tunable Controlled Release of Bioactive SDF-1α via Protein Specific Interactions within Fibrin/Nanoparticle Composites. J Mater Chem B 2015;3:7963-73. [PMID: 26660666 DOI: 10.1039/C5TB00935A] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
77 Haque S, Boyd BJ, McIntosh MP, Pouton CW, Kaminskas LM, Whittaker M. Suggested Procedures for the Reproducible Synthesis of Poly(d,l-lactide-co-glycolide) Nanoparticles Using the Emulsification Solvent Diffusion Platform. Curr Nanosci 2018;14:448-53. [PMID: 30532669 DOI: 10.2174/1573413714666180313130235] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
78 Jiang J, Xiao J, Wang D, Cai H. Application of Implantable Polylactic-Co-Glycolic Acid Microcapsule in Repairing Alveolar Bone Defects. Evid Based Complement Alternat Med 2021;2021:5580785. [PMID: 34367304 DOI: 10.1155/2021/5580785] [Reference Citation Analysis]
79 López-Royo T, Sebastián V, Moreno-Martínez L, Uson L, Yus C, Alejo T, Zaragoza P, Osta R, Arruebo M, Manzano R. Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods. Nanomaterials (Basel) 2021;11:2723. [PMID: 34685164 DOI: 10.3390/nano11102723] [Reference Citation Analysis]
80 Ikeda M, Akagi T, Nagao M, Akashi M. Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly(γ-glutamic acid) nanoparticles. Anal Bioanal Chem 2018;410:4445-57. [PMID: 29931574 DOI: 10.1007/s00216-018-1099-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
81 Mcnew CP, Wang C, Walter MT, Dahlke HE. Fabrication, detection, and analysis of DNA-labeled PLGA particles for environmental transport studies. Journal of Colloid and Interface Science 2018;526:207-19. [DOI: 10.1016/j.jcis.2018.04.059] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
82 Makkar H, Patri G. Fabrication and Appraisal of Poly (Lactic-Co-Glycolic Acid) - Moxifloxacin Nanoparticles using Vitamin E-TPGS: A Potential Intracanal Drug Delivery Agent. J Clin Diagn Res 2017;11:ZC05-8. [PMID: 28764283 DOI: 10.7860/JCDR/2017/27633.9957] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]