BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Müller L, Brighton LE, Carson JL, Fischer WA 2nd, Jaspers I. Culturing of human nasal epithelial cells at the air liquid interface. J Vis Exp 2013. [PMID: 24145828 DOI: 10.3791/50646] [Cited by in Crossref: 44] [Cited by in F6Publishing: 60] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Charles DD, Fisher JR, Hoskinson SM, Medina-Colorado AA, Shen YC, Chaaban MR, Widen SG, Eaves-Pyles TD, Maxwell CA, Miller AL, Popov VL, Pyles RB. Development of a Novel ex vivo Nasal Epithelial Cell Model Supporting Colonization With Human Nasal Microbiota. Front Cell Infect Microbiol 2019;9:165. [PMID: 31165051 DOI: 10.3389/fcimb.2019.00165] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
2 Brocke SA, Billings GT, Taft-Benz S, Alexis NE, Heise MT, Jaspers I. Woodsmoke particulates alter expression of antiviral host response genes in human nasal epithelial cells infected with SARS-CoV-2 in a sex-dependent manner. bioRxiv 2021:2021. [PMID: 34462747 DOI: 10.1101/2021.08.23.457411] [Reference Citation Analysis]
3 Yeo AJ, Henningham A, Fantino E, Galbraith S, Krause L, Wainwright CE, Sly PD, Lavin MF. Increased susceptibility of airway epithelial cells from ataxia-telangiectasia to S. pneumoniae infection due to oxidative damage and impaired innate immunity. Sci Rep 2019;9:2627. [PMID: 30796268 DOI: 10.1038/s41598-019-38901-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
4 Martens A, Amann G, Schmidt K, Gaupmann R, Böhm B, Dehlink E, Szépfalusi Z, Förster-Waldl E, Berger A, Fyhrquist N, Alenius H, Wisgrill L. An optimized, robust and reproducible protocol to generate well-differentiated primary nasal epithelial models from extremely premature infants. Sci Rep 2019;9:20069. [PMID: 31882915 DOI: 10.1038/s41598-019-56737-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Al-Sayed AA, Agu RU, Massoud E. Models for the study of nasal and sinus physiology in health and disease: A review of the literature. Laryngoscope Investig Otolaryngol 2017;2:398-409. [PMID: 29299515 DOI: 10.1002/lio2.117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
6 Liu Z, Anderson JD, Deng L, Mackay S, Bailey J, Kersh L, Rowe SM, Guimbellot JS. Human Nasal Epithelial Organoids for Therapeutic Development in Cystic Fibrosis. Genes (Basel) 2020;11:E603. [PMID: 32485957 DOI: 10.3390/genes11060603] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
7 Ong HX, Jackson CL, Cole JL, Lackie PM, Traini D, Young PM, Lucas J, Conway J. Primary Air–Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery. Mol Pharmaceutics 2016;13:2242-52. [DOI: 10.1021/acs.molpharmaceut.5b00852] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
8 Basu A, Pamreddy A, Singh P, Sharma K. An Adverse Outcomes Approach to Study the Effects of SARS-CoV-2 in 3D Organoid Models. J Mol Biol 2021;:167213. [PMID: 34437890 DOI: 10.1016/j.jmb.2021.167213] [Reference Citation Analysis]
9 Gianotti A, Delpiano L, Caci E. In vitro Methods for the Development and Analysis of Human Primary Airway Epithelia. Front Pharmacol 2018;9:1176. [PMID: 30416443 DOI: 10.3389/fphar.2018.01176] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
10 Bermejo-Jambrina M, Eder J, Kaptein TM, van Hamme JL, Helgers LC, Vlaming KE, Brouwer PJM, van Nuenen AC, Spaargaren M, de Bree GJ, Nijmeijer BM, Kootstra NA, van Gils MJ, Sanders RW, Geijtenbeek TBH. Infection and transmission of SARS-CoV-2 depend on heparan sulfate proteoglycans. EMBO J 2021;40:e106765. [PMID: 34510494 DOI: 10.15252/embj.2020106765] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Belgacemi R, Luczka E, Ancel J, Diabasana Z, Perotin JM, Germain A, Lalun N, Birembaut P, Dubernard X, Mérol JC, Delepine G, Polette M, Deslée G, Dormoy V. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 2020;51:102572. [PMID: 31877414 DOI: 10.1016/j.ebiom.2019.11.033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
12 Carson JL, Zhou L, Brighton L, Mills KH, Zhou H, Jaspers I, Hazucha M. Temporal structure/function variation in cultured differentiated human nasal epithelium associated with acute single exposure to tobacco smoke or E-cigarette vapor. Inhal Toxicol 2017;29:137-44. [PMID: 28470140 DOI: 10.1080/08958378.2017.1318985] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
13 Lee M, Kim DW, Khalmuratova R, Shin SH, Kim YM, Han DH, Kim HJ, Kim DY, Rhee CS, Park JW, Shin HW. The IFN-γ-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition. Mucosal Immunol 2019;12:601-11. [PMID: 30804419 DOI: 10.1038/s41385-019-0149-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
14 Ancel J, Belgacemi R, Diabasana Z, Perotin JM, Bonnomet A, Dewolf M, Launois C, Mulette P, Deslée G, Polette M, Dormoy V. Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics (Basel) 2021;11:1579. [PMID: 34573921 DOI: 10.3390/diagnostics11091579] [Reference Citation Analysis]
15 Yasuda M, Inui TA, Hirano S, Asano S, Okazaki T, Inui T, Marunaka Y, Nakahari T. Intracellular Cl- Regulation of Ciliary Beating in Ciliated Human Nasal Epithelial Cells: Frequency and Distance of Ciliary Beating Observed by High-Speed Video Microscopy. Int J Mol Sci 2020;21:E4052. [PMID: 32517062 DOI: 10.3390/ijms21114052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Escobar YH, Morrison CB, Chen Y, Hickman E, Love CA, Rebuli ME, Surratt JD, Ehre C, Jaspers I. Differential responses to e-cig generated aerosols from humectants and different forms of nicotine in epithelial cells from nonsmokers and smokers. Am J Physiol Lung Cell Mol Physiol 2021;320:L1064-73. [PMID: 33825493 DOI: 10.1152/ajplung.00525.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bovard D, Giralt A, Trivedi K, Neau L, Kanellos P, Iskandar A, Kondylis A, Luettich K, Frentzel S, Hoeng J, Peitsch MC. Comparison of the basic morphology and function of 3D lung epithelial cultures derived from several donors. Curr Res Toxicol 2020;1:56-69. [PMID: 34345837 DOI: 10.1016/j.crtox.2020.08.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hristova M, Habibovic A, Veith C, Janssen-Heininger YM, Dixon AE, Geiszt M, van der Vliet A. Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol 2016;137:1545-1556.e11. [PMID: 26597162 DOI: 10.1016/j.jaci.2015.10.003] [Cited by in Crossref: 82] [Cited by in F6Publishing: 88] [Article Influence: 11.7] [Reference Citation Analysis]
19 Lee JT, Basak S. Cytotoxic Effects of N,N-Diethyl-Meta-Toluamide (DEET) on Sinonasal Epithelia. OTO Open 2021;5:2473974X211009232. [PMID: 34017935 DOI: 10.1177/2473974X211009232] [Reference Citation Analysis]
20 Guimbellot JS, Leach JM, Chaudhry IG, Quinney NL, Boyles SE, Chua M, Aban I, Jaspers I, Gentzsch M. Nasospheroids permit measurements of CFTR-dependent fluid transport. JCI Insight 2017;2:95734. [PMID: 29202459 DOI: 10.1172/jci.insight.95734] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
21 Habibovic A, Hristova M, Heppner DE, Danyal K, Ather JL, Janssen-Heininger YM, Irvin CG, Poynter ME, Lundblad LK, Dixon AE, Geiszt M, van der Vliet A. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 2016;1:e88811. [PMID: 27812543 DOI: 10.1172/jci.insight.88811] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 6.7] [Reference Citation Analysis]
22 Barron SL, Saez J, Owens RM. In Vitro Models for Studying Respiratory Host-Pathogen Interactions. Adv Biol (Weinh) 2021;5:e2000624. [PMID: 33943040 DOI: 10.1002/adbi.202000624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Carson JL, Brighton LE, Jaspers I. Phenotypic Modification of Human Airway Epithelial Cells in Air–Liquid Interface Culture Induced by Exposure to the Tobacco-Specific Nitrosamine 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Ultrastructural Pathology 2015;39:104-9. [DOI: 10.3109/01913123.2014.960546] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
24 Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021;12:683002. [PMID: 34489934 DOI: 10.3389/fimmu.2021.683002] [Reference Citation Analysis]
25 Shair KHY, Reddy A, Cooper VS. New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma. Cancers (Basel) 2018;10:E86. [PMID: 29561768 DOI: 10.3390/cancers10040086] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
26 Stanke F, Janciauskiene S, Tamm S, Wrenger S, Raddatz EL, Jonigk D, Braubach P. Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface. Molecules 2021;26:2639. [PMID: 33946490 DOI: 10.3390/molecules26092639] [Reference Citation Analysis]
27 Inui TA, Murakami K, Yasuda M, Hirano S, Ikeuchi Y, Kogiso H, Hosogi S, Inui T, Marunaka Y, Nakahari T. Ciliary beating amplitude controlled by intracellular Cl- and a high rate of CO2 production in ciliated human nasal epithelial cells. Pflugers Arch 2019;471:1127-42. [PMID: 31104127 DOI: 10.1007/s00424-019-02280-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
28 Weight CM, Venturini C, Pojar S, Jochems SP, Reiné J, Nikolaou E, Solórzano C, Noursadeghi M, Brown JS, Ferreira DM, Heyderman RS. Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nat Commun 2019;10:3060. [PMID: 31311921 DOI: 10.1038/s41467-019-11005-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
29 Bustamante-Marin XM, Yin WN, Sears PR, Werner ME, Brotslaw EJ, Mitchell BJ, Jania CM, Zeman KL, Rogers TD, Herring LE, Refabért L, Thomas L, Amselem S, Escudier E, Legendre M, Grubb BR, Knowles MR, Zariwala MA, Ostrowski LE. Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019;104:229-45. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 12.7] [Reference Citation Analysis]
30 Tratnjek L, Kreft M, Kristan K, Kreft ME. Ciliary beat frequency of in vitro human nasal epithelium measured with the simple high-speed microscopy is applicable for safety studies of nasal drug formulations. Toxicology in Vitro 2020;66:104865. [DOI: 10.1016/j.tiv.2020.104865] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Veit G, Roldan A, Hancock MA, Da Fonte DF, Xu H, Hussein M, Frenkiel S, Matouk E, Velkov T, Lukacs GL. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight 2020;5:139983. [PMID: 32853178 DOI: 10.1172/jci.insight.139983] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
32 Saint-Criq V, Delpiano L, Casement J, Onuora JC, Lin J, Gray MA. Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020;9:E2137. [PMID: 32967385 DOI: 10.3390/cells9092137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Caves EA, Cook SA, Lee N, Stoltz D, Watkins S, Shair KHY. Air-Liquid Interface Method To Study Epstein-Barr Virus Pathogenesis in Nasopharyngeal Epithelial Cells. mSphere 2018;3:e00152-18. [PMID: 30021875 DOI: 10.1128/mSphere.00152-18] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
34 Zavala J, Freedman AN, Szilagyi JT, Jaspers I, Wambaugh JF, Higuchi M, Rager JE. New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. Int J Environ Res Public Health 2020;17:E2124. [PMID: 32210027 DOI: 10.3390/ijerph17062124] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
35 Reula A, Pellicer D, Castillo S, Magallón M, Armengot M, Herrera G, O'Connor JE, Bañuls L, Navarro-García MM, Escribano A, Dasí F. New Laboratory Protocol to Determine the Oxidative Stress Profile of Human Nasal Epithelial Cells Using Flow Cytometry. J Clin Med 2021;10:1172. [PMID: 33799667 DOI: 10.3390/jcm10061172] [Reference Citation Analysis]
36 Aydin M, Naumova EA, Bellm A, Behrendt AK, Giachero F, Bahlmann N, Zhang W, Wirth S, Paulsen F, Arnold WH, Ehrhardt A. From Submerged Cultures to 3D Cell Culture Models: Evolution of Nasal Epithelial Cells in Asthma Research and Virus Infection. Viruses 2021;13:387. [PMID: 33670992 DOI: 10.3390/v13030387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Noutsios GT, Willis AL, Ledford JG, Chang EH. Novel role of surfactant protein A in bacterial sinusitis. Int Forum Allergy Rhinol 2017;7:897-903. [PMID: 28727907 DOI: 10.1002/alr.21985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
38 De Rudder C, Calatayud Arroyo M, Lebeer S, Van de Wiele T. Modelling upper respiratory tract diseases: getting grips on host-microbe interactions in chronic rhinosinusitis using in vitro technologies. Microbiome 2018;6:75. [PMID: 29690931 DOI: 10.1186/s40168-018-0462-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
39 Caves EA, Butch RM, Cook SA, Wasil LR, Chen C, Di YP, Lee N, Shair KHY. Latent Membrane Protein 1 Is a Novel Determinant of Epstein-Barr Virus Genome Persistence and Reactivation. mSphere 2017;2:e00453-17. [PMID: 29134204 DOI: 10.1128/mSphereDirect.00453-17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
40 Jochems SP, Piddock K, Rylance J, Adler H, Carniel BF, Collins A, Gritzfeld JF, Hancock C, Hill H, Reiné J, Seddon A, Solórzano C, Sunny S, Trimble A, Wright AD, Zaidi S, Gordon SB, Ferreira DM. Novel Analysis of Immune Cells from Nasal Microbiopsy Demonstrates Reliable, Reproducible Data for Immune Populations, and Superior Cytokine Detection Compared to Nasal Wash. PLoS One 2017;12:e0169805. [PMID: 28107457 DOI: 10.1371/journal.pone.0169805] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 7.2] [Reference Citation Analysis]
41 Banerjee A, Haswell LE, Baxter A, Parmar A, Azzopardi D, Corke S, Thorne D, Adamson J, Mushonganono J, Gaca MD, Minet E. Differential Gene Expression Using RNA Sequencing Profiling in a Reconstituted Airway Epithelium Exposed to Conventional Cigarette Smoke or Electronic Cigarette Aerosols. Applied In Vitro Toxicology 2017;3:84-98. [DOI: 10.1089/aivt.2016.0024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
42 Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Ogishima J, Eguchi S, Yamashita A, Tomio K, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T. Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment. Oncotarget 2017;8:40935-45. [PMID: 28402962 DOI: 10.18632/oncotarget.16783] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
43 Kreft ME, Tratnjek L, Lasič E, Hevir N, Rižner TL, Kristan K. Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells. Pharm Res 2020;37:170. [PMID: 32820417 DOI: 10.1007/s11095-020-02905-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 John S, Kesting MR, Paulitschke P, Stöckelhuber M, von Bomhard A. Development of a tissue-engineered skin substitute on a base of human amniotic membrane. J Tissue Eng 2019;10:2041731418825378. [PMID: 30746119 DOI: 10.1177/2041731418825378] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
45 Carson JL, Hernandez M, Jaspers I, Mills K, Brighton L, Zhou H, Zhang J, Hazucha MJ. Interleukin-13 stimulates production of nitric oxide in cultured human nasal epithelium. In Vitro Cell Dev Biol Anim 2018;54:200-4. [PMID: 29380192 DOI: 10.1007/s11626-018-0233-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Powell H, Liu H, Pekosz A. Changes in sialic acid binding associated with egg adaptation decrease live attenuated influenza virus replication in human nasal epithelial cell cultures. Vaccine 2021;39:3225-35. [PMID: 33985852 DOI: 10.1016/j.vaccine.2021.04.057] [Reference Citation Analysis]
47 Schagen J, Sly PD, Fantino E. Characterizing well-differentiated culture of primary human nasal epithelial cells for use in wound healing assays. Lab Invest 2018;98:1478-86. [PMID: 30089850 DOI: 10.1038/s41374-018-0100-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
48 Avramescu RG, Kai Y, Xu H, Bidaud-Meynard A, Schnúr A, Frenkiel S, Matouk E, Veit G, Lukacs GL. Mutation-specific downregulation of CFTR2 variants by gating potentiators. Hum Mol Genet 2017;26:4873-85. [PMID: 29040544 DOI: 10.1093/hmg/ddx367] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
49 Marthin JK, Stevens EM, Larsen LA, Christensen ST, Nielsen KG. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium: a simple methodological approach for ex vivo studies of primary ciliary dyskinesia. Cilia 2017;6:3. [PMID: 28344781 DOI: 10.1186/s13630-017-0049-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
50 John S, Kesting MR, Stoeckelhuber M, von Bomhard A. Evaluation of Tissue-engineered Skin on Base of Human Amniotic Membrane for Wound Healing. Plast Reconstr Surg Glob Open 2019;7:e2320. [PMID: 31942350 DOI: 10.1097/GOX.0000000000002320] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Gomes Dos Reis L, Ghadiri M, Young P, Traini D. Nasal Powder Formulation of Tranexamic Acid and Hyaluronic Acid for the Treatment of Epistaxis. Pharm Res 2020;37:186. [PMID: 32888133 DOI: 10.1007/s11095-020-02913-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, Pawlak EA, Dhingra R, Noah TL, Jaspers I. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021;64:126-37. [PMID: 33095645 DOI: 10.1165/rcmb.2020-0164OC] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
53 Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020;16:e1008691. [PMID: 32764743 DOI: 10.1371/journal.pgen.1008691] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
54 Inui TA, Yasuda M, Hirano S, Ikeuchi Y, Kogiso H, Inui T, Marunaka Y, Nakahari T. Daidzein-Stimulated Increase in the Ciliary Beating Amplitude via an [Cl-]i Decrease in Ciliated Human Nasal Epithelial Cells. Int J Mol Sci 2018;19:E3754. [PMID: 30486295 DOI: 10.3390/ijms19123754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
55 Routhier J, Pons S, Freidja ML, Dalstein V, Cutrona J, Jonquet A, Lalun N, Mérol JC, Lathrop M, Stitzel JA, Kervoaze G, Pichavant M, Gosset P, Tournier JM, Birembaut P, Dormoy V, Maskos U. An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat Commun 2021;12:6384. [PMID: 34737286 DOI: 10.1038/s41467-021-26637-6] [Reference Citation Analysis]
56 Diabasana Z, Perotin JM, Belgacemi R, Ancel J, Mulette P, Launois C, Delepine G, Dubernard X, Mérol JC, Ruaux C, Gosset P, Maskos U, Polette M, Deslée G, Dormoy V. Chr15q25 Genetic Variant rs16969968 Alters Cell Differentiation in Respiratory Epithelia. Int J Mol Sci 2021;22:6657. [PMID: 34206324 DOI: 10.3390/ijms22136657] [Reference Citation Analysis]
57 Wu X, Mimms R, Banigan M, Lee M, Elkis V, Peters-Hall JR, Mubeen H, Joselow A, Peña MT, Rose MC. Development of glandular models from human nasal progenitor cells. Am J Respir Cell Mol Biol 2015;52:535-42. [PMID: 25412193 DOI: 10.1165/rcmb.2013-0259MA] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
58 Chason KD, Jaspers I, Parker J, Sellers S, Brighton LE, Hunsucker SA, Armistead PM, Fischer WA 2nd. Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. J Gerontol A Biol Sci Med Sci 2018;73:1643-50. [PMID: 29878083 DOI: 10.1093/gerona/gly126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
59 Li Y, Wu Q, Huang L, Yuan C, Wang J, Yang Q. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nat Commun 2018;9:3811. [PMID: 30232333 DOI: 10.1038/s41467-018-06056-w] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
60 Veit G, Xu H, Dreano E, Avramescu RG, Bagdany M, Beitel LK, Roldan A, Hancock MA, Lay C, Li W, Morin K, Gao S, Mak PA, Ainscow E, Orth AP, McNamara P, Edelman A, Frenkiel S, Matouk E, Sermet-Gaudelus I, Barnes WG, Lukacs GL. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 2018;24:1732-42. [PMID: 30297908 DOI: 10.1038/s41591-018-0200-x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 14.3] [Reference Citation Analysis]
61 Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The human nose organoid respiratory virus model: an ex-vivo human challenge model to study RSV and SARS-CoV-2 pathogenesis and evaluate therapeutics. bioRxiv 2021:2021. [PMID: 34341793 DOI: 10.1101/2021.07.28.453844] [Cited by in F6Publishing: 1] [Reference Citation Analysis]