BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yi YM, Yang TY, Pan WM. Preparation and distribution of 5-fluorouracil 125I sodium alginate-bovine serum albumin nanoparticles. World J Gastroenterol 1999; 5(1): 57-60 [PMID: 11819388 DOI: 10.3748/wjg.v5.i1.57] [Cited by in CrossRef: 36] [Cited by in F6Publishing: 28] [Article Influence: 1.6] [Reference Citation Analysis]
Number Citing Articles
1 He J, Li R, Sun X, Wang W, Hu J, Xie H, Yin H. Effects of Calcium Alginate Submicroparticles on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). Polymers (Basel) 2018;10:E1154. [PMID: 30961078 DOI: 10.3390/polym10101154] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
2 Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017;6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
3 He YC, Chen JW, Cao J, Pan DY, Qiao JG. Toxicities and therapeutic effect of 5-fluorouracil controlled release implant on tumor-bearing rats. World J Gastroenterol 2003; 9(8): 1795-1798 [PMID: 12918123 DOI: 10.3748/wjg.v9.i8.1795] [Cited by in CrossRef: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.2] [Reference Citation Analysis]
4 Podaralla S, Perumal O. Influence of formulation factors on the preparation of zein nanoparticles. AAPS PharmSciTech 2012;13:919-27. [PMID: 22733374 DOI: 10.1208/s12249-012-9816-1] [Cited by in Crossref: 80] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
5 Feng S, Chien S. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chemical Engineering Science 2003;58:4087-114. [DOI: 10.1016/s0009-2509(03)00234-3] [Cited by in Crossref: 239] [Cited by in F6Publishing: 1] [Article Influence: 13.3] [Reference Citation Analysis]
6 Sosnik A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN Pharm 2014;2014:926157. [PMID: 25101184 DOI: 10.1155/2014/926157] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
7 Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60:1638-49. [PMID: 18840488 DOI: 10.1016/j.addr.2008.08.002] [Cited by in Crossref: 1248] [Cited by in F6Publishing: 1017] [Article Influence: 96.0] [Reference Citation Analysis]
8 Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019;25:1312-34. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 50.0] [Reference Citation Analysis]
9 Kumar PV, Jain NK. Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles. AAPS PharmSciTech 2007;8:17. [PMID: 17408217 DOI: 10.1208/pt0801017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
10 Salatin S, Jelvehgari M, Maleki-Dizaj S, Adibkia K. A sight on protein-based nanoparticles as drug/gene delivery systems. Ther Deliv 2015;6:1017-29. [PMID: 26305428 DOI: 10.4155/tde.15.28] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
11 Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012;157:168-82. [PMID: 21839127 DOI: 10.1016/j.jconrel.2011.07.031] [Cited by in Crossref: 791] [Cited by in F6Publishing: 722] [Article Influence: 79.1] [Reference Citation Analysis]
12 Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016;8:E30. [PMID: 30979124 DOI: 10.3390/polym8020030] [Cited by in Crossref: 76] [Cited by in F6Publishing: 49] [Article Influence: 15.2] [Reference Citation Analysis]
13 Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science 2014;209:163-71. [DOI: 10.1016/j.cis.2014.03.009] [Cited by in Crossref: 228] [Cited by in F6Publishing: 168] [Article Influence: 32.6] [Reference Citation Analysis]
14 Rutkowski S, Mu L, Si T, Gai M, Sun M, Frueh J, He Q. Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting. Colloids and Surfaces B: Biointerfaces 2019;175:44-55. [DOI: 10.1016/j.colsurfb.2018.11.068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Chavanpatil MD, Khdair A, Panyam J. Surfactant-polymer Nanoparticles: A Novel Platform for Sustained and Enhanced Cellular Delivery of Water-soluble Molecules. Pharm Res 2007;24:803-10. [DOI: 10.1007/s11095-006-9203-2] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 5.3] [Reference Citation Analysis]
16 Martínez A, Olmo R, Iglesias I, Teijón JM, Blanco MD. Folate-Targeted Nanoparticles Based on Albumin and Albumin/Alginate Mixtures as Controlled Release Systems of Tamoxifen: Synthesis and In Vitro Characterization. Pharm Res 2014;31:182-93. [DOI: 10.1007/s11095-013-1151-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
17 Nait Mohamed FA, Laraba-djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming. Vaccine 2016;34:2692-9. [DOI: 10.1016/j.vaccine.2016.04.035] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
18 Abedini F, Ebrahimi M, Roozbehani AH, Domb AJ, Hosseinkhani H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym Adv Technol 2018;29:2564-73. [DOI: 10.1002/pat.4375] [Cited by in Crossref: 54] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
19 Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater 2010;11:014104. [PMID: 27877319 DOI: 10.1088/1468-6996/11/1/014104] [Cited by in Crossref: 166] [Cited by in F6Publishing: 138] [Article Influence: 15.1] [Reference Citation Analysis]
20 Farazuddin M, Chauhan A, Khan RM, Owais M. Amoxicillin-bearing microparticles: potential in the treatment of Listeria monocytogenes infection in Swiss albino mice. Biosci Rep 2011;31:265-72. [PMID: 20687896 DOI: 10.1042/BSR20100027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
21 Majuru S, Oyewumi MO. Nanotechnology in Drug Development and Life Cycle Management. In: de Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in Drug Delivery. New York: Springer; 2009. pp. 597-619. [DOI: 10.1007/978-0-387-77668-2_20] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
22 Elzoghby AO, Elgohary MM, Kamel NM. Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs. Protein and Peptide Nanoparticles for Drug Delivery. Elsevier; 2015. pp. 169-221. [DOI: 10.1016/bs.apcsb.2014.12.002] [Cited by in Crossref: 63] [Cited by in F6Publishing: 47] [Article Influence: 10.5] [Reference Citation Analysis]
23 Zhang Y, Zhuo R. Synthesis, characterization, andin vitro 5-Fu release behavior of poly(2,2-dimethyltrimethylene carbonate)-poly(ethylene glycol)-poly(2,2-dimethyltrimethylene carbonate) nanoparticles. J Biomed Mater Res 2006;76A:674-80. [DOI: 10.1002/jbm.a.30395] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
24 Chavanpatil MD, Khdair A, Patil Y, Handa H, Mao G, Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs. J Pharm Sci 2007;96:3379-89. [PMID: 17721942 DOI: 10.1002/jps.20961] [Cited by in Crossref: 78] [Cited by in F6Publishing: 65] [Article Influence: 6.0] [Reference Citation Analysis]
25 Chakravarthi S, Robinson D, De S. Nanoparticles Prepared Using Natural and Synthetic Polymers. In: Thassu D, editor. Nanoparticulate Drug Delivery Systems. CRC Press; 2007. pp. 51-60. [DOI: 10.1201/9781420008449.ch3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
26 Vrignaud S, Benoit J, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011;32:8593-604. [DOI: 10.1016/j.biomaterials.2011.07.057] [Cited by in Crossref: 177] [Cited by in F6Publishing: 147] [Article Influence: 17.7] [Reference Citation Analysis]
27 Gaber M, Mabrouk MT, Freag MS, Khiste SK, Fang JY, Elkhodairy KA, Elzoghby AO. Protein-polysaccharide nanohybrids: Hybridization techniques and drug delivery applications. Eur J Pharm Biopharm 2018;133:42-62. [PMID: 30300719 DOI: 10.1016/j.ejpb.2018.10.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
28 Feng S. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Review of Medical Devices 2014;1:115-25. [DOI: 10.1586/17434440.1.1.115] [Cited by in Crossref: 144] [Cited by in F6Publishing: 124] [Article Influence: 20.6] [Reference Citation Analysis]