BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J Gastroenterol 2021; 27(32): 5306-5321 [PMID: 34539134 DOI: 10.3748/wjg.v27.i32.5306] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Cai ZH, Zhang Q, Fu ZW, Fingerhut A, Tan JW, Zang L, Dong F, Li SC, Wang SL, Ma JJ. Magnetic resonance imaging-based deep learning model to predict multiple firings in double-stapled colorectal anastomosis. World J Gastroenterol 2023; 29(3): 536-548 [PMID: 36688017 DOI: 10.3748/wjg.v29.i3.536] [Reference Citation Analysis]
2 Ming W, Zhu Y, Li F, Bai Y, Gu W, Liu Y, Sun X, Liu X, Liu H. Identifying Associations between DCE-MRI Radiomic Features and Expression Heterogeneity of Hallmark Pathways in Breast Cancer: A Multi-Center Radiogenomic Study. Genes (Basel) 2022;14. [PMID: 36672769 DOI: 10.3390/genes14010028] [Reference Citation Analysis]
3 Harold KM, MacCuaig WM, Holter-Charkabarty J, Williams K, Hill K, Arreola AX, Sekhri M, Carter S, Gomez-Gutierrez J, Salem G, Mishra G, McNally LR. Advances in Imaging of Inflammation, Fibrosis, and Cancer in the Gastrointestinal Tract. Int J Mol Sci 2022;23. [PMID: 36555749 DOI: 10.3390/ijms232416109] [Reference Citation Analysis]
4 Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28(45): 6363-6379 [DOI: 10.3748/wjg.v28.i45.6363] [Reference Citation Analysis]
5 Liang M, Ma X, Wang L, Li D, Wang S, Zhang H, Zhao X. Whole-liver enhanced CT radiomics analysis to predict metachronous liver metastases after rectal cancer surgery. Cancer Imaging 2022;22. [DOI: 10.1186/s40644-022-00485-z] [Reference Citation Analysis]
6 Wu YQ, Gao RZ, Lin P, Wen R, Li HY, Mou MY, Chen FH, Huang F, Zhou WJ, Yang H, He Y, Wu J. An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer. BMC Med Imaging 2022;22:84. [PMID: 35538520 DOI: 10.1186/s12880-022-00813-6] [Reference Citation Analysis]
7 Wang J, Chen J, Zhou R, Gao Y, Li J. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. BMC Cancer 2022;22:420. [PMID: 35439946 DOI: 10.1186/s12885-022-09518-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lv L, Xin B, Hao Y, Yang Z, Xu J, Wang L, Wang X, Song S, Guo X. Radiomic analysis for predicting prognosis of colorectal cancer from preoperative 18F-FDG PET/CT. J Transl Med 2022;20:66. [PMID: 35109864 DOI: 10.1186/s12967-022-03262-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]