BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi Q, Sun Z, Zhang Z, Lee C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research (Wash D C) 2021;2021:6849171. [PMID: 33728410 DOI: 10.34133/2021/6849171] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Nawaz A, Kang M, Choi HW, Ahmad RTM, Kim S, Yoon DH. ZnFe2O4 nanocomposite films for electromagnetic-triboelectric-piezoelectric effect-based hybrid multimodal nanogenerator. Chemical Engineering Journal 2023;454:140262. [DOI: 10.1016/j.cej.2022.140262] [Reference Citation Analysis]
2 Shen S, Yi J, Sun Z, Guo Z, He T, Ma L, Li H, Fu J, Lee C, Wang ZL. Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction. Nano-Micro Lett 2022;14:225. [DOI: 10.1007/s40820-022-00965-8] [Reference Citation Analysis]
3 Yang Y, Guo X, Zhu M, Sun Z, Zhang Z, He T, Lee C. Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials 2022. [DOI: 10.1002/aenm.202203040] [Reference Citation Analysis]
4 Guan H, Zou P, Lin R, Xiao L, Fang Z, Chen J, Lin T, Wang Y, Peng Y, Zhong T, Zhang B, Lang J, Zhang Y, Xing L, Chen M, Xue X. Implantable self-powered therapeutic pellet for wireless photodynamic/sonodynamic hybrid therapy of cancer recurrence inhibition and tumor regression. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108002] [Reference Citation Analysis]
5 Kruchinin R, Nurmakanov Y, Nauryzbayev G, Adair D, Bakenov Z, Kalimuldina G. Flexible carbon cloth-based single-electrode triboelectric nanogenerators with incorporated TiO2 nanoparticles. Energy Reports 2022;8:15048-15056. [DOI: 10.1016/j.egyr.2022.11.049] [Reference Citation Analysis]
6 Naqvi A, Ali A, Altabey WA, Kouritem SA. Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review. Energies 2022;15:7424. [DOI: 10.3390/en15197424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Duan S, Shi Q, Wu J. Multimodal Sensors and ML‐Based Data Fusion for Advanced Robots. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202200213] [Reference Citation Analysis]
8 Du Y, Fu S, Shan C, Wu H, He W, Wang J, Guo H, Li G, Wang Z, Hu C. A Novel Design Based on Mechanical Time‐Delay Switch and Charge Space Accumulation for High Output Performance Direct‐Current Triboelectric Nanogenerator. Adv Funct Materials. [DOI: 10.1002/adfm.202208783] [Reference Citation Analysis]
9 Sriphan S, Vittayakorn N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices 2022;7:100461. [DOI: 10.1016/j.jsamd.2022.100461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Pertin O, Guha K, Jakšić O, Jakšić Z, Iannacci J. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications. Micromachines 2022;13:1399. [DOI: 10.3390/mi13091399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Xiong Y, Han J, Wang Y, Wang ZL, Sun Q. Emerging Iontronic Sensing: Materials, Mechanisms, and Applications. Research 2022;2022:1-35. [DOI: 10.34133/2022/9867378] [Reference Citation Analysis]
12 Fu S, He W, Wu H, Shan C, Du Y, Li G, Wang P, Guo H, Chen J, Hu C. High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell. Nanomicro Lett 2022;14:155. [PMID: 35916998 DOI: 10.1007/s40820-022-00898-2] [Reference Citation Analysis]
13 Shi Q, Yang Y, Sun Z, Lee C. Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Mater Au 2022;2:394-435. [DOI: 10.1021/acsmaterialsau.2c00001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 He W, Shan C, Wu H, Fu S, Li Q, Li G, Zhang X, Du Y, Wang J, Wang X, Hu C. Capturing Dissipation Charge in Charge Space Accumulation Area for Enhancing Output Performance of Sliding Triboelectric Nanogenerator. Advanced Energy Materials. [DOI: 10.1002/aenm.202201454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Chang A, Uy C, Xiao X, Xiao X, Chen J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy 2022;98:107282. [DOI: 10.1016/j.nanoen.2022.107282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
16 Wang W, Yu A, Wang Y, Jia M, Guo P, Ren L, Guo D, Pu X, Wang ZL, Zhai J. Elastic Kernmantle E-Braids for High-Impact Sports Monitoring. Adv Sci (Weinh) 2022;:e2202489. [PMID: 35758560 DOI: 10.1002/advs.202202489] [Reference Citation Analysis]
17 Wang J, Wu H, Wang Z, He W, Shan C, Fu S, Du Y, Liu H, Hu C. An Ultrafast Self‐Polarization Effect in Barium Titanate Filled Poly(Vinylidene Fluoride) Composite Film Enabled by Self‐Charge Excitation Triboelectric Nanogenerator. Adv Funct Materials. [DOI: 10.1002/adfm.202204322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hu S, Yuan Z, Li R, Cao Z, Zhou H, Wu Z, Wang ZL. Vibration-Driven Triboelectric Nanogenerator for Vibration Attenuation and Condition Monitoring for Transmission Lines. Nano Lett 2022. [PMID: 35733084 DOI: 10.1021/acs.nanolett.2c01912] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wang Y, Hu Z, Wang J, Liu X, Shi Q, Wang Y, Qiao L, Li Y, Yang H, Liu J, Zhou L, Yang Z, Lee C, Xu M. Deep Learning-Assisted Triboelectric Smart Mats for Personnel Comprehensive Monitoring toward Maritime Safety. ACS Appl Mater Interfaces 2022;14:24832-9. [PMID: 35593366 DOI: 10.1021/acsami.2c05734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Alagumalai A, Shou W, Mahian O, Aghbashlo M, Tabatabaei M, Wongwises S, Liu Y, Zhan J, Torralba A, Chen J, Wang Z, Matusik W. Self-powered sensing systems with learning capability. Joule 2022. [DOI: 10.1016/j.joule.2022.06.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tang G, Wang Z, Hu X, Wu S, Xu B, Li Z, Yan X, Xu F, Yuan D, Li P, Shi Q, Lee C. A Non-Resonant Piezoelectric–Electromagnetic–Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions. Nanomaterials 2022;12:1168. [DOI: 10.3390/nano12071168] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Li X, Gao Q, Cao Y, Yang Y, Liu S, Wang ZL, Cheng T. Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation. Applied Energy 2022;307:118311. [DOI: 10.1016/j.apenergy.2021.118311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
23 Keykha M, Sheikholeslami TF. The comparison of triboelectric power generated by electron-donating polymers KAPTON and PDMS in contact with PET polymer. Energy Harvesting and Systems 2022;9:53-61. [DOI: 10.1515/ehs-2021-0020] [Reference Citation Analysis]
24 Ba YY, Bao JF, Liu XT, Li XW, Deng HT, Wen DL, Zhang XS. Electron-Ion Coupling Mechanism to Construct Stable Output Performance Nanogenerator. Research (Wash D C) 2021;2021:9817062. [PMID: 34870228 DOI: 10.34133/2021/9817062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Guo X, Wang F, Liu H, Lee C. Multi-Functional Hybridized Units for Self- Sustainable IoT Sensing and Ultra-Low Frequency Energy Harvesting. 2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) 2021. [DOI: 10.1109/powermems54003.2021.9658392] [Reference Citation Analysis]
26 Zhang Q, Li L, Wang T, Jiang Y, Tian Y, Jin T, Yue T, Lee C. Self-sustainable flow-velocity detection via electromagnetic/triboelectric hybrid generator aiming at IoT-based environment monitoring. Nano Energy 2021;90:106501. [DOI: 10.1016/j.nanoen.2021.106501] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
27 Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C. Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications. ACS Nano 2021. [PMID: 34723468 DOI: 10.1021/acsnano.1c07579] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
28 Ben Dhaou I, Ebrahimi M, Ben Ammar M, Bouattour G, Kanoun O. Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation. Electronics 2021;10:2104. [DOI: 10.3390/electronics10172104] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
29 Ren Z, Xu J, Le X, Lee C. Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G. Micromachines (Basel) 2021;12:946. [PMID: 34442568 DOI: 10.3390/mi12080946] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
30 Ren Z, Liang X, Liu D, Li X, Ping J, Wang Z, Wang ZL. Water‐Wave Driven Route Avoidance Warning System for Wireless Ocean Navigation. Adv Energy Mater 2021;11:2101116. [DOI: 10.1002/aenm.202101116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
31 Shen F, Li Z, Guo H, Yang Z, Wu H, Wang M, Luo J, Xie S, Peng Y, Pu H. Recent Advances towards Ocean Energy Harvesting and Self‐Powered Applications Based on Triboelectric Nanogenerators. Adv Electron Mater 2021;7:2100277. [DOI: 10.1002/aelm.202100277] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]